HUMAN-COMPUTER INTERFACE DESIGN

Course EE212
Part 1, Section 5
Evaluation - motives and methods
Computing & Electronic Systems
Autumn 2008
John Foster (module supervisor) and Edward Tsang

EVALUATION - what does it mean?

- Making a measurement of performance, such as:
 - speed of use
 - accuracy and freedom from errors
 - speed and quality of learning or training
 - robustness to mistakes or system failures
 - ease of use
 - comfort and satisfaction in using the system
 - likeability of the system
- Kinds of measurement involved
 - some of these measures are objective, e.g., speed of use
 - other measures are subjective (opinions of the user), e.g., ease of use
 - some have both objective and subjective parts, e.g., quality of learning
- Measurement usually means an objective process

EVALUATION - why do it?

- Assess system performance
 - a) the system’s functionality
 - b) the users’ experience of interacting with the system
 - c) the detection and identification of problems
- System is …
 - the entire system, including the users
- Performance is …
 - that of the entire system, when used in a particular way or context,
 - by a particular group or kind of users
- Performance depends on …
 - the machine and its design
 - the users, through their experience, motivation and outlook
 - interactions of users and machine, which can become complicated

EVALUATION - the problem

- Users vary
 - in experience, training, education and skill
 - in motivation, fatigue, taste, age and cultural background
 - in performance, even when all the above factors are constant
- Subjective measurements
 - can be worthless - swamped by variations in users’ performance
 - range of user variation is often greater than effect due to machine design
- Special care is required
 - using methods from experimental psychology and statistics, that’s why
 - HCI evaluations are often called “experiments”
 - formal methods aim to control and quantify the effects of user variation
 - formal mathematics aims to separate effects due to different causes

Our Task in HCI Evaluation

- Evaluation in an ordinary software project:
 - Given specification (usually signed off by clients)
 - Evaluate software against specification
- In HCI design, we started with:
 - A user model (we build it, but models are never perfect)
 - Tasks (we specify them)
 - Machine (we should know it well)
- We designed our style, structure, format, error-handing, data structure
- Now we’ve got negative feedback from the user
 - What to blame/improve? user model? or the design?

EVALUATION - classic mistakes

- Designers assume own behaviour is representative of users
- Delaying evaluation until more “convenient” time (avoidance)
- Making unsupported assumptions or guesses
 - especially when these occur early in the design
- Continued acceptance of habit or tradition
 - even when the underlying system, or its use, has changed substantially
- Using “common sense” opinions about human behaviour
- Making a formal evaluation, based on
 - inappropriate kinds of users or the wrong group of users
- Making a formal and detailed evaluation, which is
 - so complex and poorly constructed that the results cannot be analysed
EVALUATION - can you avoid it?

• Evaluation is sometimes thought of as difficult, expensive, confusing and avoidable, because it is harder to do than objective measurements but as HCI becomes more commonplace, and more powerful, in all walks of life, so evaluation is becoming essential.

• Need for wider understanding and “culture-shift”
 evaluation methods should be more widely known and understood should break away from experimental psychology background a simple, approximate evaluation is better than none at all.

EVALUATION - when should you do it?

• Early and often …
 informal evaluations in feasibility stage
 more formal methods, during development targeted evaluations, during debugging detailed evaluation, or a summary of previous evaluations, before production.

SELECTING TRIAL USERS - or choosing the ‘subjects’

• Selecting a sample of a much larger population of users
 how to ensure that this sample is representative of the whole?
 can choose the number of people and the kinds of people

• Number of people in the experiment
 larger numbers mean less variability in the averaged results, but more money and time will be required to run the experiment

• Choose number based on:
 the intrinsic variability of the population of users
 the size of the expected difference in performance - a small difference will need more people to ‘average out’ other sources of variability
 the numerical and statistical structure of the particular experiment

KINDS OF EVALUATION - how and where

• Using experts
 through a collaborative review or “walk-through” with individual, and independent, reviews by different experts
 using existing studies of similar systems (but might not be relevant)

• Involving users
 interviewing users or asking them to complete questionnaires
 observing, recording and analysing their behaviour when using system controlled experiment to test a hypothesis or measure users’ opinion.

• In controlled conditions
 in laboratory, using resources like video recording or keystroke logging, but the real environment might be distracting or out of context

• In uncontrolled conditions
 in the intended places of use - ‘in the field’ few resources, but the environment and context are correct

KINDS OF EVALUATION - in different phases of design

• Feasibility stage
 using existing studies and guidelines from experts
 with paper mock-ups or story-boards, presented to ‘trusted users’

• System analysis phase
 use data from tests on previous design, if system is updated version
 feedback from users, designers, marketing/sales, about earlier version
 by interviews or questionnaires
 independent expert review of practical benefit and/or market appeal

• During development
 simple or small-scale experiments about major design decisions
 use simulations of entire system, if all parts are not yet developed
 use modular design to simplify changes in retrospect / during debugging

• During debugging or at the end of development
 larger-scale and more formal experiments, using automatic logging
 by expert review using established HCI criteria

• To be representative of all users
 may need a special effort to locate or recruit willing “subjects”

• General reasons to differentiate in selecting trial users
 age
 training and expertise
 motivation - high or low
 cognitive characteristics - high or low
 sensory characteristics - good or impaired (eg. colour blindness)
 responder characteristics - eager or shy, careful or reckless

• Specific reasons to differentiate in selecting trial users
 particular task experience, or the use of earlier kinds of solution
 particular computer experience, or the use of competing systems
 typing, language or other special skills
EVALUATION METHOD - questionnaires
- Can produce much information quickly and economically
- Tends to produce qualitative data about user attitudes
can give quantitative data, with psychology and mathematics experts
- Questionnaires administered by evaluator
good control of user behaviour and attention
evaluator sets topics of questions and of any "follow-up" sub-questions
can be face-to-face or by telephone
- User-administered questionnaires
little control of user behaviour or attention
extra care needed in choosing and writing the questions
evaluator sets question topics, but user selects sub-question topics
low response rate is common - 40% is very good

USING QUESTIONNAIRES - choosing the questions
- Either open-ended or closed types of questions can be used
- Logical structure of questionnaire important
bias can arise from the order in which certain questions are asked
filter or branch-type questions can lead to sub-question topics
- Expert help, or experience and training, needed to avoid:
"loaded" words or phrases which suggest what answer is desired
embarrassing the user, or making them feel foolish
asking questions with ambiguous, confusing or vague meanings
asking questions that encourage or allow imprecise or vague answers
- Other factors
layout of question text and use of graphics to help users navigate
length of the questionnaire - too long and it will deter most users
test the questionnaire before using it

EVALUATION METHOD - interviews
- Top-down (general to specific) and open-ended approach
- More flexible than questionnaires
good at revealing user preferences, impressions and attitudes
can probe for greater or specific detail with selected users
can obtain data about issues that were unforeseen by the designers
- More expensive than questionnaires
especially for a large number of subjects, because trained interviewers
are essential to avoid bias in questions and in responses
- Advance planning of interviews is important
sets of alternative questions should be prepared
helps maintain consistency of approach between different interviewers

EVALUATION METHOD - experiments
- Types of experiment
comparative - measures performance relative to another system
absolute - measures if system meets specified requirements
- Parameters to measure
number of errors made by user, but detected and corrected by user
number of errors made by user that are not detected by user
time taken to complete a representative task
user satisfaction or opinion - can use a "well-described" numerical scale
- Measurement techniques
computer or instrumentation-based logging of events or timings
use experts to analyse user behaviour, by observation or video recording
debriefing (by interview or questionnaire) or manual response from user
- Problem
the artificiality of the environment or context of the experiment

DESIGNING EXPERIMENTS - three important choices: (1)
- Identify important variables - and choose which to vary
a variable is a factor that is likely to significantly influence results
variables should not interact, but be as independent as possible
some possible variables may have little effect eg. shape of mouse
it may be difficult to alter some variables eg. layout of keyboard
- Construct a framework for statistical analysis
each independent variable is one term in a statistical model of the result
using fewer variables makes analysis easier but decreases relevance
- Other objectives in choosing variables
minimise the total time taken for each test in the experiment
make context of the task in each test representative and meaningful
make environment as realistic as possible, subject to other objectives
eliminate "nuisance" variables where possible eg. distractions

DESIGNING EXPERIMENTS - three important choices: (2)
- Identify all important conditions
a "condition" is one combination of particular values of the variables
each test is one condition, but analysis extracts dependency on variables
some possible combinations of variables may not be useful or relevant
other environmental factors, such as ambient noise, lighting or interruptions,
should be as stable as possible to avoid adding variability
- Number of conditions affects the statistical analysis
there are "magic numbers" of conditions, which make for good analysis
these numbers depend on the number of variables
in two-person experiments, the identity of the other person is a condition
eg. in testing "combat" games played over Internet
- Number of trial users required
depends on the number of variables and conditions
good experimental design means all people experience all conditions
DESIGNING EXPERIMENTS

- three important choices : (3)

• Experimental procedure
 clarity and consistency of the explanation given to trial user is important
 multiple tests, with different conditions, are often needed for each user
 controlling the order in which tests are presented is very important

• Learning effects and introduction of bias
 trial users adapt to, and learn from, each test in the experiment
 late tests involve a more experienced user than early tests in experiment
 it is difficult or impossible to eliminate this learning effect
 if each user experiences same tests in same sequence, bias is created

• Statistical methods and structure of the experiment
 can minimise and measure the impact of test sequence on final results
 varying the sequence for different users is necessary
 sometimes, certain sequences of conditions are imposed by the task