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ABSTRACT 
 

This paper2 details the stages of building a substantial, carefully specified, fully tested 
and fully operational university and school timetabling system. This is reported as a 
case study in applying Constraint Satisfaction techniques. The emphasis is on the 
software engineering aspects of the problem. That is, Constraint Satisfaction problems 
are expressed in a language more familiar to the formal software engineering 
community. Moreover, this language is used to formulate domain constraints and 
heuristic information. In addition to that, the user's needs are looked at more closely. 
For instance, the system supplies indications useful for relaxing or reformulating the 
constraints of the problem when a solution satisfying these constraints is impossible to 
produce. This has a value in bringing Constraint Satisfaction one-step closer to formal 
specification, program verification and transformation. 
 
Keywords: Constraint Satisfaction, Timetabling, Program Specification, Software 
Engineering 
 
1. INTRODUCTION 
 
Timetabling is an instance of task scheduling. This is a well-known NP-complete 
problem. That is, no known algorithm is adequately efficient for all its instances. This 
problem is ubiquitous in all practical aspects of modern societies. In fact, timetables 
play an important and sensitive role specifically in people intensive institutions such as 
hospitals and universities. This naturally generates considerable interest in 
understanding the timetable generation process. This consequently forms a focus of 
attraction to researchers from a variety of backgrounds and disciplines, in the quest for 
adequately efficient and flexible timetable generators. 
 
The degree of maturity of the field can perhaps be measured by the existence of regular 
conferences dedicated to the timetable generation process [10, 13]. This can also be 
estimated from the existence of numerous commercial timetabling companies ([38] and 
[47] are just examples). Such companies provide extensive timetable generation 
services in specialized domains. This is also an indication of the complexity of the 
timetabling task, which is directly related to the complexity of the conditions timetables 
have to satisfy.  
                                                           
1 Contact author 
2 This is an extended version of a short paper presented at the AICCSA'01 (see [1]). 
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Timetables and the timetable generation process are looked at in the literature from 
many different angles (see [15] and [42] for good overviews and more references to the 
subject). Correspondingly, there have been many approaches to the realization of these 
views using a wide variety of problem-solving paradigms ([7], [11], [12], [33], [36], 
[39], [48] and [54] are sample instances). Compared with these, Constraint Satisfaction 
techniques figure prominently ([4], [27], [35] and [55] are just a few examples of 
Constraint-based approaches to university/school timetabling). 
 
The view of the timetabling task adopted in this paper is similar to (but somewhat a 
simplification of) that reflected in [14]. However, the problem solving approach is 
closer to what is discussed in [53], whereas the software engineering element of this 
goes in the direction of [56]. More discussions and references are provided below that 
closer to the sources of the problem solving paradigm adopted in this paper. 
 
This paper advances this view toward a formal setting. In fact, it provides explicit 
formulations of several concepts central to the generation of university and school 
timetables. This should be beneficial in making Constraint Satisfaction techniques (in 
general) and the timetabling task (in particular) more widely accessible to the computer 
science audience. This would especially be useful for those interested in formalizations, 
or in the construction of actual timetable generators. 
 
 
2. THE CONTEXT 
 
The case study reported in this paper is set in the context of a small university3, where 
students come from a variety of different backgrounds. In this context, students taking 
the same kind of courses are not the total majority in any one class. Thus, without taking 
this variety into consideration, a timetable will very likely incur time conflicts 
preventing a meaningful number of students from taking their intended courses. This 
can result in a drop in semester enrollment and the closing down of classes because not 
enough students will be taking them. 
 
This scenario does not arise that often in larger more-established universities because, in 
the majority of cases, enough students will take the courses on offer. Even when the odd 
case arises, the consequences will not be of the kind that the university can not afford. 
However, with less homogeneity and fewer students to go around, the impact will not be 
that pleasing. 
 
This provides a particularly fitting test for Constraints Satisfaction techniques. 
Intuitively, the difficulty in constructing a timetable is directly proportional to the 
number of different cases it is taking into account. That is, the same space of 
possibilities would have fewer solutions resulting from tighter constraints. 
 
 
 
                                                           
3  Faculty of Sciences and Engineering, The University of Balamand, Lebanon 
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3. THE PROBLEM 
 
At the start of every academic semester, students go through a pre-registration period. 
This is when they can select the classes they would like to attend during the semester. 
On the list of information provided then, there would still be a noticeable number of 
empty slots. These are to do with which instructor would be teaching which class or 
what time (or times) of the week such a class would fall in. Besides, some of the 
existing information on this list is understood to be subject to change. 
 
The administrators would then gather the enrollment information and try to fill in these 
empty slots. The aim would be a timetable that is suitable to all instructors, students and 
other university requirements, resources and facilities. 
 
However, the task of producing by hand, a satisfactory, conflict-free timetable is a 
lengthy, tedious, time-consuming and error-prone process. The main difficulty is the 
absence of any dependable idea of doing that. This is essentially a trial-and-error 
process that relies solely on the basic knowledge of the extremely intricate dependencies 
between the students, instructor and course elements of the process. 
 
Worse than that, in the absence of adequate planning, the inherently-random pre-
registration process can result in irresolvable conflicts between various student and 
instructor choices. That is, very often, no timetable could possibly satisfy all choices, 
even with an exhaustive search of all available alternatives. 
 
Thus, very frequently, administrators would resign themselves to accepting an 
approximate solution. This is a solution that, they know a priori, would not be pleasing 
to everyone. They simply hope that such a tentative solution will mend itself during the 
subsequent drop-and-add period. This usually means wasting the first two weeks of the 
semester with students reselecting their courses and/or instructors adjusting their course 
assignments. This way, the process may converge on a solution that everyone would be 
content to live with for the duration of the semester. 
 
 
4. THE SOLUTION 
 
The Timetable Generator project was initiated in response to this problem. Adopting the 
view that the solution resides in some intelligent search strategy, the first period of the 
project was spent investigating the possibility of benefiting from the best-first search 
algorithm (e.g. [16]). However, the size of the data involved was huge. Furthermore, no 
sufficiently powerful heuristics were available to cut down the amount of search 
involved. These two factors forced an early abandonment of this research direction. 
 
Later implementations had more benefits from Constraint Satisfaction techniques, 
resulting in a much more usable program (see next section). Timetabling proved to be a 
rich domain, very much conducive to a Constraint-based solution. In fact, as it currently 
stands the system implements and reaps the benefits of many of the core techniques 
presented in [49]; all within a single framework. 
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5. A SOFTWARE ENGINEERING APPROACH TO CONSTRAINT 
SATISFACTION 

 
Early research on Constraint Satisfaction focused on problem solving strategies and 
algorithms (see [49] for an account and section 5.2 below for more details and 
references). But now that Constraint Programming is mature enough for real life 
applications [52], the attention has gradually shifted toward its software engineering 
aspects. That is, with plenty of solving strategies around, the tendency nowadays is to 
relieve the programmer from the problem solving effort. The general approach is to hide 
the details in a declarative or high-level language and let the programming system do the 
interpretation (see [34] for an early reference on that).  
 
In the context of Constraint Satisfaction, modeling lies nowadays at the heart of this 
approach [19, 21]. The quest for ever-more high-level modeling constructs [28] has 
tremendously increased the modeling capabilities given to the user. This is interesting to 
software practitioners, because problem models can this way be clearly separated from 
the operational aspects of the solver, and from the surrounding software environment. 
Hence, the programmer can devote more time to more basic aspects such as modeling, 
modularity, extensibility, etc. The following are some of the advances on Constraint-
based development that took place during the past decade: 
 
− Modeling tools for constraint programming such as the modeling language 
OPL [51], the CHIC-2 Project [17] and ECLiPSe [32]. 

− The Ilog Solver [29] library, which provides software components and 
abstractions for Constraint-based combinatorial search. 

− Ongoing research on constraint modeling and programming ([20, 50]). 
 
This same approach is followed in this paper. That is, timetabling is treated as a 
Constraint Satisfaction problem. As such, a formal specification language with high-
level constructs (called DEPICT 0.1) is used to formally specify the timetabling 
problem ([2] and [3] have more details on DEPICT 0.1). Subsequently, an algorithm 
satisfying these specifications is presented.  
 
5.1. Specifying Constraint Satisfaction Problems 
 
A Constraint Satisfaction Problem (CSP) can be defined by the following three 
components (definition modified from [49]): 
 

− a finite set of variables A = (ai)i= 1 .. n 
− a corresponding set of domains B = (Ba)a∈A. Each Ba is a finite domain of 

values that the corresponding variable a can take its value from. 
− a set S of subsets of A over which a set of constraints C = (Cs)s∈S is specified. 

Each Cs is a constraint that ties together the variables of the subset s by 
restricting the values they may simultaneously take. 
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A CSP solution consists of finding, for each of the variables a∈A, a value b∈Ba 
satisfying all relevant constraints. That is, for each s∈S, the set {<a, b>; a∈s} 
must satisfy the constraint Cs. An initial attempt at specifying this problem could be: 
 

(∀ a ∈ A)(∃ b ∈ Ba)C(<a, b>) 
 

However, this does not quite express the simultaneity of the application of the condition 
C over all pairs <a, b>∈A×Ba. A more accurate description of this fact goes as 
follows: find a function f associating every element a∈A with an element b∈Ba so that 
C(f) is satisfied. Here, given that fs is the restriction of f over the subset s of A, 
C(f) is specified by: 

(∀ s ∈ S) Cs(fs) 
 

In the specification language of Martin-Löf’s Theory of Types [40], having dependent 
types and the type constructors Π and Σ, the specification manifests itself rather 
succinctly as the type expression: 

Σ(Π(A, B), C) 
 

However, restricting ourselves to set theory and 1st order predicate calculus as a 
specification language, if B is taken as the set (∪Ba)a∈A, then this specification can 
still be written as: 

(∃ f ∈ A → B) C(f) 
 

Note that the latter specification seemingly loses sight of the fact that f(a)∈ Ba for 
all a∈A, as the initial definition of the problem suggests. However, seen as a 
constraint, this fact can always be made a part of the constraint expression C itself. 
 
5.2. Solving A Constraint Satisfaction Problem 
 
Details of how to generate the solution obviously depend on the structure of the 
variables A, the values B and also on the way the constraints C are specified. But, 
whatever the nature of this solution, it can be safely said that it relies in a fundamental 
way on the fact that A and B are discrete and finite and also that C is not 
computationally too expensive to decide. 
 
Intuitively, one possible solution can be reached through searching the sets of values 
corresponding to each variable. Here, backtracking will need to be called in whenever 
the current path the search is following reaches a dead end.  
 
Heuristic information can sometimes be extracted from the way the sets A and B sets are 
structured. This can also be done from the way the set C is specified. Heuristic 
information can result in substantial savings on the number of alternatives explored on 
the way to the solution.  
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Many algorithms have been developed to exploit such information. Some propagate 
constraints in order to reduce the size of the search space [37] and detect failure early. 
Others learn from failure [23], as sibling branches are similar. Efficiency can also be 
gained by ordering the choice points in the search [26]. Although these algorithms have 
the same worst-case complexity as traditional state-based search algorithms, they can be 
much faster in practice. This last statement applies especially well to the algorithm 
adopted in this paper (see next section). 
 
The majority of complete CSP algorithms conduct depth first search; they keep only one 
active state together with a set of pointers. Each pointer is associated with one of the 
variables of A. This keeps track of where the search is currently at in the corresponding 
value domain. 
 
5.3. A General CSP Algorithm 
 
The following is an algorithm that can solve this class of problems. It starts from the 
CSP specification above and returns a result that is a solution or a failure: 
 
Result ≡ Solution ∨ Failure 
 
Result SCHEDULE (A, B, C) { //A: variables, B: values, C: constraints 
 
timetable = []; // timetable initially empty 
scheduling = true; // {x∈A; ¬scheduled(x)} ≠ ∅ initially 
a = highestpriority({x∈A; ¬scheduled(x)}); // select variable 
 
while (scheduling)&&({x∈A; ¬scheduled(x)}≠∅) {  
// select value 
b = mostsuitable({y∈Ba;¬considered(y)∧C(timetable+<a,y>)}); 
if found(b) { // Successful selection 
             add(<a, b>, timetable);  
             a = highestpriority({x∈A; ¬scheduled(x)});} 
else { // Unsuccessful selection, dead end, select a backtracking point 

  t = mostsensible({x∈A; scheduled(x)}); 
       if found(t) then // backtracking point found 
          {erase(a .. t, timetable); a = t;} // Bookkeeping 
       else scheduling = false;}} // general failure 
return({x∈A;¬scheduled(x)} = ∅)? timetable : failure); 
} 

 
A General CSP Algorithm 

 
The solution to the CSP problem is the function f mentioned in the specification 
above. However, since A is assumed to be finite, this function may also be viewed as a 
list of pairs <a,b>∈A×Ba. The elements of this list are chronologically ordered 
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according to the time they are generated (earliest first). In fact, this is the view of f that 
will be taken by the algorithm above. On the other hand, a failure arises when no 
solution can be generated because the constraints are too tight or contradictory. 

 
The pseudo code above basically outlines (in a C-like notation) Gaschnig’s 
BackJumping algorithm [24] (also see [18] for an interesting survey paper). Some 
remarks are due to clarify assumptions that may not be sufficiently explicit there: 

 
1. For any given a∈A and during the process of locating b, constraints are checked 

with respect to already scheduled elements of A only. When b is found, it is marked 
as considered to leave it out of the search. This is crucial in case of backtracking 
for an alternative value in Ba. Moreover, unsuccessful attempts at locating b are 
recorded on a failure table as it is used in Gaschnig’s Backmarking 
algorithm. This table is very useful for determining the most sensible point t to 
backtrack to, whenever backtracking is required. 

 
This failure table is reconstructed from scratch for every new a∈A. The size 
of this table is of the order of the size of Ba. 

 
2. The existence of this failure table reduces the process of finding t to a simple 

linear scan. After finding t, all elements a’∈A between a and t have to be marked 
as ¬scheduled. Moreover, all b’s in the corresponding Ba’’s are marked as 
¬considered, because they may need to be searched again.  

 
This clearly has negative effects on the efficiency of the algorithm. The extent of that 
may be reduced by an intelligent choice of the next a to schedule. More elaborate 
backtracking schemes do exist (e.g. see [6], [25] and [31]) for minimizing these 
effects. 

 
3. Although not explicitly stated above, the above algorithm employs some implicit 

forward checking, which is a form of constraint propagation4 [41]. That is, depending 
on the current state of the search, the algorithm may skip without testing whatsoever 
many of the values in Ba of the current variable a. In fact, on the basis of the 
variables assigned so far, these values would be no-good values [30]. 

 
But what the algorithm does not do is marking the no-good values ahead of time (see 
[44] and [45]). This is judged to take too much space, because of the extensive size 
of the domains involved. Additionally, the marking process will take too much time 
on its own right5. 

 
                                                           
4 The role of propagation in CSP solving is similar to that of heuristic information in an intelligent 

search procedure. That is, it serves to exclude from consideration any potential (that would turn out to 
be useless) solutions. 

5 Strong propagation defeats the purpose of its use in the timetabling context. This is because it is 
judged to take too much time to exclude possible solutions. In fact, in all but the most trivial 
timetabling applications, each variable tends to have many possible values. Such a variable is also 
tied in many intricate relationships with most (if not all) of the variables of the problem. 
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6. TIMETABLING AS A CONSTRAINT SATISFACTION PROBLEM 
 
Given the courses on offer in any one semester, the task is to allocate times during the 
week for each one of those courses. The allocated times are subject to the following 
constraint: no two distinct courses can have time conflict, if they are taken by the same 
student or taught by the same instructor. 
 
In so far as these requirements are concerned, the role of the student taking a course is 
no different from the role of the instructor teaching it. Both can not be in two different 
classes at the same time. Thus, in this respect, no loss of generality will occur if we can 
restrict ourselves to mentioning only students. 
 
However, additional constraints may arise; such as the availability of adequate 
classrooms to accommodate these courses during the allocated times. However, to 
somewhat simplify the presentation; the only constraints we will tackle are to do with 
time conflict.   
 
Note here, the constraint-based view directly naturally mirrors the structure of the 
timetabling problem. The advantage is that further constraints may be added to the 
system as supplementary data. These additions should not bring with them any changes 
to the flow of control of the main algorithm. However, this may obviously have a 
proportional effect on the overall efficiency of the program. 
 
6.1. The Timetabling Problem Specification6 
 
Given the discussion in the previous sections, the requirements of the problem can be 
captured by the following specification: 
 
Timetabling ≡ (∃ f ∈ Courses → Times) Suitable(f) 
 
Suitable(f) ≡ (∀c,c’∈Courses)(c ≠ c’)⇒ ¬Conflict(c, c’, f) 
 
Conflict(c, c’, f) ≡ (∃ x ∈ Students) c∈s(x) ∧ c’∈s(x)  
                            ∧ <c,b>∈f ∧ <c’,b’>∈f ∧ b∩b’≠∅ 
 
where (≡) is meant to be definitional equality and s is a function returning the set of 
courses taken by the student x. Once more, even though the solution is specified as a 
function, what is going to be generated is an association list, of course-time pairs, that 
plays the same role. This list will in fact be the desired timetable. Note also that the 
above is just an initial idea of the expression of Suitable. This will be further 
elaborated as soon as more information becomes available (see below). 

                                                           
6 This specification is intended as an illustration of the approach adopted in this paper. As such, it is not 
meant to be complete. However, the underlying approach is hopefully clear enough to ease the task of 
filling in the details in any particular timetabling application. 
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6.2. The Variables 
 
From the above specification, it is obvious that the variables are the courses on offer. In 
case of a multiple-sections course (i.e. when the same course is given to more than a 
single group of students), each section will be considered as a distinct variable. This 
makes sense because, in general, each section will have its own distinct timetabling 
requirements. 
 
6.3. The Values 
 
The space of values is the space of all available teaching times during the week. The 
unit value is a time slot. A time slot is defined as a time interval over one day of 
the week. This is specified by a triplet: <d, t, h>, where d is a number denoting one 
day of the week, t is a number denoting the starting time of the slot and h is the 
length of a slot; i.e. number of half-hours this slot consists of. For example, the triplet 
<1, 1, 3> denotes the time interval on Monday, starting at 8:00AM and ending at 
9:30AM. Hence, the first constraint that a slot value <d, t, h> should respect is: 
 
C0 ≡ WD(d) ∧ ([t .. t+h] ⊆ WH(d)) 
 
Where WD(d) means that d is a working day and WH(d) denotes the set of working 
hours of the day d. 
 
6.4. Composite Values 
 
Each course is associated with a number of credits. This number is used to indicate the 
number of teaching hours associated with this course, the number of slots that those 
hours may be distributed over, and the constraints this distribution has to respect. 
 
 

Credit No. Teaching Hrs. Slot No. Slots length 
1 3 1 6 
2 2 1 or 2 4 or (2,2) 
3 3 2 or 3  (3,3) or (2,4) or (2,2,2)  
4 4 2 or 3 (4,4) or (2,2,4) or (2,3,3) 

Course-Slot Distribution Table 
 
Thus, depending on its number of credits, a course might be associated with a composite 
value (i.e. a set of slots). For example, a 1-credit course is given over a single 3-hour 
slot. A 2-credit course is given over one 2-hour slot or two 1-hour slots. A 3-credit 
course can be given over two 1.5-hour slots or three 1-hour slots, etc. A 4-credit course 
is given two 2-hour slots, etc (see table above). 
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The table above is used to make sure that only slots of the right size are ever considered 
for courses of a given type: i.e. number of credits. Hence the second constraint: 
 
C1 ≡ valid_size(c, n, s, T) 

Where valid_size is a function that makes sure that course c with a number of 
credit n has the correct size of the slot s in the Course-Slot Distribution Table T. 
Multiple-slot courses are subject to an additional constraint. This requires that any two 
different slots <d,t,h> and <d’,t’,h’>, associated with the same course, should 
start at the same time during the day. Moreover, these slots should be separated by a gap 
of one day at least.  
 
That is, the following two constraints should hold: 
 
C2 ≡ (<d, t, h> ≠ <d’, t’, h’>) ⇒  (t = t’) 
 
C3 ≡ (<d, t, h> ≠ <d’, t’, h’>) ⇒  (|d – d’| > 1) 
 
6.5. Value Ordering 
 
Seeing the complexity of these values and in order to make their management easier, we 
chose to impose a total ordering on them. Given two slots <d,t,h> and 
<d’,t’,h’>, we define: 

 
(<d,t,h> ≤ <d’,t’,h’>) ≡ (d < d’) ∨ ((d = d’) ∧ (t ≤ t’)) 

 
Note that this is not the only ordering that we can impose over slot values. In fact, more 
useful ordering may be defined depending on the availability of more specific domain 
information. 
 
6.6. Value Generators 
 
Such an ordering may be used as the basis of a value generator (VG). In fact, since the 
values of a domain will generally be too numerous to store explicitly, this approach has 
a number of advantages. For instance, this value generator may be used to produce a 
next value of a slot every time this is needed. Accordingly, earlier values are 
considered first. Furthermore, when a current value is being considered, earlier 
ones are implicitly marked as considered and later ones are still as yet 
¬considered. 
 
In addition to that, each slot (of each course) can have its own generator (SG) 
producing values of the appropriate type. Obviously, to be useful, this generator should 
be able to generate all valid values without neither missing nor repeating any. That is, 
the time when a value is so generated must define a total order over the domain of these 
values. 
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6.7. A Miniature Scheduler 
 
Following this line of reasoning, any single course (a slot set) constitutes a miniature-
timetabling problem, having its own variables, values and constraints. Thus, we 
constructed a miniature program (SSG) that can generate a composite value for each 
such a set, respecting all relevant constraints. This program obviously makes use of the 
generators (SG) above. 
 
It is worth noting here that the generator (SSG) adopts only a blind backtracking 
scheme, because a set of slots is never more than a few elements in size, and such sizes 
do not justify the amount of overhead required by a more intelligent backtracking 
scheme. 
 
6.8. The Constraints 
 
As we said earlier, the constraints that will be addressed are mainly those to do with 
timing various courses. This is elaborated in the subsections below. 
 
6.8.1. Time Conflict 
 
According to the specification of the problem given earlier, a timetable is considered 
unsuitable if there exists a student who is enrolled in two different courses whose times 
overlap.  We add to that another constraint: the time of the course should not overlap 
with the times this student cannot attend the course. This additional constraint is 
particularly useful for part-time students. 
 
Such information can come from a set Σ of records on every student of the institution. 
Each record is a pair <cs, ss> defined as follows:  
 

− cs is the set of courses that will be taken by the student. 
− ss is the set of slots during which the student cannot attend. 

 
We will assume here a course generator (CG) that produces the highest-priority course 
to schedule. The ordering relation (<) over courses is defined with respect to the time 
at which each such course is so produced. The details of this generator will be explained 
in the next section. 
 
Now, given a course c ∈ Courses we are trying to find a time for, a slot s being 
considered for c will cause no conflict if the following conditions hold for every record 
<cs, ss>∈Σ: 
 
C4  ≡ (c∈cs) ⇒ (s∩ss = ∅) 
C5  ≡ (c∈cs) ⇒ (∀c’∈cs(c’< c)⇒(∀ s’∈time(c’)(s∩s’)= ∅)) 
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For a student taking the cs courses, constraint C4 says this student can not attend classes 
at his/her specified times, while C5 says that the different classes of this student  should 
not overlap. Here, the function time, applied to an already scheduled course, will 
return the set of slots allocated for this course, and also: 
 
(s ∩ ss) = ∅ ≡ ∀ s’∈ ss (s ∩ s’) = ∅ 
<d,t,h>∩<d’,t’,h’>=∅ ≡ (d=d’)⇒ max(t,t’)≥min(t+h,t’+h’) 
 
The simplicity of the latter relation is but one of the benefits of our adopted 
representation of a time slot. This turns out to be of a major importance for efficiency, 
considering the enormous number of times the algorithm is going to check this relation 
during any reasonable-sized scheduling task. 
 
6.8.2. Load Conflict 
 
Another constraint that should be satisfied by a slot is that no student should have too 
many attendance hours on any single day. That is, the total load per day should not 
exceed a certain given maximum M.  That is, a slot <d, t, h> for a course c causes 
no conflict if the following condition holds for every record <cs, ss>∈Σ: 
 
C6  ≡ (c∈cs) ⇒ sum({lengthd(c’); c’∈cs ∧ c’ ≤ c}) ≤ M 
 
Where lengthd(c) ≡ (∃ <d, t, h> ∈ time(c)? h : 0) 
 
 
7. DETAILS OF THE TIMETABELING ALGORITHM 
 
We are now at a stage where we can supply more details of the behavior of the general 
CSP algorithm. 
 
7.1. Course Generator 
 
One major task the algorithm is doing every iteration is dynamically choosing the next 
course to schedule. A good choice here will obviously have a major impact on its global 
efficiency. This choice is usually based on the available heuristic information. 
 
The general strategy is based on choosing the course judged hardest to schedule; i.e. the 
course with the tightest constraints. The general insight behind this strategy is the 
following: if such a course has the least room to maneuver then, after it has successfully 
been scheduled, other courses will hopefully still have enough room left to be 
scheduled. Even in the case where this course is not being successful, no time would 
have been wasted on scheduling easier ones. On this basis, we list below the factors that 
are judged to reduce most the ease with which a course c is scheduled. 
 
All these quantities are made explicit in our formulation of the problem. They are all 
available in numerical form, and they are easy to access and calculate. The course that is 
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chosen will have the greatest combination of these quantities. The meaning of the 
auxiliary functions used to specify that should be self-explanatory: 
 

− the number of slots this course is currently taking:  
 

NS(c) ≡ size(time(c)) 
 

− the length of time this course will occupy during the week: 
 

LS(c) ≡ sum({h; <d,t,h> ∈ time(c)}) 
 

− the total number of student records this course belongs to: 
 

NR(c) ≡ size({cs; <cs,ss>∈Σ ∧ c∈cs}) 
 

− the number of courses belonging to each one of these records: 
 

NC(<cs,ss>,c) ≡ sum({size(cs);<cs,ss>∈Σ∧c∈cs}) 
 

− the length of time constraints associated with each one of these records: 
 

LR(<cs,ss>,c) ≡ sum({h; <d,t,h>∈ss}) 
where <cs,ss>∈Σ ∧ c∈cs. 

 
The particular combination that we have been using is the following7: 
 

NS(c)×LS(c)×NR(c)×sum({NC(r,c)×LR(r,c); r∈Σ}) 
 
However, it should be clear that this is just a heuristic expression is application-
dependent; that is, more thought may need to be invested in weighing and combining 
these factors to come up with the optimal combination for any particular application. 
 
7.2. The Backtracking Scheme 
 
While attempting to schedule the current course, the current path the algorithm is 
following may reach a dead end. This happens because slots fail to find a set of values 
suitable for all of them. Repairing this failure can be attempted if it can be traced back 
to a decision related to a previously scheduled course. This way, undoing that decision 
might make further progress possible.  
 

                                                           
7 The point of whether heuristic information should be part of the timetabling problem is debatable. 

Whatever stance one takes from this point, the timetabling process is conducted here through some form 
of search. Moreover, it is well-known that heuristic information help in speeding up the search and 
therefore in improving the overall efficiency of the system. 
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Of course, if at all possible, we are interested in the most critical point to backtrack to. 
This choice is made for the sake of minimizing the amount of work left to be done, 
before the final solution is complete, or before hope in finding any solution is totally 
lost. 
 
7.3. The Failure Table 
 
When selecting a fresh course c to schedule, we create a fresh failure table along 
with it. The number of entries of this table is the number of all possible slot values 
associated with this course. 
 
During the process of scheduling the course, the following bookkeeping routine takes 
place: we record in the corresponding entry on the table all courses whose interaction 
with c caused that entry to fail. 
 
7.4. The Backtracking Point 
 
If c fails to schedule, then we go through a minimization process that leaves, at each 
entry of the table, the earliest of all courses listed at that entry. Then, through another 
maximization process, we go through all entries determining the latest of all courses left 
on the table. If at all found; that course will be the one to backtrack to. In our notation, 
this can be expressed by the following: 

 
max( 
   {min({c’;(c’<c)∧(v∩time(c’)≠ ∅)});v∈∪{times;s∈time(c)}} 
) 
 
Here, times is used to denote the set of all possible values of the slot s (see [49], for 
more details on this min-max process). 
 
7.5. Remarks 
 
There are few things to note about the above process: 
 

− The table size is bounded by the size of the set: ∪{times; s∈time(c)}. 
− The process of filling the table is done completely iteratively, during the process 

of checking the constraints related to each value of the above set. 
− The table can be easily turned into a list, by doing minimization on each entry 

during the process of filling the table. This will reduce the storage requirements 
on the table without any extra burden on the execution time, because the process 
of minimization will have to be done anyway. 

− Determining the backtracking point is done in linear time in the order of the size 
of the table itself. 
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7.6. Constraint Ordering 
 
A closer look at the CSP algorithm reveals that almost all the work that it is doing is 
spent on Constraint Verification. For this reason, if efficiency is a weighing factor in 
how much this algorithm is acceptable; one should invest an equivalent amount of effort 
in optimizing Constraint Verification. 
 
The organization of Constraint Verification in the program has been motivated by the 
following key idea: since local failure is unavoidable in general, then the best is to catch 
it early.  In fact, in this program, we have seven key constraints: C0, C1, … C6. They 
are being used, through a chain of processes, exactly to filter out values from the initial 
rough domain of all possible slot values, till these become valid course times at the end. 
 
In order to achieve this task, some optimization is used. In fact, the application of these 
constraints is ordered along this chain as follows: C0, C1, C3, C2, C6, C4 and 
C5. The guiding intuition behind this ordering is: a bad value, traveling along this chain, 
should be detected and eliminated from further consideration as soon as possible, and 
with the least amount of computation.  
 
What helped the most in realizing this intuition is the strict modularity enforced on all 
stages of development of this program. This is especially true for the generators: SG, 
SSG and CG. 
 
 
8. CONSTRAINT OPTIMIZATION 
 
The preceding details seem to imply a lot of pointless preparations that should be made 
at the beginning of every new semester. This would be alarming for an administrator in 
a university that has (say) 20 000 students. At the face of it, the algorithm seems to 
suggests that it would need 20 000 sets of courses. Each such set represents what the 
corresponding student might like (but not necessarily has) to take! 
 
In practice, however, the administrator will feed the system sets for typical students, 
plus the odd special-case student that may occur here or there. Still, these fine details 
may yield no equivalent return at the end. This is especially true when the list Σ of 
student records implies unsatisfiable constraints. In such a situation, the program will 
simply return failure.  
 
Fortunately, the matter should not be so rigid in real life. In the face of a timetable 
conflict, students usually develop escape routes that can not easily be formally captured: 
e.g. take a different section of the same course, choose another available elective or 
delay a planned course till next semester and take another required one instead. 
 
Clearly, this is a genuine problem. So, in situations where constraints could not all be 
satisfied, we looked into the idea of a timetable with a tolerable number of conflicts. 
The structure of the CSP algorithm proved essential to the realization of this idea.  
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Cost of Constraint Violation 
 
One idea of addressing this problem is to attach a weight to each of the constraints [22]. 
A weight represents a cost that have to be paid for the violation of any instance of the 
corresponding constraint. For example, this cost can be the number of individual student 
conflicts a course can tolerate without having to close down. Accordingly, the goal of 
the algorithm is modified in the following way: instead of having to satisfy all 
constraints, a time t is assigned to a given course c, if the total cost of the conflicts that 
t cause is affordable. Reader are referred to [5] and [9] for more in-depth research in 
this direction. 
 
The strategy of attaching weights to constraints varies depending on the problem at 
hand. We can treat some or all of the constraints as soft [43]. In the case of hard 
constraints, we can increase the weights so much as to make them impossible to be 
acceptably violated. 
 
A version of this program, with a cost parameter, has already been implemented and is 
currently in use. It is able to come up a satisfactory solution when an ideal conflict-free 
timetable is impossible to generate. 
 
 
9. EXPERIMENTATION 
 
At present, a fully operational system is being used at the start of every semester for 
generating a timetable for almost a thousand students, distributed over more than a 
hundred different classes. The most remarkable feature of this program is its high 
degree of modularity. In fact, it is this feature that helped the backbone of this program 
to survive a sequence of implementations8, modifications and upgrades. 
 
9.1. System’s Acceptance Tests 
 
In order to gain the trust of the administration, the system went through many rigid 
tests, including data gathered from the years prior to the system’s installation. Once 
accepted, the system is being used with remarkable success at the start of every 
semester for the past five years. 
 
9.2. System’s Role and Value 
 
Thanks to the existence of this system, two weeks of hard disruptive work at start of 
every semester were replaced with a run-time on a small PC that can be measured in 
minutes. As such, this system is currently being used to the satisfaction of everyone. 
Some part-time students and instructors can now ask for their courses to be scheduled at 
certain times of the week. We can have some times of the week declared lecture-free 
hours without being afraid of disturbing anyone.  
                                                           
8 The initial prototype of the system was implemented in LISP. The first working version was in 
PASCAL. The current version is in C++. 
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Its ease of use, flexibility and speed has been a factor in sometimes allowing several 
runs during a single semester. These runs were required to accommodate unanticipated 
circumstances of some students or instructors. Some instructors indulge themselves 
sometimes in changing the time set by the system for one particular course without 
disturbing the rest of the timetable9; something that could not even be envisaged before. 
 
A sample run is presented in the Appendix to illustrate the input and output of the 
system. The reader will appreciate that the example presented there is a simplified one 
(used for the purpose of illustration). More elaborate real-life examples, demonstrating 
the power of the system, will involve hundreds of students, many tens of classes. As 
such, these need more space than can be spared in the context of this paper. 
 
9.3. Generality of the System 
 
From the very beginning, the system was tailored to fit the university special 
requirements. The flexibility of its design allowed its use for the scheduling needs of a 
local high school, with only some minor modification to its I/O module. That is, its core 
module remained untouched. The effort that was required for these modifications was 
minimal; hence the merits of the approach advocated in this paper. 
 
The high-school timetabling problem is not specified here. This is because it would 
seem to be a virtual repetition of the same steps outlined in the university context in 
theoretically similar circumstances.  
 
9.4. A Room-Allocation Program 
 
It is perhaps worth mentioning here, that based on the general CSP algorithm a room-
allocation program has recently been completed10. This program takes a timetable as 
input and finds suitable rooms in the university for each of courses mentioned in the 
timetable. This is obviously done with respect to the given times, the number of 
students and other possible needs of each of those courses. The specification of this 
problem and the corresponding details of the program will not be reported here. 
 
 
10. DISCUSSION AND POSSIBLE EXTENSIONS 
 
10.1. Program efficiency  
 
The general CSP algorithm implements BackJumping [24], which is a complete 
algorithm.  That is, this algorithm will guarantee a solution if one exists. However, it is 
                                                           
9 Simple; since the system allows constraints in the form of courses with preset times, all courses whose 

generated times are judged to be satisfactory will be considered as preset in the next run. 
10 Room allocation is managed apart because tackling too many constraints simultaneously is judged at 

the time to affect the overall efficiency of the algorithm in the absence of enough computational power. 
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well known that scheduling is an NP-complete problem and, as such, no known 
algorithm is adequately efficient for all its instances. Thus, in theory, the algorithm has 
a worst-case situation. That is, in some instances, it may run for too long before it gives 
a solution or before it can decide that no solution exists. Two escape routes have been 
devised to avoid such situations: 
 
- Plenty of care is paid to the design of the initial input data. This is crucial if we are to 

eliminate from consideration many of the intractable situations that may arise in 
practice. 

- An escape option, that allows the program to exit without a solution (if it appears to 
be taking too long). In this case, the system supplies useful indications for easing the 
constraints for another successful run11. This information would have been 
accumulating in the failure table during the current run. 

 
Moreover, as it currently stands, the algorithm will give the first solution it finds 
satisfying all constraints. However, given some measure of optimality, the algorithm 
does not always return the optimal solution.  
 
Optimality can be turned into a Constraint Satisfaction Decision Problem by adding to 
the specification a conflict cost, as explained above. A future direction would be to 
modify the algorithm (into a form of branch and bound, for example) for solving 
optimization problems directly. 
 
10.2. An Initial Preprocessor and an Interactive Editor 
 
With a complete program, the burden of a solution now falls on the design of the initial 
input data. This is a particular burden when there are multiple sections of the same 
course. There is another difficult situation when there are many electives that the 
student can take, but does not have to be assigned any one of them a priori. In this case, 
any student-course assignment may unnecessarily make the constraints impossible to 
satisfy.  
 
For this reason, initial data should go through an initial filtering phase that distributes 
students on multiple sections and/or multiple electives, so as to minimize interaction 
between various classes. This is an optimization problem that awaits a solution. 
 
In any reasonable-sized university, preparing the initial data to the program is a lengthy 
process that is very much prone to error. Some automatic help will do a good job in 
reducing the potential of errors here. 
 
10.3. Problem Modeling 
 
The problem of assigning students to one of the multiple sections can be addressed by 
an adequate problem reformulation. For example, suppose that a student selects a course 
                                                           
11 This feature has been incorporated only recently. It is still in its exploratory stages. But the key idea is 

that if failure is inevitable then the system should supply the user with the causes of this failure. These 
may be used to analyze the situation for a more successful run. 
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having five different sections. Then, instead of scheduling time slots for student-
courses, we can schedule sections to the student choice (assign one of the five sections 
to this choice), and time slots for sections (assign a time to each section, taking into 
consideration their assignments to student choices). It is widely believed that problem 
modeling may have a significant impact on search efficiency [8, 46]. 
 
 
10.4. Scope of the Approach 
 
Constraint Satisfaction techniques are by now well known and their usefulness already 
been demonstrated in many applications. These techniques naturally fit design 
problems, which is the creation of objects satisfying given criterions. This is very well a 
distinct characteristic of the timetabling problem. 
 
These techniques have been applied with demonstrable success to the generation of 
timetables for a small university, to room allocation for classes with preset times and 
also to the generation of high-school timetables (which, if anything, is a simplification 
the former application). Thus, in theory, the way is clear for the application of these 
techniques to bigger institutions or even to other timetable generation contexts, without 
of course being oblivious to the negative effect low efficiency can, in practice, have on 
such an enterprise. 
 
 
11.   CONCLUDING SUMMARY 
 
This paper reports a successful application of constraint technology. The software 
engineering aspect of Constraint Satisfaction is emphasized in this project. We have 
taken a formal approach to specify a timetabling problem. A university and a school 
have used the timetable generation program presented in this paper, which is well tested 
and fully operational. The problem that we have specified is general enough, and 
therefore our experience should be useful to other researchers with similar applications. 
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APPENDIX – A SAMPLE TIMETABLE  
 
Since the problems addressed by the system are essentially design problems, there are 
generally multiple solutions that will satisfy any given set of constraints. From these, 
the system will give the first solution it encounters. Obviously if, for some reason, the 
user prefers some later solution, the given constraints will have to be manipulated 
appropriately so that solution comes out first. 
 
The reader will appreciate that the example presented below is made deliberately simple 
for illustration purposes. Even from this modest example, the readers should still be able 
to form a good idea about the complexity of the task. While the timetable generation 
task is now the responsibility of the system, the administrator still has to prepare a 
voluminous amount of input data. But, compared with timetable generation, this is just a 
basic data-gathering task, which has to be done anyway and is not as problematic. 
 
I. INPUT DATA 
 
The system requires the following lists of input data (see illustration in table below): 
 

 Mon Tue Wed Thu Fri Sat 
8:00 

 
L206 
L206 

 L206 
L206 

   

9:00 
 

L206  
H204 

L206  
H204 

  

10:00 
 

 H204 
H204 

 H204 
H204 

  

11:00 
 

      

12:00 
 

      

1:00 
 

      

2:00 
 

      

3:00 
 

      

4:00 
 

      

 
Available Times & Preset Courses 

a. Available Times 
 
For the purposes of this example, the weekly times that are available for scheduling are 
Monday to Saturday, from 8:00AM to 5:00PM everyday. 
 
b. Time Constraints 
 
Within these times, the administration will require, for one reason or the other, that 
classes may not be scheduled at certain times during the week. We will take these to be 
Thursday 11:00-1:00, Friday 3:00-5:00 and Saturday 2:00-5:00. 
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c. Preset Courses 
In addition to the above, the administration might require few courses to have preset 
times. That is, it does not want to leave it up to the generator to decide times for these 
courses. This is usually done for a few special courses. We will take these to be: 
 
 L206: Monday 8:00-9:30 and Wednesday 8:00-9:30 
 H204: Tuesday 9:30-11:00 and Thursday 9:30-11:00 
  
d. Students Information 
 
Finally, we need the list of students (Si)I=1..13 and the list of courses each is enrolled in: 
 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 
H204     � � � � � � � � � 
L206 � � � � � � � � �     
C101 � � � �          
C102 � � � �          
C201     � � � � �     
C204     � � � �      
C302          � � � � 
C307          � � � � 
E102 � � � �          
E204     � � � � �     
M106 � � � �          
M201     � � � � � � � � � 
P101 � � � �          

Student Enrollment Information 
e. Courses to Schedule 
This is the list of all courses we need to determine a time for. Each such course should 
be listed with its associated number of credits. This latter number indicates the length of 
time this course takes and the number of slots this time may be split over (For an idea 
on that, see Course-Slot Distribution Table given earlier in the main body of the paper). 
 
The list of course-credit pairs is: 
 
C101 C102 C201 C204 C302 C307 E102 E204 M106 M201 P101 
4 3 3 3 3 3 1 4 4 4 3 

 
Course-credit list 

f.  Instructor Information 
Instructor Course Assignment Availability 

C1 C101 & C102 Mon, Wed & Fri 
C2 C201 & C307 Tue & Thu 
C3 C204 & C302  Tue & Thu 
E1 E102 & E204 Sat only 
M1 M106 & M201 Anytime 
P1 P101 Tue & Thu Afternoons 
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The above is a table of instructor information. This includes the courses assigned to the 
instructor plus the times this instructor can be available for teaching at the university. 
 
II.  THE TIMETABLE OUTPUT 
 

 day from to day from to 
E204 Sat 8:00 11:00    
E102 Sat 11:00 2:00    
C101 Mon 9:30 11:30 Wed 9:30 11:30 
C102 Mon 11:30 1:00 Wed 11:30 1:00 
P101 Tue 1:00 2:30 Thu 1:00 2:30 
M106 Mon 1:00 3:00 Wed 1:00 3:00 
M201 Mon 9:30 11:30 Wed 9:30 11:30 
C201 Tue 8:00 9:30 Thu 8:00 9:30 
C204 Tue 1:00 2:30 Thu 1:00 2:30 
C302 Tue 8:00 9:30 Thu 8:00 9:30 
C307 Tue 1:00 2:30 Thu 1:00 2:30 

 
The table above is the timetable generated by the system from the above input data. 
Note here that, the hardest constraints to overcome are the times imposed by the 
instructors, especially where some instructors are teaching two different groups of 
students. However, this is not necessarily always the case. 
 
Note the way these courses are ordered in the list. This is the order generated by the 
system: the most constrained course comes first. Moreover, the system is able to 
guarantee the same starting time in two different days for the same course. 
 
 
III. OTHER VARIATIONS 
 
Note that the E courses can be taught on Saturdays only, because the corresponding 
instructor is not available on any other day. For this reason, if we add the constraint that 
student S9 (for example) cannot be at the university on Saturdays between 8:00 and 
11:00, then the same timetable as above will be generated, except that the times of the 
courses E102 and E204 will be swapped. 
 
On the other hand, if the constraint is that this same student can not be at the university 
at all on Saturday, then a conflict-free timetable will be impossible to generate. In this 
case, the system will use its approximate reasoning feature and generate the same 
timetable as above. This excludes student S9 from attending the E204 course. 


