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Abstract

The Constraint Satisfaction Problem (CSP) is a mathematical
abstraction of the problems in many AI application domains. In many of
such applications timely response by a CSP solver is so crucial that to
achieve it, the user may be willing to sacrifice completeness to a certain
extent. This paper describes a neural network approach for solving
CSPs which aims at providing prompt responses. The effectiveness of
this model, which is called GENET, in solving CSPs with binary
constraints is demonstrated by a simulator. Although the completeness
is not guaranteed, as in the case of most of the existing stochastic search
techniques, solutions have been found by the GENET simulator in all of
our randomly generated problems tested so far. Since the neural network
model lends itself to the VLSI implementation of parallel processing
architectures, the limited number of cycles required by GENET to find
the solutions for the tested problems gives hope for solving large CSPs
in a fraction of the time required by conventional methods.

1 Introduction

Constraint satisfaction is the nature of the problems in many AI application domains.
For instance, line labelling in vision [1], subproblems in temporal reasoning [2, 3],
and resource allocation in planning and scheduling [4, 5] can all be formulated as
Constraint Satisfaction Problems (CSPs). A CSP is defined as a triple (Z, D, C), where
Z is a finite set of variables, D is a set of domains, one for each variable, and C is a set
of constraints. Each constraint in C restricts the values that one can assign to a set of
variables simultaneously. The task is to assign one value per variable, satisfying all
the constraints in C [6].

To make discussion easier we shall first define a few terms here. The assignment
of a value to a variable is called a label. A (possibly empty) set of labels is called a
compound label. A compound label with k labels in it is called a k-compound label. A
constraint is n-ary if it applies to n variables. A binary CSP is a CSP with unary and
binary constraints only.

This research is motivated by the need to produce prompt solutions to CSPs.
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There are at least two reasons for such need:

(A) Time is limited
In some applications the user has very limited time to solve the problems. For
example, in allocating resources such as manpower and equipments to jobs in a
workshop, one could be dealing with a very dynamic situation. For instance,
jobs may be added, cancelled or given priority, and resources could become
unavailable, etc. If these changes happen frequently one may not be allowed
too much time for scheduling and re-scheduling.

Furthermore in many scheduling problems the user has to consider a large
number of combinations of constraints. Sometimes not all the constraints can
be satisfied and, therefore, the user has to consider relaxing some of them. To
enable him/her to evaluate the different situations the real time response of a
CSP solver is crucial.

(B) Time determines cost
There are applications where cost is a function of the response time. Imagine
sitting in the control room of a container port and allocating storage locations
to containers unloaded from container vessels. Each minute’s delay in clearing
the containers from a busy port could cost hundreds of pounds. Therefore one
would like to decide as soon as possible where to store the containers.

Besides, in a catastrophic incident, such as a natural disaster or an accident
in a nuclear power station, one of the coordinator’s tasks may be to allocate
resources, such as rescuing teams and scarce equipments, to different sites. The
coordinator’s reaction time may directly affect the amount of loss in terms of
life and death and the amount of properties and equipments being destroyed.

The majority of existing work in CSP has been focused on problem reduction and
heuristic search [6, 7]. A few techniques in such categories have been used in the
constraint programming language CHIP. For symbolic variables, CHIP uses the
Forward Checking algorithm together with the Fail First Principle (FC-FFP) heuristic
[7]. CHIP’s strategy has worked reasonably well in certain real life problems [8, 9,
10]. Unfortunately, CSPs are NP-hard in nature. The size of the search space in a CSP
is typically O(dN), where d is the size of each domain in D (assuming, for simplicity,
that all domains have the same size) and N is the number of variables in the problem.
For CSPs with, say, N = 10000 variables and d = 50, the search space will be so huge
(5010000) that even a good heuristic algorithm may not be able to produce any answer
within a tolerable period of time.

Speed could be gained in CSP solvers by using parallel processing architectures.
Indeed, Saletore and Kale show that to a certain extent, linear speedup is achievable
by using parallel architectures [11]. However, as Kasif points out, problem reduction
(which CHIP uses) is inherently sequential, and it is unlikely that a CSP can be solved
in logarithmic time by using only a polynomial number of processors [12].

Neural Network (NN) techniques give hope to a higher degree of parallelism in
solving CSPs. Although NNs normally do not guarantee to find solutions even when
some exist (as they could be trapped in local minima or local maxima), their
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stochastic hill-climbing nature may also lead them to producing solutions much more
quickly (if local minima are avoided). Hopfield and Tank’s work on the Travelling
Salesman Problem is one such example [13]. The attempt to apply neural network
techniques to solve CSPs has led to the discovery of the Heuristic Repair Method,
which is based on a heuristic called Min-conflict [14, 15]. The Heuristic Repair
Method can solve the million-queens problem in minutes.

Other work in applying connectionist approaches to CSPs can be found in [16,
17, 18 and 19]. Swain and Cooper [16] propose to use a connectionist approach to
problem reduction (through maintaining arc-consistency [16]), and Cooper [17]
applies this technique to graph matching. Guesgen [18] extends Swain and Cooper’s
approach to facilitate the generation of solutions from the converged network.
However, generating solutions from the converged network is far from trivial. Collin
et al [19] point out that even for relatively simple constraint graphs, it is difficult to
find a general parallel computational model which guarantees completeness. Besides,
all these approaches require massively parallel architectures.

The major problem with neural network approaches in general is the danger of
the network settling in local minima, which prevents the problem solver from finding
solutions when some exist. Our analysis and experiments have shown that the
Heuristic Repair Method is only effective for CSPs for which there exist a large
number of solutions, such as the N-queens problem with large N [20].

In this paper, we describe a generic neural network approach for solving CSPs
with binary constraints. The model that we propose is called GENET. The
effectiveness of GENET is demonstrated by a simulator, which can generate
connected networks dynamically for binary constraint problems, and simulate the
network convergence procedure. In case the network falls into local minima, a
heuristic learning rule will be applied to escape from them. The network model lends
itself to high degrees of parallelism. The experimental results of applying the GENET
simulator to randomly generated CSPs have been very favorable, which indicates that
massive parallelism is not necessary to achieve a few orders of magnitude speedup
over sequential heuristic search method.

2 NETWORK MODEL

A binary constraint problem is represented in GENET in the following way. One node
in the NN is used to represent one label. Each node has a binary output - either it is on
(active) or it is off (inactive). If a node is on, it means the corresponding assignment is
being made. The set of all nodes which represents the labels for the same variable
forms a cluster. The connections among the nodes are constructed according to the
constraints C, with an inhibitory connection between incompatible nodes and no
connections between compatible nodes. The weight of all the connections are
initialized to -1. Figure 1 shows a CSP and its network in GENET.

By convention, we shall denote the state of node i as si, which is either 1 for on or
0 for off. The weight of the connection between nodes i and j is denoted as wij, which
is always a negative integer and initially given the value -1. The input to a node is the
weighted sum of all its connected nodes’ states. Only one node in each cluster will be
allowed to turn on. Therefore every state of the network represents an assignment of
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one value per variable. Any network state in which no two ON nodes are connected
represents a solution to the CSP.

3 Network Convergence and Escaping Local Minima

The network convergence procedure is as follows. Initially one node in each cluster is
randomly selected to turn on. Then, in each convergence cycle, every node calculates
its input. In each cluster, the node that receives the maximum input will be turned on,
and the others will be turned off. Since there exist only negative connections
(representing the constraints in the problem), the winner in each cluster represents a
value which, when being assigned to the corresponding variable, violates the fewest

Z1

{1, 2, 3}

{1, 2, 3}

even(Z1+Z2) Z1=2 or Z5=2

even(Z2+Z3)

even(Z3+Z4)

even(Z4+Z5)

{1, 2, 3}

{1, 2, 3}Z2

{1, 2, 3}
Z4

Z5

Z3

(a) A CSP with 5 variables, Z1, Z2, Z3, Z4 and Z5,

1

2

3

Z1 Z2 Z3 Z4 Z5

(b) The network corresponding to (a) generated by GENET

Figure 1. A CSP and its corresponding network generated by GENET

all with the same domain {1, 2, 3}



in J.G.Taylor (ed.), Neural Network Applications, Springer-Verlag, 1992, p.12-22 p.5

constraints. In tie situations, if one of the nodes in the tie was on in the previous cycle,
it will stay on. If all the nodes in the tie were off in the previous cycle, a random
choice is made to break the tie. This is to avoid chaotic or cyclic wandering of the
network states. We have experimented in breaking ties randomly, as is done in the
Heuristic Repair Method [15]. But we find this strategy ineffective in problems which
have few solutions.

If and when the network settles in a stable state, GENET checks if that state
represents a solution. As stated before, a state in which all the active nodes have zero
input represents a solution. Otherwise, it represents a local minimum.

When the network settles in a local minimum, the state update rule fails to make
alternative choices for variable assignments based on the local information received
at each cluster of nodes. It would appear that introducing randomness or noise in the
state update rule, in a manner of the simulated annealing as suggested in the literature
[21], might help in escaping local minima. However, this will degrade the overall
performance drastically, which could make this approach not effective enough for
solving any real life problems. Instead, we have adopted a heuristic learning rule
which updates the connection weights as follows:

where t is a discrete time instance measured in terms of cycles. This learning rule
effectively does two things: (a) it continuously reduces the value of the current state
until it ceases to be a local minimum, and (b) it reduces the possibility of any violated
constraint being violated again. Hopefully, after sufficient learning cycles, the
connection weights in the network will lead the network states to a solution. The
network convergence algorithm is shown in pseudo codes in Figure 2.

The states of all the nodes are revised in parallel asynchronously in the model.
The outer REPEAT loop terminates when a solution is found, or some resource is
exhausted, which could mean that the maximum number of cycles have been reached,
or the time limit has been exceeded. The resources available vary from application to
application.

4 Experiments and Evaluation of GENET

In order to test the effectiveness of GENET for solving CSPs, a GENET simulator is
constructed. Thousands of tests have been performed on randomly generated and
specially designed CSPs to evaluate the performance of GENET. Random problems
are generated with the following 5 parameters varied:

N the number of variables;

D the maximum size of domains;

d the average size of individual domains (d ≤ D) - the introduction of d in
addition to D is to allow us to test problems which may have different
domain sizes;

p1 the percentage of pairwise variables being constrained - in the generated

problem, there are  constraints; and

wij t 1+( ) wij t( ) si t( ) sj t( )×−=

p1
N N 1−( )×

2
×
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p2 the percentage of compound labels satisfying each binary constraint; e.g. if
there exists a binary constraint between variables X and Y, and the domain
sizes of X and Y are d1 and d2, then p2 of the d1 × d2 combinations of labels
for X and Y are compatible with each other.

The probability for any two randomly assigned variables being compatible, pc,
can be obtained as follows:

The probability of an N-compound label violating no constraint is defined as the
tightness of a problem. With N variables:

PROCEDURE GENET

BEGIN

One arbitrary node per cluster is switched ON;

REPEAT /* network convergence: */

REPEAT

Modified := False;

FOR each cluster DO IN PARALLEL

BEGIN

On_node := node which is at present ON;

Label_Set := the nodes with the maximum input;

IF NOT (On_node in Label_Set) THEN

BEGIN

Modified := True;

On_node := OFF;

Switch an arbitrary node in Label_Set to ON;

END

END

UNTIL (NOT Modified); /* the network has converged */

/* learning: */

IF (sum of input to all ON nodes < 0) /* in local minma */

THEN FOR connection c between nodes x and y DO IN PARALLEL

IF (both x and y are ON)

THEN decrease the weight of connection c by 1;

UNTIL (input to all ON nodes are 0) OR (any resource exhausted)

END

Figure 2. GENET convergence procedure

pc 1 p1− p1 p2×+=
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i

i 1=
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A problem is tight if its tightness is small. The GENET simulator is tested on
problems with varying number of variables, domain sizes and degrees of tightness (by
varying p1 and p2). Tests have been focused on tight problems to see how likely
GENET is to miss solutions. GENET is given a limit in the number of convergence
cycles. If this limit is exceeded before a solution is found, GENET is instructed to
report a failure. When GENET reports a failure, the problem is passed to a program
which performs a complete search to check if GENET has missed any solution. For
all the problems tested, GENET is capable of converging on solutions in solvable
problems, and reporting failures in insoluble problems.

The time required by GENET to find solutions is measured by the number of
convergence cycles required by the simulator. For CSPs in which N = 170, D = d = 6,
p1 = 10% and p2 = 85%, GENET takes just over 100 cycles to terminate. For a fully
parallelized (with d × N parallelism) VLSI implementation one cycle may take a few
hundred nano seconds. Thus, a problem of the aforementioned size can be solved in
terms of tens to hundreds of micro seconds. Compared with a sequential heuristic
search which would take over 20 hours to solve the same problem, the speedup is in
the order of 108. The speedup of such a high order implies that a very high overhead
could be affordable if the full parallelism is not supported. In fact, a parallelism of d
would give a respectable speedup, as shown below.

Take the above problem for example. Suppose we have only d parallel
processors. This would allow us to process one cluster at each processing cycle. To
allow for more adverse situations, suppose each processor has only one input port.
This would mean that one network convergence cycle had to be completed in N(N-1)
processing cycles (N clusters to be processed in order and each cluster needs N-1
cycles for adding up the active input from all other clusters). Since N = 170, the
speedup will be degraded down to the order of 104. Considering this 4 orders of
magnitude speedup being achievable at a moderate parallelism (d) and with a
relatively simple and low cost processor (one input port), we may conclude that the
GENET approach indeed fulfills our initial research objectives.

Another interesting finding in our experiments is that the weights in the network
never fall below -50 and the total input to a node never fall below -100. The range of
these values could be further reduced if floating points instead of integers were used
for the weights. This finding is important for the analogue VLSI implementation of
the GENET model, as shown below.

5 VLSI Implementation

A full discussion of a VLSI implementation of the GENET model is beyond the scope
of this paper. In this section, we will simply show the feasibility of such
implementation using analogue techniques.

The computation in each GENET convergence cycle can be divided into two
parts: (a) the summation of input signals to a node, and (b) the competition within a
cluster. The summation can be realized by a linear operational amplifier and the
competition can be realized by an analogue channel comparator [22].

Figure 3 shows a schematic diagram for the design of one cluster of nodes, where
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the vertical box represents the channel comparator with one channel receiving the
total input signal of each node in the cluster. One single-bit register is associated to a
channel, as shown to the right hand side of the vertical box (labeled D), to store the
state of the corresponding node. The channel that receives the highest signal level will
be switched on, and consequently its register will be set. All other channels will be
switched off and so are their registers.

The state of the registers are also fed back to the channel comparator so that if the
channel with the highest signal level already has its associated register set, a signal of
no change is generated for this cluster. Thus, local minima can be detected. The
comparator also checks the highest signal level against a null reference signal. If they
match, a signal of no violation is generated. Henceforth, the solution states can be
detected. The tie situation is solved by the natural deviation in the circuitry
parameters and the feedback from the state registers.

Clearly the sensitivity of the channel comparator depends on the minimum
interval amongst the levels of the signals being compared, and the range of signal
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levels is limited by the VLSI technology. However this is not a problem with the
GENET model because, as mentioned before, the weights and total input to a node are
well limited. Firstly, a fine tuning of the weights’ granularity can help reduce the total
range of the signal levels. Secondly, the saturation at the lower end of the signal levels
does not affect the competition. Lastly, should it be necessary, a uniform signal level
shift can be applied to solve the problem.

It should be noted that Figure 3 only shows the design principle. The technical
detail of a cascadable VLSI architecture for GENET is described in [22], which
proposes an even simpler design that does not require modifiable resistors for learning
purposes. The weights are stored off chip, the size of the channel comparator is
expandable by cascading such neuro-chips vertically, and the number of clusters
processed concurrently is expandable by cascading such neuro-chips horizontally.

6 Future Work

Research in GENET is on-going. Our current research focus is in the following
directions. Firstly, we are evaluating GENET’s performance in solving partial
constraint satisfaction problems (PCSPs) [23]. One instance of the PCSPs which is
useful for scheduling is to minimize the number of constraints violated when the
problem is over-constrained. The PCSP is difficult because one can not use
constraints to prune off as much of the search space in it as in the standard CSP
(because the optimal solution may violate some constraints).

The second major direction that we are investigating is to handle general
constraints. For non-binary problems and problems in which the values are not simple
ground terms, a multilayer structured network will be required. The number of layers
required depends on the complexity of the value structure. We have performed
preliminary tests in applying GENET to networks constructed (by the experimenters)
for instances of the car-sequencing problem [8, 24]. Like all the other tests so far,
GENET finds solutions in those networks. Our approach to the car-sequencing
problem is outlined in [20].

Our long term research direction is to fabricate VLSI neuro-chips for
constructing CSP solvers for real life applications.

7 Concluding Summary

We have pointed out that there are applications in which timely response by CSP
solvers is so crucial that a limited degree of sacrifice in completeness by the CSP
solver can be justified. For such applications, we have proposed a neuro-network
based model called GENET whose aim is to produce solutions fast enough for real
time applications. A simulator has been built to demonstrate the effectiveness of
GENET. Although completeness in GENET is not guaranteed, the GENET simulator
has not yet failed in finding solutions for thousands of randomly generated CSPs
which vary significantly in their size and tightness. We have shown the feasibility of
building hardware for GENET. The fact that relatively few cycles are needed by the
GENET simulator to find solutions gives hope for solving CSPs in a fraction of the
time required by conventional techniques.
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