
Revised version appears in Information & Software Technology Journal, Vol.46, 2004, 359-372

Abbas & Tsang Constraint-based Timetabling Page 1 of 26

SOFTWARE ENGINEERING ASPECTS OF
CONSTRAINT-BASED TIMETABLING – A CASE STUDY

A. Abbas1 E.P.K. Tsang

Department of Computer Science, Department of Computer Science,
University of Balamand, University of Essex,

 Tripoli, Lebanon Colchester, CO4 3SQ, England
email: abbas@balamand.edu.lb email: edward@essex.ac.uk

ABSTRACT

This paper2 details the stages of building a substantial, carefully specified, fully tested
and fully operational university and school timetabling system. This is reported as a
case study in applying Constraint Satisfaction techniques. The emphasis is on the
software engineering aspects of the problem. That is, Constraint Satisfaction problems
are expressed in a language more familiar to the formal software engineering
community. Moreover, this language is used to formulate domain constraints and
heuristic information. In addition to that, the user's needs are looked at more closely.
For instance, the system supplies indications useful for relaxing or reformulating the
constraints of the problem when a solution satisfying these constraints is impossible to
produce. This has a value in bringing Constraint Satisfaction one-step closer to formal
specification, program verification and transformation.

Keywords: Constraint Satisfaction, Timetabling, Program Specification, Software
Engineering

1. INTRODUCTION

Timetabling is an instance of task scheduling. This is a well-known NP-complete
problem. That is, no known algorithm is adequately efficient for all its instances. This
problem is ubiquitous in all practical aspects of modern societies. In fact, timetables
play an important and sensitive role specifically in people intensive institutions such as
hospitals and universities. This naturally generates considerable interest in
understanding the timetable generation process. This consequently forms a focus of
attraction to researchers from a variety of backgrounds and disciplines, in the quest for
adequately efficient and flexible timetable generators.

The degree of maturity of the field can perhaps be measured by the existence of regular
conferences dedicated to the timetable generation process [10, 13]. This can also be
estimated from the existence of numerous commercial timetabling companies ([38] and
[47] are just examples). Such companies provide extensive timetable generation
services in specialized domains. This is also an indication of the complexity of the
timetabling task, which is directly related to the complexity of the conditions timetables
have to satisfy.

1 Contact author
2 This is an extended version of a short paper presented at the AICCSA'01 (see [1]).

Abbas & Tsang Constraint-based Timetabling Page 2 of 26

Timetables and the timetable generation process are looked at in the literature from
many different angles (see [15] and [42] for good overviews and more references to the
subject). Correspondingly, there have been many approaches to the realization of these
views using a wide variety of problem-solving paradigms ([7], [11], [12], [33], [36],
[39], [48] and [54] are sample instances). Compared with these, Constraint Satisfaction
techniques figure prominently ([4], [27], [35] and [55] are just a few examples of
Constraint-based approaches to university/school timetabling).

The view of the timetabling task adopted in this paper is similar to (but somewhat a
simplification of) that reflected in [14]. However, the problem solving approach is
closer to what is discussed in [53], whereas the software engineering element of this
goes in the direction of [56]. More discussions and references are provided below that
closer to the sources of the problem solving paradigm adopted in this paper.

This paper advances this view toward a formal setting. In fact, it provides explicit
formulations of several concepts central to the generation of university and school
timetables. This should be beneficial in making Constraint Satisfaction techniques (in
general) and the timetabling task (in particular) more widely accessible to the computer
science audience. This would especially be useful for those interested in formalizations,
or in the construction of actual timetable generators.

2. THE CONTEXT

The case study reported in this paper is set in the context of a small university3, where
students come from a variety of different backgrounds. In this context, students taking
the same kind of courses are not the total majority in any one class. Thus, without taking
this variety into consideration, a timetable will very likely incur time conflicts
preventing a meaningful number of students from taking their intended courses. This
can result in a drop in semester enrollment and the closing down of classes because not
enough students will be taking them.

This scenario does not arise that often in larger more-established universities because, in
the majority of cases, enough students will take the courses on offer. Even when the odd
case arises, the consequences will not be of the kind that the university can not afford.
However, with less homogeneity and fewer students to go around, the impact will not be
that pleasing.

This provides a particularly fitting test for Constraints Satisfaction techniques.
Intuitively, the difficulty in constructing a timetable is directly proportional to the
number of different cases it is taking into account. That is, the same space of
possibilities would have fewer solutions resulting from tighter constraints.

3 Faculty of Sciences and Engineering, The University of Balamand, Lebanon

Abbas & Tsang Constraint-based Timetabling Page 3 of 26

3. THE PROBLEM

At the start of every academic semester, students go through a pre-registration period.
This is when they can select the classes they would like to attend during the semester.
On the list of information provided then, there would still be a noticeable number of
empty slots. These are to do with which instructor would be teaching which class or
what time (or times) of the week such a class would fall in. Besides, some of the
existing information on this list is understood to be subject to change.

The administrators would then gather the enrollment information and try to fill in these
empty slots. The aim would be a timetable that is suitable to all instructors, students and
other university requirements, resources and facilities.

However, the task of producing by hand, a satisfactory, conflict-free timetable is a
lengthy, tedious, time-consuming and error-prone process. The main difficulty is the
absence of any dependable idea of doing that. This is essentially a trial-and-error
process that relies solely on the basic knowledge of the extremely intricate dependencies
between the students, instructor and course elements of the process.

Worse than that, in the absence of adequate planning, the inherently-random pre-
registration process can result in irresolvable conflicts between various student and
instructor choices. That is, very often, no timetable could possibly satisfy all choices,
even with an exhaustive search of all available alternatives.

Thus, very frequently, administrators would resign themselves to accepting an
approximate solution. This is a solution that, they know a priori, would not be pleasing
to everyone. They simply hope that such a tentative solution will mend itself during the
subsequent drop-and-add period. This usually means wasting the first two weeks of the
semester with students reselecting their courses and/or instructors adjusting their course
assignments. This way, the process may converge on a solution that everyone would be
content to live with for the duration of the semester.

4. THE SOLUTION

The Timetable Generator project was initiated in response to this problem. Adopting the
view that the solution resides in some intelligent search strategy, the first period of the
project was spent investigating the possibility of benefiting from the best-first search
algorithm (e.g. [16]). However, the size of the data involved was huge. Furthermore, no
sufficiently powerful heuristics were available to cut down the amount of search
involved. These two factors forced an early abandonment of this research direction.

Later implementations had more benefits from Constraint Satisfaction techniques,
resulting in a much more usable program (see next section). Timetabling proved to be a
rich domain, very much conducive to a Constraint-based solution. In fact, as it currently
stands the system implements and reaps the benefits of many of the core techniques
presented in [49]; all within a single framework.

Abbas & Tsang Constraint-based Timetabling Page 4 of 26

5. A SOFTWARE ENGINEERING APPROACH TO CONSTRAINT
SATISFACTION

Early research on Constraint Satisfaction focused on problem solving strategies and
algorithms (see [49] for an account and section 5.2 below for more details and
references). But now that Constraint Programming is mature enough for real life
applications [52], the attention has gradually shifted toward its software engineering
aspects. That is, with plenty of solving strategies around, the tendency nowadays is to
relieve the programmer from the problem solving effort. The general approach is to hide
the details in a declarative or high-level language and let the programming system do the
interpretation (see [34] for an early reference on that).

In the context of Constraint Satisfaction, modeling lies nowadays at the heart of this
approach [19, 21]. The quest for ever-more high-level modeling constructs [28] has
tremendously increased the modeling capabilities given to the user. This is interesting to
software practitioners, because problem models can this way be clearly separated from
the operational aspects of the solver, and from the surrounding software environment.
Hence, the programmer can devote more time to more basic aspects such as modeling,
modularity, extensibility, etc. The following are some of the advances on Constraint-
based development that took place during the past decade:

− Modeling tools for constraint programming such as the modeling language
OPL [51], the CHIC-2 Project [17] and ECLiPSe [32].

− The Ilog Solver [29] library, which provides software components and
abstractions for Constraint-based combinatorial search.

− Ongoing research on constraint modeling and programming ([20, 50]).

This same approach is followed in this paper. That is, timetabling is treated as a
Constraint Satisfaction problem. As such, a formal specification language with high-
level constructs (called DEPICT 0.1) is used to formally specify the timetabling
problem ([2] and [3] have more details on DEPICT 0.1). Subsequently, an algorithm
satisfying these specifications is presented.

5.1. Specifying Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) can be defined by the following three
components (definition modified from [49]):

− a finite set of variables A = (ai)i= 1 .. n
− a corresponding set of domains B = (Ba)a∈A. Each Ba is a finite domain of

values that the corresponding variable a can take its value from.
− a set S of subsets of A over which a set of constraints C = (Cs)s∈S is specified.

Each Cs is a constraint that ties together the variables of the subset s by
restricting the values they may simultaneously take.

Abbas & Tsang Constraint-based Timetabling Page 5 of 26

A CSP solution consists of finding, for each of the variables a∈A, a value b∈Ba
satisfying all relevant constraints. That is, for each s∈S, the set {<a, b>; a∈s}
must satisfy the constraint Cs. An initial attempt at specifying this problem could be:

(∀ a ∈ A)(∃ b ∈ Ba)C(<a, b>)

However, this does not quite express the simultaneity of the application of the condition
C over all pairs <a, b>∈A×Ba. A more accurate description of this fact goes as
follows: find a function f associating every element a∈A with an element b∈Ba so that
C(f) is satisfied. Here, given that fs is the restriction of f over the subset s of A,
C(f) is specified by:

(∀ s ∈ S) Cs(fs)

In the specification language of Martin-Löf’s Theory of Types [40], having dependent
types and the type constructors Π and Σ, the specification manifests itself rather
succinctly as the type expression:

Σ(Π(A, B), C)

However, restricting ourselves to set theory and 1st order predicate calculus as a
specification language, if B is taken as the set (∪Ba)a∈A, then this specification can
still be written as:

(∃ f ∈ A → B) C(f)

Note that the latter specification seemingly loses sight of the fact that f(a)∈ Ba for
all a∈A, as the initial definition of the problem suggests. However, seen as a
constraint, this fact can always be made a part of the constraint expression C itself.

5.2. Solving A Constraint Satisfaction Problem

Details of how to generate the solution obviously depend on the structure of the
variables A, the values B and also on the way the constraints C are specified. But,
whatever the nature of this solution, it can be safely said that it relies in a fundamental
way on the fact that A and B are discrete and finite and also that C is not
computationally too expensive to decide.

Intuitively, one possible solution can be reached through searching the sets of values
corresponding to each variable. Here, backtracking will need to be called in whenever
the current path the search is following reaches a dead end.

Heuristic information can sometimes be extracted from the way the sets A and B sets are
structured. This can also be done from the way the set C is specified. Heuristic
information can result in substantial savings on the number of alternatives explored on
the way to the solution.

Abbas & Tsang Constraint-based Timetabling Page 6 of 26

Many algorithms have been developed to exploit such information. Some propagate
constraints in order to reduce the size of the search space [37] and detect failure early.
Others learn from failure [23], as sibling branches are similar. Efficiency can also be
gained by ordering the choice points in the search [26]. Although these algorithms have
the same worst-case complexity as traditional state-based search algorithms, they can be
much faster in practice. This last statement applies especially well to the algorithm
adopted in this paper (see next section).

The majority of complete CSP algorithms conduct depth first search; they keep only one
active state together with a set of pointers. Each pointer is associated with one of the
variables of A. This keeps track of where the search is currently at in the corresponding
value domain.

5.3. A General CSP Algorithm

The following is an algorithm that can solve this class of problems. It starts from the
CSP specification above and returns a result that is a solution or a failure:

Result ≡ Solution ∨ Failure

Result SCHEDULE (A, B, C) { //A: variables, B: values, C: constraints

timetable = []; // timetable initially empty
scheduling = true; // {x∈A; ¬scheduled(x)} ≠ ∅ initially
a = highestpriority({x∈A; ¬scheduled(x)}); // select variable

while (scheduling)&&({x∈A; ¬scheduled(x)}≠∅) {
// select value
b = mostsuitable({y∈Ba;¬considered(y)∧C(timetable+<a,y>)});
if found(b) { // Successful selection
 add(<a, b>, timetable);
 a = highestpriority({x∈A; ¬scheduled(x)});}
else { // Unsuccessful selection, dead end, select a backtracking point

 t = mostsensible({x∈A; scheduled(x)});
 if found(t) then // backtracking point found
 {erase(a .. t, timetable); a = t;} // Bookkeeping
 else scheduling = false;}} // general failure
return({x∈A;¬scheduled(x)} = ∅)? timetable : failure);
}

A General CSP Algorithm

The solution to the CSP problem is the function f mentioned in the specification
above. However, since A is assumed to be finite, this function may also be viewed as a
list of pairs <a,b>∈A×Ba. The elements of this list are chronologically ordered

Abbas & Tsang Constraint-based Timetabling Page 7 of 26

according to the time they are generated (earliest first). In fact, this is the view of f that
will be taken by the algorithm above. On the other hand, a failure arises when no
solution can be generated because the constraints are too tight or contradictory.

The pseudo code above basically outlines (in a C-like notation) Gaschnig’s
BackJumping algorithm [24] (also see [18] for an interesting survey paper). Some
remarks are due to clarify assumptions that may not be sufficiently explicit there:

1. For any given a∈A and during the process of locating b, constraints are checked

with respect to already scheduled elements of A only. When b is found, it is marked
as considered to leave it out of the search. This is crucial in case of backtracking
for an alternative value in Ba. Moreover, unsuccessful attempts at locating b are
recorded on a failure table as it is used in Gaschnig’s Backmarking
algorithm. This table is very useful for determining the most sensible point t to
backtrack to, whenever backtracking is required.

This failure table is reconstructed from scratch for every new a∈A. The size
of this table is of the order of the size of Ba.

2. The existence of this failure table reduces the process of finding t to a simple

linear scan. After finding t, all elements a’∈A between a and t have to be marked
as ¬scheduled. Moreover, all b’s in the corresponding Ba’’s are marked as
¬considered, because they may need to be searched again.

This clearly has negative effects on the efficiency of the algorithm. The extent of that
may be reduced by an intelligent choice of the next a to schedule. More elaborate
backtracking schemes do exist (e.g. see [6], [25] and [31]) for minimizing these
effects.

3. Although not explicitly stated above, the above algorithm employs some implicit

forward checking, which is a form of constraint propagation4 [41]. That is, depending
on the current state of the search, the algorithm may skip without testing whatsoever
many of the values in Ba of the current variable a. In fact, on the basis of the
variables assigned so far, these values would be no-good values [30].

But what the algorithm does not do is marking the no-good values ahead of time (see
[44] and [45]). This is judged to take too much space, because of the extensive size
of the domains involved. Additionally, the marking process will take too much time
on its own right5.

4 The role of propagation in CSP solving is similar to that of heuristic information in an intelligent

search procedure. That is, it serves to exclude from consideration any potential (that would turn out to
be useless) solutions.

5 Strong propagation defeats the purpose of its use in the timetabling context. This is because it is
judged to take too much time to exclude possible solutions. In fact, in all but the most trivial
timetabling applications, each variable tends to have many possible values. Such a variable is also
tied in many intricate relationships with most (if not all) of the variables of the problem.

Abbas & Tsang Constraint-based Timetabling Page 8 of 26

6. TIMETABLING AS A CONSTRAINT SATISFACTION PROBLEM

Given the courses on offer in any one semester, the task is to allocate times during the
week for each one of those courses. The allocated times are subject to the following
constraint: no two distinct courses can have time conflict, if they are taken by the same
student or taught by the same instructor.

In so far as these requirements are concerned, the role of the student taking a course is
no different from the role of the instructor teaching it. Both can not be in two different
classes at the same time. Thus, in this respect, no loss of generality will occur if we can
restrict ourselves to mentioning only students.

However, additional constraints may arise; such as the availability of adequate
classrooms to accommodate these courses during the allocated times. However, to
somewhat simplify the presentation; the only constraints we will tackle are to do with
time conflict.

Note here, the constraint-based view directly naturally mirrors the structure of the
timetabling problem. The advantage is that further constraints may be added to the
system as supplementary data. These additions should not bring with them any changes
to the flow of control of the main algorithm. However, this may obviously have a
proportional effect on the overall efficiency of the program.

6.1. The Timetabling Problem Specification6

Given the discussion in the previous sections, the requirements of the problem can be
captured by the following specification:

Timetabling ≡ (∃ f ∈ Courses → Times) Suitable(f)

Suitable(f) ≡ (∀c,c’∈Courses)(c ≠ c’)⇒ ¬Conflict(c, c’, f)

Conflict(c, c’, f) ≡ (∃ x ∈ Students) c∈s(x) ∧ c’∈s(x)
 ∧ <c,b>∈f ∧ <c’,b’>∈f ∧ b∩b’≠∅

where (≡) is meant to be definitional equality and s is a function returning the set of
courses taken by the student x. Once more, even though the solution is specified as a
function, what is going to be generated is an association list, of course-time pairs, that
plays the same role. This list will in fact be the desired timetable. Note also that the
above is just an initial idea of the expression of Suitable. This will be further
elaborated as soon as more information becomes available (see below).

6 This specification is intended as an illustration of the approach adopted in this paper. As such, it is not
meant to be complete. However, the underlying approach is hopefully clear enough to ease the task of
filling in the details in any particular timetabling application.

Abbas & Tsang Constraint-based Timetabling Page 9 of 26

6.2. The Variables

From the above specification, it is obvious that the variables are the courses on offer. In
case of a multiple-sections course (i.e. when the same course is given to more than a
single group of students), each section will be considered as a distinct variable. This
makes sense because, in general, each section will have its own distinct timetabling
requirements.

6.3. The Values

The space of values is the space of all available teaching times during the week. The
unit value is a time slot. A time slot is defined as a time interval over one day of
the week. This is specified by a triplet: <d, t, h>, where d is a number denoting one
day of the week, t is a number denoting the starting time of the slot and h is the
length of a slot; i.e. number of half-hours this slot consists of. For example, the triplet
<1, 1, 3> denotes the time interval on Monday, starting at 8:00AM and ending at
9:30AM. Hence, the first constraint that a slot value <d, t, h> should respect is:

C0 ≡ WD(d) ∧ ([t .. t+h] ⊆ WH(d))

Where WD(d) means that d is a working day and WH(d) denotes the set of working
hours of the day d.

6.4. Composite Values

Each course is associated with a number of credits. This number is used to indicate the
number of teaching hours associated with this course, the number of slots that those
hours may be distributed over, and the constraints this distribution has to respect.

Credit No. Teaching Hrs. Slot No. Slots length
1 3 1 6
2 2 1 or 2 4 or (2,2)
3 3 2 or 3 (3,3) or (2,4) or (2,2,2)
4 4 2 or 3 (4,4) or (2,2,4) or (2,3,3)

Course-Slot Distribution Table

Thus, depending on its number of credits, a course might be associated with a composite
value (i.e. a set of slots). For example, a 1-credit course is given over a single 3-hour
slot. A 2-credit course is given over one 2-hour slot or two 1-hour slots. A 3-credit
course can be given over two 1.5-hour slots or three 1-hour slots, etc. A 4-credit course
is given two 2-hour slots, etc (see table above).

Abbas & Tsang Constraint-based Timetabling Page 10 of 26

The table above is used to make sure that only slots of the right size are ever considered
for courses of a given type: i.e. number of credits. Hence the second constraint:

C1 ≡ valid_size(c, n, s, T)

Where valid_size is a function that makes sure that course c with a number of
credit n has the correct size of the slot s in the Course-Slot Distribution Table T.
Multiple-slot courses are subject to an additional constraint. This requires that any two
different slots <d,t,h> and <d’,t’,h’>, associated with the same course, should
start at the same time during the day. Moreover, these slots should be separated by a gap
of one day at least.

That is, the following two constraints should hold:

C2 ≡ (<d, t, h> ≠ <d’, t’, h’>) ⇒ (t = t’)

C3 ≡ (<d, t, h> ≠ <d’, t’, h’>) ⇒ (|d – d’| > 1)

6.5. Value Ordering

Seeing the complexity of these values and in order to make their management easier, we
chose to impose a total ordering on them. Given two slots <d,t,h> and
<d’,t’,h’>, we define:

(<d,t,h> ≤ <d’,t’,h’>) ≡ (d < d’) ∨ ((d = d’) ∧ (t ≤ t’))

Note that this is not the only ordering that we can impose over slot values. In fact, more
useful ordering may be defined depending on the availability of more specific domain
information.

6.6. Value Generators

Such an ordering may be used as the basis of a value generator (VG). In fact, since the
values of a domain will generally be too numerous to store explicitly, this approach has
a number of advantages. For instance, this value generator may be used to produce a
next value of a slot every time this is needed. Accordingly, earlier values are
considered first. Furthermore, when a current value is being considered, earlier
ones are implicitly marked as considered and later ones are still as yet
¬considered.

In addition to that, each slot (of each course) can have its own generator (SG)
producing values of the appropriate type. Obviously, to be useful, this generator should
be able to generate all valid values without neither missing nor repeating any. That is,
the time when a value is so generated must define a total order over the domain of these
values.

Abbas & Tsang Constraint-based Timetabling Page 11 of 26

6.7. A Miniature Scheduler

Following this line of reasoning, any single course (a slot set) constitutes a miniature-
timetabling problem, having its own variables, values and constraints. Thus, we
constructed a miniature program (SSG) that can generate a composite value for each
such a set, respecting all relevant constraints. This program obviously makes use of the
generators (SG) above.

It is worth noting here that the generator (SSG) adopts only a blind backtracking
scheme, because a set of slots is never more than a few elements in size, and such sizes
do not justify the amount of overhead required by a more intelligent backtracking
scheme.

6.8. The Constraints

As we said earlier, the constraints that will be addressed are mainly those to do with
timing various courses. This is elaborated in the subsections below.

6.8.1. Time Conflict

According to the specification of the problem given earlier, a timetable is considered
unsuitable if there exists a student who is enrolled in two different courses whose times
overlap. We add to that another constraint: the time of the course should not overlap
with the times this student cannot attend the course. This additional constraint is
particularly useful for part-time students.

Such information can come from a set Σ of records on every student of the institution.
Each record is a pair <cs, ss> defined as follows:

− cs is the set of courses that will be taken by the student.
− ss is the set of slots during which the student cannot attend.

We will assume here a course generator (CG) that produces the highest-priority course
to schedule. The ordering relation (<) over courses is defined with respect to the time
at which each such course is so produced. The details of this generator will be explained
in the next section.

Now, given a course c ∈ Courses we are trying to find a time for, a slot s being
considered for c will cause no conflict if the following conditions hold for every record
<cs, ss>∈Σ:

C4 ≡ (c∈cs) ⇒ (s∩ss = ∅)
C5 ≡ (c∈cs) ⇒ (∀c’∈cs(c’< c)⇒(∀ s’∈time(c’)(s∩s’)= ∅))

Abbas & Tsang Constraint-based Timetabling Page 12 of 26

For a student taking the cs courses, constraint C4 says this student can not attend classes
at his/her specified times, while C5 says that the different classes of this student should
not overlap. Here, the function time, applied to an already scheduled course, will
return the set of slots allocated for this course, and also:

(s ∩ ss) = ∅ ≡ ∀ s’∈ ss (s ∩ s’) = ∅
<d,t,h>∩<d’,t’,h’>=∅ ≡ (d=d’)⇒ max(t,t’)≥min(t+h,t’+h’)

The simplicity of the latter relation is but one of the benefits of our adopted
representation of a time slot. This turns out to be of a major importance for efficiency,
considering the enormous number of times the algorithm is going to check this relation
during any reasonable-sized scheduling task.

6.8.2. Load Conflict

Another constraint that should be satisfied by a slot is that no student should have too
many attendance hours on any single day. That is, the total load per day should not
exceed a certain given maximum M. That is, a slot <d, t, h> for a course c causes
no conflict if the following condition holds for every record <cs, ss>∈Σ:

C6 ≡ (c∈cs) ⇒ sum({lengthd(c’); c’∈cs ∧ c’ ≤ c}) ≤ M

Where lengthd(c) ≡ (∃ <d, t, h> ∈ time(c)? h : 0)

7. DETAILS OF THE TIMETABELING ALGORITHM

We are now at a stage where we can supply more details of the behavior of the general
CSP algorithm.

7.1. Course Generator

One major task the algorithm is doing every iteration is dynamically choosing the next
course to schedule. A good choice here will obviously have a major impact on its global
efficiency. This choice is usually based on the available heuristic information.

The general strategy is based on choosing the course judged hardest to schedule; i.e. the
course with the tightest constraints. The general insight behind this strategy is the
following: if such a course has the least room to maneuver then, after it has successfully
been scheduled, other courses will hopefully still have enough room left to be
scheduled. Even in the case where this course is not being successful, no time would
have been wasted on scheduling easier ones. On this basis, we list below the factors that
are judged to reduce most the ease with which a course c is scheduled.

All these quantities are made explicit in our formulation of the problem. They are all
available in numerical form, and they are easy to access and calculate. The course that is

Abbas & Tsang Constraint-based Timetabling Page 13 of 26

chosen will have the greatest combination of these quantities. The meaning of the
auxiliary functions used to specify that should be self-explanatory:

− the number of slots this course is currently taking:

NS(c) ≡ size(time(c))

− the length of time this course will occupy during the week:

LS(c) ≡ sum({h; <d,t,h> ∈ time(c)})

− the total number of student records this course belongs to:

NR(c) ≡ size({cs; <cs,ss>∈Σ ∧ c∈cs})

− the number of courses belonging to each one of these records:

NC(<cs,ss>,c) ≡ sum({size(cs);<cs,ss>∈Σ∧c∈cs})

− the length of time constraints associated with each one of these records:

LR(<cs,ss>,c) ≡ sum({h; <d,t,h>∈ss})
where <cs,ss>∈Σ ∧ c∈cs.

The particular combination that we have been using is the following7:

NS(c)×LS(c)×NR(c)×sum({NC(r,c)×LR(r,c); r∈Σ})

However, it should be clear that this is just a heuristic expression is application-
dependent; that is, more thought may need to be invested in weighing and combining
these factors to come up with the optimal combination for any particular application.

7.2. The Backtracking Scheme

While attempting to schedule the current course, the current path the algorithm is
following may reach a dead end. This happens because slots fail to find a set of values
suitable for all of them. Repairing this failure can be attempted if it can be traced back
to a decision related to a previously scheduled course. This way, undoing that decision
might make further progress possible.

7 The point of whether heuristic information should be part of the timetabling problem is debatable.

Whatever stance one takes from this point, the timetabling process is conducted here through some form
of search. Moreover, it is well-known that heuristic information help in speeding up the search and
therefore in improving the overall efficiency of the system.

Abbas & Tsang Constraint-based Timetabling Page 14 of 26

Of course, if at all possible, we are interested in the most critical point to backtrack to.
This choice is made for the sake of minimizing the amount of work left to be done,
before the final solution is complete, or before hope in finding any solution is totally
lost.

7.3. The Failure Table

When selecting a fresh course c to schedule, we create a fresh failure table along
with it. The number of entries of this table is the number of all possible slot values
associated with this course.

During the process of scheduling the course, the following bookkeeping routine takes
place: we record in the corresponding entry on the table all courses whose interaction
with c caused that entry to fail.

7.4. The Backtracking Point

If c fails to schedule, then we go through a minimization process that leaves, at each
entry of the table, the earliest of all courses listed at that entry. Then, through another
maximization process, we go through all entries determining the latest of all courses left
on the table. If at all found; that course will be the one to backtrack to. In our notation,
this can be expressed by the following:

max(
 {min({c’;(c’<c)∧(v∩time(c’)≠ ∅)});v∈∪{times;s∈time(c)}}
)

Here, times is used to denote the set of all possible values of the slot s (see [49], for
more details on this min-max process).

7.5. Remarks

There are few things to note about the above process:

− The table size is bounded by the size of the set: ∪{times; s∈time(c)}.
− The process of filling the table is done completely iteratively, during the process

of checking the constraints related to each value of the above set.
− The table can be easily turned into a list, by doing minimization on each entry

during the process of filling the table. This will reduce the storage requirements
on the table without any extra burden on the execution time, because the process
of minimization will have to be done anyway.

− Determining the backtracking point is done in linear time in the order of the size
of the table itself.

Abbas & Tsang Constraint-based Timetabling Page 15 of 26

7.6. Constraint Ordering

A closer look at the CSP algorithm reveals that almost all the work that it is doing is
spent on Constraint Verification. For this reason, if efficiency is a weighing factor in
how much this algorithm is acceptable; one should invest an equivalent amount of effort
in optimizing Constraint Verification.

The organization of Constraint Verification in the program has been motivated by the
following key idea: since local failure is unavoidable in general, then the best is to catch
it early. In fact, in this program, we have seven key constraints: C0, C1, … C6. They
are being used, through a chain of processes, exactly to filter out values from the initial
rough domain of all possible slot values, till these become valid course times at the end.

In order to achieve this task, some optimization is used. In fact, the application of these
constraints is ordered along this chain as follows: C0, C1, C3, C2, C6, C4 and
C5. The guiding intuition behind this ordering is: a bad value, traveling along this chain,
should be detected and eliminated from further consideration as soon as possible, and
with the least amount of computation.

What helped the most in realizing this intuition is the strict modularity enforced on all
stages of development of this program. This is especially true for the generators: SG,
SSG and CG.

8. CONSTRAINT OPTIMIZATION

The preceding details seem to imply a lot of pointless preparations that should be made
at the beginning of every new semester. This would be alarming for an administrator in
a university that has (say) 20 000 students. At the face of it, the algorithm seems to
suggests that it would need 20 000 sets of courses. Each such set represents what the
corresponding student might like (but not necessarily has) to take!

In practice, however, the administrator will feed the system sets for typical students,
plus the odd special-case student that may occur here or there. Still, these fine details
may yield no equivalent return at the end. This is especially true when the list Σ of
student records implies unsatisfiable constraints. In such a situation, the program will
simply return failure.

Fortunately, the matter should not be so rigid in real life. In the face of a timetable
conflict, students usually develop escape routes that can not easily be formally captured:
e.g. take a different section of the same course, choose another available elective or
delay a planned course till next semester and take another required one instead.

Clearly, this is a genuine problem. So, in situations where constraints could not all be
satisfied, we looked into the idea of a timetable with a tolerable number of conflicts.
The structure of the CSP algorithm proved essential to the realization of this idea.

Abbas & Tsang Constraint-based Timetabling Page 16 of 26

Cost of Constraint Violation

One idea of addressing this problem is to attach a weight to each of the constraints [22].
A weight represents a cost that have to be paid for the violation of any instance of the
corresponding constraint. For example, this cost can be the number of individual student
conflicts a course can tolerate without having to close down. Accordingly, the goal of
the algorithm is modified in the following way: instead of having to satisfy all
constraints, a time t is assigned to a given course c, if the total cost of the conflicts that
t cause is affordable. Reader are referred to [5] and [9] for more in-depth research in
this direction.

The strategy of attaching weights to constraints varies depending on the problem at
hand. We can treat some or all of the constraints as soft [43]. In the case of hard
constraints, we can increase the weights so much as to make them impossible to be
acceptably violated.

A version of this program, with a cost parameter, has already been implemented and is
currently in use. It is able to come up a satisfactory solution when an ideal conflict-free
timetable is impossible to generate.

9. EXPERIMENTATION

At present, a fully operational system is being used at the start of every semester for
generating a timetable for almost a thousand students, distributed over more than a
hundred different classes. The most remarkable feature of this program is its high
degree of modularity. In fact, it is this feature that helped the backbone of this program
to survive a sequence of implementations8, modifications and upgrades.

9.1. System’s Acceptance Tests

In order to gain the trust of the administration, the system went through many rigid
tests, including data gathered from the years prior to the system’s installation. Once
accepted, the system is being used with remarkable success at the start of every
semester for the past five years.

9.2. System’s Role and Value

Thanks to the existence of this system, two weeks of hard disruptive work at start of
every semester were replaced with a run-time on a small PC that can be measured in
minutes. As such, this system is currently being used to the satisfaction of everyone.
Some part-time students and instructors can now ask for their courses to be scheduled at
certain times of the week. We can have some times of the week declared lecture-free
hours without being afraid of disturbing anyone.

8 The initial prototype of the system was implemented in LISP. The first working version was in
PASCAL. The current version is in C++.

Abbas & Tsang Constraint-based Timetabling Page 17 of 26

Its ease of use, flexibility and speed has been a factor in sometimes allowing several
runs during a single semester. These runs were required to accommodate unanticipated
circumstances of some students or instructors. Some instructors indulge themselves
sometimes in changing the time set by the system for one particular course without
disturbing the rest of the timetable9; something that could not even be envisaged before.

A sample run is presented in the Appendix to illustrate the input and output of the
system. The reader will appreciate that the example presented there is a simplified one
(used for the purpose of illustration). More elaborate real-life examples, demonstrating
the power of the system, will involve hundreds of students, many tens of classes. As
such, these need more space than can be spared in the context of this paper.

9.3. Generality of the System

From the very beginning, the system was tailored to fit the university special
requirements. The flexibility of its design allowed its use for the scheduling needs of a
local high school, with only some minor modification to its I/O module. That is, its core
module remained untouched. The effort that was required for these modifications was
minimal; hence the merits of the approach advocated in this paper.

The high-school timetabling problem is not specified here. This is because it would
seem to be a virtual repetition of the same steps outlined in the university context in
theoretically similar circumstances.

9.4. A Room-Allocation Program

It is perhaps worth mentioning here, that based on the general CSP algorithm a room-
allocation program has recently been completed10. This program takes a timetable as
input and finds suitable rooms in the university for each of courses mentioned in the
timetable. This is obviously done with respect to the given times, the number of
students and other possible needs of each of those courses. The specification of this
problem and the corresponding details of the program will not be reported here.

10. DISCUSSION AND POSSIBLE EXTENSIONS

10.1. Program efficiency

The general CSP algorithm implements BackJumping [24], which is a complete
algorithm. That is, this algorithm will guarantee a solution if one exists. However, it is

9 Simple; since the system allows constraints in the form of courses with preset times, all courses whose

generated times are judged to be satisfactory will be considered as preset in the next run.
10 Room allocation is managed apart because tackling too many constraints simultaneously is judged at

the time to affect the overall efficiency of the algorithm in the absence of enough computational power.

Abbas & Tsang Constraint-based Timetabling Page 18 of 26

well known that scheduling is an NP-complete problem and, as such, no known
algorithm is adequately efficient for all its instances. Thus, in theory, the algorithm has
a worst-case situation. That is, in some instances, it may run for too long before it gives
a solution or before it can decide that no solution exists. Two escape routes have been
devised to avoid such situations:

- Plenty of care is paid to the design of the initial input data. This is crucial if we are to

eliminate from consideration many of the intractable situations that may arise in
practice.

- An escape option, that allows the program to exit without a solution (if it appears to
be taking too long). In this case, the system supplies useful indications for easing the
constraints for another successful run11. This information would have been
accumulating in the failure table during the current run.

Moreover, as it currently stands, the algorithm will give the first solution it finds
satisfying all constraints. However, given some measure of optimality, the algorithm
does not always return the optimal solution.

Optimality can be turned into a Constraint Satisfaction Decision Problem by adding to
the specification a conflict cost, as explained above. A future direction would be to
modify the algorithm (into a form of branch and bound, for example) for solving
optimization problems directly.

10.2. An Initial Preprocessor and an Interactive Editor

With a complete program, the burden of a solution now falls on the design of the initial
input data. This is a particular burden when there are multiple sections of the same
course. There is another difficult situation when there are many electives that the
student can take, but does not have to be assigned any one of them a priori. In this case,
any student-course assignment may unnecessarily make the constraints impossible to
satisfy.

For this reason, initial data should go through an initial filtering phase that distributes
students on multiple sections and/or multiple electives, so as to minimize interaction
between various classes. This is an optimization problem that awaits a solution.

In any reasonable-sized university, preparing the initial data to the program is a lengthy
process that is very much prone to error. Some automatic help will do a good job in
reducing the potential of errors here.

10.3. Problem Modeling

The problem of assigning students to one of the multiple sections can be addressed by
an adequate problem reformulation. For example, suppose that a student selects a course

11 This feature has been incorporated only recently. It is still in its exploratory stages. But the key idea is

that if failure is inevitable then the system should supply the user with the causes of this failure. These
may be used to analyze the situation for a more successful run.

Abbas & Tsang Constraint-based Timetabling Page 19 of 26

having five different sections. Then, instead of scheduling time slots for student-
courses, we can schedule sections to the student choice (assign one of the five sections
to this choice), and time slots for sections (assign a time to each section, taking into
consideration their assignments to student choices). It is widely believed that problem
modeling may have a significant impact on search efficiency [8, 46].

10.4. Scope of the Approach

Constraint Satisfaction techniques are by now well known and their usefulness already
been demonstrated in many applications. These techniques naturally fit design
problems, which is the creation of objects satisfying given criterions. This is very well a
distinct characteristic of the timetabling problem.

These techniques have been applied with demonstrable success to the generation of
timetables for a small university, to room allocation for classes with preset times and
also to the generation of high-school timetables (which, if anything, is a simplification
the former application). Thus, in theory, the way is clear for the application of these
techniques to bigger institutions or even to other timetable generation contexts, without
of course being oblivious to the negative effect low efficiency can, in practice, have on
such an enterprise.

11. CONCLUDING SUMMARY

This paper reports a successful application of constraint technology. The software
engineering aspect of Constraint Satisfaction is emphasized in this project. We have
taken a formal approach to specify a timetabling problem. A university and a school
have used the timetable generation program presented in this paper, which is well tested
and fully operational. The problem that we have specified is general enough, and
therefore our experience should be useful to other researchers with similar applications.

ACKNOWLEDGEMENT

The authors are very grateful to the reviewers for their generous, detailed and insightful
comments. These comments helped in significantly raising the quality of the material
presented in this paper.

The first author would like to thank staff and students at the Faculty of Sciences and
Engineering at the University of Balamand. This community has shown plenty of
patience in bearing the consequences of the system’s output during its early years. After
all, it is these real-life tests together with the feedback that came from them that made
the system what it is today.

Research by the second author is partially sponsored by EPSRC funds GR/H75275,
GR/L20122, GR/M46297 and a Research Promotion Fund from University of Essex.

Abbas & Tsang Constraint-based Timetabling Page 20 of 26

BIBLIOGRAPHY

1. Abbas, A. and Tsang, E., Constraint-Based Timetabling - a Case Study, proceedings

of AICCSA'2001, the ACS/IEEE International Conference on Computer Systems
and Applications, June 2001.

2. Abbas, A. and Tsang, E., Toward a General Language for the Specification of
Constraint Satisfaction Problems, Proceedings of the CP-AI-OR 2001 workshop,
Imperial College, London, England, April 2001.

3. Abbas, A. and Tsang, E., DEPICT 0.1: A Formal Specification Language for
Constraint Satisfaction Software Engineering, A journal submission, currently
under review, January 2003.

4. Azevedo, F., and Barahona, P. M., Timetabling in Constraint Logic Programming,
Proceedings of the 2nd World Congress on Expert Systems, 1994.

5. Bistarelli, S., Montanari, U. and Rossi, F. Semiring-based Constraint Solving and
Optimization, ACM Journal, pp. 201-236, Volume 44, No. 2, 1997

6. Bliek, C., Generalizing Partial Order and Dynamic Backtracking, Proceedings of
AAAI, 1998.

7. Blum, C., Correia, S., Dorigo, M., Paechter, B., Rossi-Doria, O., and Snoek, M.,
A GA Evolving Instructions for a Timetable Builder, Proceedings of the 4th
International Conference on the Practice and Theory of Automated Timetabling
(PATAT '02), KaHo St.-Lieven, Gent, Belgium, Burke and De Causmaecker (Eds.),
August 2002.

8. Borrett, J.E., Formulation Selection for Constraint Satisfaction Problems: a
Heuristic Approach, PhD Thesis, Department of Computer Science, University of
Essex, Colchester, UK, 1998.

9. Boizumault, P., Gueret, C. and Jussien, N., Efficient Labelling and Constraint
Relaxation for Solving, Proceeding of the 1994 ILPS post-conference workshop on
Constraint Languages/Systems and their Use in Problem Modelling, Lim and
Jourdan (Eds.), Volume 1 (Application and Modelling), pp. 116-130, 1994.

10. Burke, E.K. & Carter, M. (Eds.), The Practice and Theory of Automated
Timetabling, Volume 2: Selected Papers from the 2nd International Conference on
the Practice and Theory of Automated Timetabling, University of Toronto, August
20th-22nd 1997, Springer Lecture Notes in Computer Science Series, Volume 1408,
1998.

11. Burke, E. K., Gustafson, S., and Kendall, G., Is Genetic Programming a Sensible
Research Direction for Timetabling? Proceedings of the 4th International
Conference on the Practice and Theory of Automated Timetabling (PATAT '02),
KaHo St.-Lieven, Gent, Belgium, Burke and De Causmaecker (Eds.), August 2002.

12. Burke, E. K., MacCarthy, B. L., Petrovic, S., and Qu, R., Knowledge Discovery in a
Hyper-Heuristic for Course Timetabling Using Case-Based Reasoning,
Proceedings of the 4th International Conference on the Practice and Theory of
Automated Timetabling (PATAT '02), KaHo St.-Lieven, Gent, Belgium, Burke and
De Causmaecker (Eds.), August 2002.

Abbas & Tsang Constraint-based Timetabling Page 21 of 26

13. Burke, E.K. & Ross, P. (Eds.), The Practice and Theory of Automated Timetabling,
Volume 1: Selected Papers from the 1st International Conference on the Practice
and Theory of Automated Timetabling, Edinburgh August/September 1995, Lecture
Notes in Computer Science Vol.1153, 1996.

14. Carter, M. W., A Comprehensive Course Timetabling and Student Scheduling
System at the University of Waterloo, in Proceedings of the 3rd International
Conference on The Practice and Theory of Automated Timetabling, Constance,
Germany, Burke and Erben (Eds.), August 2000.

15. Carter, M. W., and Laporte, G., Recent Developments in Practical Course
Timetabling, Practice and Theory of Automated Timetabling, Burke and Carter
(Eds.), Springer-Verlag LNCS 1408, pp. 4-19, 1996.

16. Charniak & McDermott, Introduction to Artificial Intelligence, Addison-Wesley,
1985.

17. The CHIC-2 Project, http://www-icparc.doc.ic.ac.uk/chic2/
18. Dechter, R. and Frost D., Backjump-based Backtracking for Constraint Satisfaction

Problems, Artificial Intelligence Journal, pp. 147-188, Volume 136, No. 2, 2002.
19. El Sakkout, H., Modelling Fleet Assignment in a Flexible Environment, Proc.,

Practical Applications of Constraint Technology (PACT-96), London 1996.
20. Flener, P., Towards relational modelling of combinatorial optimization problems,

in: Ch. Bessiere (ed.), Proceedings of the IJAI’01 Workshop on Modelling and
Solving problems with Constraints, 2001.

21. Freuder, E.C., Modeling: the final frontier, The First International Conference on
The Practical Application of Constraint Technologies and Logic Programming
(PACLP), pp.15-21, London 1999.

22. Freuder E. C. and Wallace R. J., Partial Constraint Satisfaction, Artificial
Intelligence Journal, Volume 58, pp. 21-70, 1992.

23. Frost, D. and Dechter, R., Dead-End Driven Learning, Proc., 12th National
Conference for Artificial Intelligence (AAAI), pp. 294-300, 1994.

24. Gaschnig, J., Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisfying-assignment problems, Proc. 2nd National Conference of
the Canadian Society for Computational Studies of Intelligence, pp. 19-21, 1978.

25. Ginsberg, M. L., Dynamic Backtracking, Journal of Artificial Intelligence Research,
volume I, pp. 25-46, 1993.

26. Haralick, R.M. & Elliott, G.L., Increasing tree search efficiency for Constraint
Satisfaction problems, Artificial Intelligence, Volume14, pp. 263-313, 1980.

27. Henz, M. and Wuertz, J., Using Oz for College Timetabling, The Selected
Proceedings of the 1st International Conference on the Practice and Theory of
Automated Timetabling, LNCS 1153, Edinburgh 1995.

28. Hnich, B., Function Variables for Constraint Programming, Ph.D. Thesis,
Computer Science Division, Department of Information Science, Uppsala
University, Sweden 2003.

29. ILOG, Inc, ILOG CPLEX 7.0 User's Manual and ILOG CPLEX 7.0 Reference
Manual (Gentilly, France, 2000); also see http://www.ilog.fr/.

Abbas & Tsang Constraint-based Timetabling Page 22 of 26

30. Jiang, Y.J., Richards, T. & Richards, B., No-good backmarking with min-conflict
repair in constraint satisfaction and optimization, Proc. of 2nd Workshop on the
Principles and Practice of Constraint Programming Workshop, 1994

31. Jussien, N., Debruyne, R. and Boizurnault, P., Maintaining Arc-Consistency within
Dynamic Backtracking, Principles and Practice of Constraint Programming (CP
2000) LNCS Series, no. 1894, pp.249-261, Springer-Verlag, Singapore 2000.

32. Kamarainen, O., Using ECLiPSe to solve large-scale piecewise linear scheduling
problems, ECLiPSe User Group Newsletter, October 2002.

33. Kingston, J. H. and Yin-Sun Lynn, B. A Software Architecture for Timetable
Construction, in Proceedings of the 3rd International Conference on The Practice and
Theory of Automated Timetabling, Constance, Germany, Burke and Erben (Eds.),
August 2000.

34. Lauriere, J. L., ALICE: A Language and a Program for Solving Combinatorial
Problems, Artificial Intelligence, Vol. 10, pp 29 – 127, 1978.

35. Legierski, W., Search Strategy for Constraint-Based Class-Teacher Timetabling,
Proceedings of the 4th International Conference on the Practice and Theory of
Automated Timetabling (PATAT '02), KaHo St.-Lieven, Gent, Belgium, Burke and
De Causmaecker (Eds.), August 2002.

36. Löhnertz, M., A timetabling system for the German Gymnasium, Proceedings of the
4th International Conference on the Practice and Theory of Automated Timetabling
(PATAT '02), KaHo St.-Lieven, Gent, Belgium, Burke and De Causmaecker (Eds.),
August 2002.

37. Mackworth, A.K., Consistency in networks or relations, Artificial Intelligence,
Vol.8, No.1, pp. 99-118, 1977.

38. McCollum, B. and Newall, J. Introducing Optime: Examination Timetable Software,
in Proceedings of the 3rd International Conference on The Practice and Theory of
Automated Timetabling, Constance, Germany, Burke and Erben (Eds.), August
2000.

39. Müller, T., and Barták, R. Interactive Timetabling: Concepts, Techniques, and
Practical Results, Proceedings of the 4th International Conference on the Practice
and Theory of Automated Timetabling (PATAT '02), KaHo St.-Lieven, Gent,
Belgium, Burke and De Causmaecker (Eds.), August 2002.

40. Nordstrom, B., Petersson, K. and Smith, J., M., Programming in Martin-Lof's Type
Theory - An Introduction, volume 7 of International Series of Monographs on
Computer Science, Oxford University Press, 1990.

41. Prosser, P., Hybrid Algorithms for the Constraint Satisfaction Problem,
Computational Intelligence, Vol.9, No.3, pp. 268-299, 1993.

42. Reis, L. P. and Oliveira, E. A Language For Specifying Complete Timetabling
Problems, in Proceedings of the 3rd International Conference on The Practice and
Theory of Automated Timetabling, Constance, Germany, Burke and Erben (Eds.),
August 2000.

43. Rudová, H., and Murray, K., University Course Timetabling with Soft Constraints,
Proceedings of the 4th International Conference on the Practice and Theory of
Automated Timetabling (PATAT '02), KaHo St.-Lieven, Gent, Belgium, Burke and
De Causmaecker (Eds.), August 2002.

Abbas & Tsang Constraint-based Timetabling Page 23 of 26

44. Schiex, T. and Verfaillie, G., Nogood Recording for Static and Dynamic Constraint
Satisfaction Problems, International Journal of Artificial Intelligence Tools, vol. 3,
no. 2, pp. 187-207, 1994.

45. Schiex, T. & Verfaillie, G., Stubborness: a possible enhancement for backjumping
and nogood recording, in Cohn, A.G. (Ed.), Proc., 11th European Conference on
Artificial Intelligence, John Wiley & Sons, Amsterdam, pp.165-169, 1994.

46. Smith, B.M., Brailsford, S.C., Hubbard, P.M. & Williams, H.P., The progressive
party problem: integer linear programming and Constraint Programming
compared, Constraints, Kluwer Academic Publishers, Boston, Vol.1, Nos.1&2, pp.
119-138, September 1996.

47. Syllabus Plus, Scientia Ltd, Cambridge, U.K. Web site: www.scientia.com
48. Trick, M. A., A Schedule-then-Break Approach to Sports Timetabling, in

Proceedings of the 3rd International Conference on The Practice and Theory of
Automated Timetabling, Constance, Germany, Burke and Erben (Eds.), August
2000.

49. Tsang, E.P.K., Foundations of Constraint Satisfaction, Academic Press, 1993.
50. Tsang, E.P.K., Mills, P., Williams, R., Ford J. & Borrett, J., A Computer-Aided

Constraint Programming System, The First International Conference on The
Practical Application of Constraint Technologies and Logic Programming, pp. 81-
93, London, 1999.

51. Van Hentenryck, P. The OPL Optimization Programming Language, The MIT
Press, 1999.

52. Wallace, M., Practical applications of Constraint Programming, Journal of
Constraints, Kluwer Academic Publishers, Boston, Vol.1, Nos.1&2, pp. 139-168
1996.

53. White, G. M., Constraint Satisfaction, Not So Constraint Satisfaction and the
Timetabling Problem, in Proceedings of the 3rd International Conference on The
Practice and Theory of Automated Timetabling, Constance, Germany, Burke and
Erben (Eds.), August 2000.

54. White, G. M. and Xie, B. S., Examination Timetables and Tabu Search with Longer
Term Memory, in Proceedings of the 3rd International Conference on The Practice
and Theory of Automated Timetabling, Constance, Germany, Burke and Erben
(Eds.), August 2000.

55. Yoshikawa, M., Kaneko, K., Nomura, Y. and Watanabe, M., A Constraint-Based
Approach to High-School Timetabling Problems: A Case Study, Proceedings of the
Sixteenth National Conference on Artificial Intelligence and the Eleventh
Innovative Applications of Artificial Intelligence Conference, AAAI Press/ MIT
Press, pp. 1111-1116, 1994.

56. Zervoudakis, K. and Stamatopoulos, P, A Generic Object-Oriented Constraint
Based Model for University Course Timetabling". Proceedings of the 3rd
International Conference on the Practice and Theory of Automated Timetabling
PATAT 2000, pp. 128-147, Constance, Germany, Burke and Erben (Eds.), August
2000.

Abbas & Tsang Constraint-based Timetabling Page 24 of 26

APPENDIX – A SAMPLE TIMETABLE

Since the problems addressed by the system are essentially design problems, there are
generally multiple solutions that will satisfy any given set of constraints. From these,
the system will give the first solution it encounters. Obviously if, for some reason, the
user prefers some later solution, the given constraints will have to be manipulated
appropriately so that solution comes out first.

The reader will appreciate that the example presented below is made deliberately simple
for illustration purposes. Even from this modest example, the readers should still be able
to form a good idea about the complexity of the task. While the timetable generation
task is now the responsibility of the system, the administrator still has to prepare a
voluminous amount of input data. But, compared with timetable generation, this is just a
basic data-gathering task, which has to be done anyway and is not as problematic.

I. INPUT DATA

The system requires the following lists of input data (see illustration in table below):

 Mon Tue Wed Thu Fri Sat
8:00

L206
L206

 L206
L206

9:00

L206
H204

L206
H204

10:00

 H204
H204

 H204
H204

11:00

12:00

1:00

2:00

3:00

4:00

Available Times & Preset Courses

a. Available Times

For the purposes of this example, the weekly times that are available for scheduling are
Monday to Saturday, from 8:00AM to 5:00PM everyday.

b. Time Constraints

Within these times, the administration will require, for one reason or the other, that
classes may not be scheduled at certain times during the week. We will take these to be
Thursday 11:00-1:00, Friday 3:00-5:00 and Saturday 2:00-5:00.

Abbas & Tsang Constraint-based Timetabling Page 25 of 26

c. Preset Courses
In addition to the above, the administration might require few courses to have preset
times. That is, it does not want to leave it up to the generator to decide times for these
courses. This is usually done for a few special courses. We will take these to be:

 L206: Monday 8:00-9:30 and Wednesday 8:00-9:30
 H204: Tuesday 9:30-11:00 and Thursday 9:30-11:00

d. Students Information

Finally, we need the list of students (Si)I=1..13 and the list of courses each is enrolled in:

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
H204 � � � � � � � � �
L206 � � � � � � � � �
C101 � � � �
C102 � � � �
C201 � � � � �
C204 � � � �
C302 � � � �
C307 � � � �
E102 � � � �
E204 � � � � �
M106 � � � �
M201 � � � � � � � � �
P101 � � � �

Student Enrollment Information
e. Courses to Schedule
This is the list of all courses we need to determine a time for. Each such course should
be listed with its associated number of credits. This latter number indicates the length of
time this course takes and the number of slots this time may be split over (For an idea
on that, see Course-Slot Distribution Table given earlier in the main body of the paper).

The list of course-credit pairs is:

C101 C102 C201 C204 C302 C307 E102 E204 M106 M201 P101
4 3 3 3 3 3 1 4 4 4 3

Course-credit list

f. Instructor Information
Instructor Course Assignment Availability

C1 C101 & C102 Mon, Wed & Fri
C2 C201 & C307 Tue & Thu
C3 C204 & C302 Tue & Thu
E1 E102 & E204 Sat only
M1 M106 & M201 Anytime
P1 P101 Tue & Thu Afternoons

Abbas & Tsang Constraint-based Timetabling Page 26 of 26

The above is a table of instructor information. This includes the courses assigned to the
instructor plus the times this instructor can be available for teaching at the university.

II. THE TIMETABLE OUTPUT

 day from to day from to
E204 Sat 8:00 11:00
E102 Sat 11:00 2:00
C101 Mon 9:30 11:30 Wed 9:30 11:30
C102 Mon 11:30 1:00 Wed 11:30 1:00
P101 Tue 1:00 2:30 Thu 1:00 2:30
M106 Mon 1:00 3:00 Wed 1:00 3:00
M201 Mon 9:30 11:30 Wed 9:30 11:30
C201 Tue 8:00 9:30 Thu 8:00 9:30
C204 Tue 1:00 2:30 Thu 1:00 2:30
C302 Tue 8:00 9:30 Thu 8:00 9:30
C307 Tue 1:00 2:30 Thu 1:00 2:30

The table above is the timetable generated by the system from the above input data.
Note here that, the hardest constraints to overcome are the times imposed by the
instructors, especially where some instructors are teaching two different groups of
students. However, this is not necessarily always the case.

Note the way these courses are ordered in the list. This is the order generated by the
system: the most constrained course comes first. Moreover, the system is able to
guarantee the same starting time in two different days for the same course.

III. OTHER VARIATIONS

Note that the E courses can be taught on Saturdays only, because the corresponding
instructor is not available on any other day. For this reason, if we add the constraint that
student S9 (for example) cannot be at the university on Saturdays between 8:00 and
11:00, then the same timetable as above will be generated, except that the times of the
courses E102 and E204 will be swapped.

On the other hand, if the constraint is that this same student can not be at the university
at all on Saturday, then a conflict-free timetable will be impossible to generate. In this
case, the system will use its approximate reasoning feature and generate the same
timetable as above. This excludes student S9 from attending the E204 course.

