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Forecasting in general

e “Forecasting is the process of making statements
about events whose actual outcomes (typically)
have not yet been observed” — Wikipedia

Weather forecasting

Business new product/service success forecasting
Financial forecasting

Other

University of Kenit

Contents of today's talk

® Forecasting

e Financial forecasting
= Whatis it?
= |s it possible?
= Methods

o Computational Intelligence for financial forecasting

e EDDIE for financial forecasting
= How it works
= Research on EDDIE 7 and EDDIE 8
= Latest research

University of Kenit

Financial Forecasting

e Forecast price movement of stock/market
e Forecast opportunities (buy, not-buy, sell, arbitrage)

e Forecast threats
= Forecast scarce opportunities
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Is it possible?

e |ots of debates!

e Efficient Market Hypothesis (EMH)
= Prices fully reflect the available information that
relates to the financial asset being traded
= |f EMH holds, then no point of forecasting
= Lot of works examining the EMH from both
theoretical and empirical perspective
« Evidence both in favor of and against EMH

e “Successful” financial forecasting attempts
= FX market, bond market, volatility forecasting, stock
market crash, ...
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Methods

o Fundamental analysis
= Examine a company’s financial statements and
balance sheets in order to predict future trends of
their shares
= Depends on statistics, past records of assets,
earnings, dividends, interest rates, sales, products,
management, markets

e Technical analysis
= Use historical data in order to predict future events
= Belief that there are patterns in the stock prices and
that these patterns repeat themselves
= Technical indicators
* Moving Average, Filter, Trade Break Out, Momentum,
Momentum Moving Average

University of Kenit

Technical Indicators: Moving Average

‘CFDSSDVET

Chart by MetaStock Copyright & 2005 Investopedia.com

University of Kenit




11/1/2013

| |
, Computational Intelligence for financial
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= Is it possible? ® Genetic Programming
= Methods e Grammatical Evolution
e Computational Intelligence for financial forecasting e Support Vector Machines
e EDDIE for financial forecasting e Learning Classifier Systems
= How it works
= Research on EDDIE 7 and EDDIE 8 e Genetic Network Programming
* Latestresearch e Differential Evolution
University of Kemt University of Kemt
| |
Computational Intelligence for financial .
X Evolution
forecasting
o Artificial Neural Networks “Evolution is the change in the inherited characteristics
e Genetic Algorithms of_b?olog'ical p_opulation_s over success_ive generations”.-
. . Wikipedia, Article on Biological Evolution
e Genetic Programming ]
o Grammatical Evolution
® Support Vector Machines / N
® |earning Classifier Systems
® Genetic Network Programming & . ! o
e Differential Evolution
University of Kenit University of Kenit
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Population

Source: htip: foonpool. 16731

University of Kenit

Mating
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Offspring

Source:
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Survival of the fittest

‘Source: http:/fwwnw.athleat. co.ukleat-like-a-paleo-caveman.him!

University of Kemit

Genetic Programming

e |Initialise random population of individuals/trees (in
our case trading strategies)

e FEvaluate each tree and assign fitness

e Select trees in order to produce new offspring by the
use of different operators (e.g. crossover, mutation)

® Repeat the previous two step for a number of times
(“generations”)
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Financial Forecasting

USnOEPRE - [NEURGHORSE] Terminals |

Sample GP Tree

Not Buy (0) | Buy (1)
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Fitness function
e A function to measure how well a candidate

solution/individual fits the data
e More about this later

University of Kemit
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Crossover operator

Father Mother Offspring

Mutation operator

Parent Randomly Offspring
Generated Tree

‘e ‘@
~’ ~-7
Randomly Randomly
Selected Subtree ~—— -~ — Selected Subtree -
2 l:n:c;mgr ReplaC: old S:btrea Replace Old Subtree
elected Subtree With New Tree With New Tree
Source: http://geneticprogramming.us/Genetic_Operations. html Source: http://geneticprogramming.us/Genetic_Operations. html
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EDDIE'’s goal

e EDDIE is a GP tool that attempts to answer the
following question:
= “Will the price of the X stock go up by r% within the next n
days"?
= Users specify X, r, and n

University of Kemit
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How EDDIE works

1. Suggestion
of indicators

Financial Expert

5. Approval / rejection

Testing Data

2. Output

Training Data
3. Evaluate

University of Kemit

Obtaining the data

e http://finance.yahoo.com

e Datastream database (Thomson Reuters)
= Andy Wehbb, “All the data”, Automated Trader, Q2 2013

e ShareScope

YAHOO! FINANCE

WAHOO! FINANCE

B,EO'I\AW;‘V TATE0.22%) st

e OANDA
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Raw data Technical indicators
Technical Indicator (Abbreviation)
\‘!,‘r‘ " Moving Average (MA)
'} WA
" L Trade Break Out (TBR)
",-'q Filter (FLR)
L \ 1
Volatility (Vol)
Momentum (Mom)
Momentum Moving Average (MomMA)
University of Kenit University of Kenit
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How the training data is created i
. Expert  More Define
Given  adds:  input; target:
Daily 50 days 12 days 24% in
closing M.A. Vol 20 days?
90 80 50 1
99 82 52 0
87 83 53 1
82 82 51 1
University of Kemit B uﬁive;sn;.uf Kent
] ]
Grammar FinanciaI_Forecasting
Using EDDIE ﬁ Terminals |
Sample GP Tree
<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision

<Condition> = <Condition>> “And” <Condition> |
<Condition>> “Or” <Condition>> |
“Not" <Condition> |
Variable <RelationOperation> Threshold
<Variable> ::= MA_12 | MA_50 | TBR_12 | TBR.50 | FLR_12 |
FLR_50 | Vol_12 | Vol_50 | Mom_12 | Mom_50 |
MomMA_12 | MomMA_50
<RelationOperation= 1= “>" | “<" | »="
Decision is an integer. Positive or Negative implemented
Threshold is a real number

Not Buy (0) | Buy (1)

University of Kenit University of Kenit
| |
Performance Measures Example
m Re—a"w Assume | have a trading strategy/tree:
Positive ~ Negative 'f MA 12 <81
Then
. Buy (1)
Positive Else
Not-Buy (0)
Negative AVeLage
80 1 0 FP
82 0 1 FN
= Rate of Correctness (RC) = (TN + TP) / Total 79 1 1 P
= Rate of Missing Chances (RMC) = FN / (FN+TP) [Recall = 1-RMC] & 3 7 =
= Rate of Failure (RF) = FP / (FP + TP) [Precision = 1-RF]
= Fitness Function (ff) = w1*RC-w2*RMC-w3*RF
University of Kenit University of Kenit
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Example Contents of today's talk
Fitness Rate of Rate of Rate of
Correctnes | Missing Failure (RF) ° Forecasting
s (RC) Chances ) ) )
(RMC) ® Financial forecasting
Tree 1 0.24 0.62 0.30 0.33 = Whatis it? ,
Tree 2 0.235 0.61 0.41 0.30 * Isit possible
= Methods
Tree 3 0.26 0.65 0.25 0.35 ) ) ) ) )
Tree 4 0.05 0.50 0.70 0.60 o Computational Intelligence for financial forecasting
Tree 5 0.42 0.75 0.15 0.05 e EDDIE for financial forecasting
= How it works
Average 0.24 0.626 0.362 0.326 = Research on EDDIE 7 and EDDIE 8
Standard 0.13 0.08 0.21 0.195 = Latest research
Deviation
Max 0.42 0.75 0.7 0.6
Min 0.05 0.5 0.15 0.05
University of Kemt University of Kemt

Research agenda for EDDIE 7 and EDDIE 8

e Why use technical indicators with pre-specified
period length? (e.g. 12 Moving Average)

e Investigate if prediction performance (i.e. fitness)
can be improved by allowing the GP to look for the
optimal period length

e Allow any length between a parameterised range,
e.g. 2-65 days

University of Kenit

New Grammar (EDDIE 8)

<Tree> ::= If-then-else <Condition>> <Tree>> <Tree> | Decision
<Condition> ::= <Condition> “And” <Condition> |
<Condition> “Or"” <Condition> |
"Not” <Condition> |
VarConstructor <RelationOperation> Threshold
<VarConstructor> = MA period | TBR period | FLR period |
Vol period | Mom period | MomMA period
<RelationOperation> = “>" | “< | “="
Terminals:
MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterised range, [MinP, MaxP]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

University of Kenit

Financial Forecasting
Using EDDIE 7

EDDIE 7 Sample Tree

Not Buy (0) | Buy (1)

University of Kenit

EDDIE 8 Sample Tree

Financial Forecasting
Using EDDIE 8

University of Kenit




Research results on EDDIE 7 vs EDDIE 8

e EDDIE 8 was able to search in the extended search
space and discover new, better solutions that
EDDIE 7 could not

e EDDIE 8 could not always outperform EDDIE 7

= Trade-off between ‘searching in a bigger space’ and
‘search effectiveness’

University of Kemit
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Further Discussion

e Results are affected by the patterns in the datasets
= If results come from EDDIE 8's search space, then EDDIE

8 is able to outperform EDDIE 7

If results come from EDDIE 7’s search space, then EDDIE

8 is having difficulties in finding as good solutions as

EDDIE 7 does

Solutions are still in EDDIE 8's search space, but they

come from a very small area of it (EDDIE 7’s space), and

thus it is very hard for EDDIE 8 to search effectively in

such a small space

University of Kemit

A look at search spaces...

MA TRB FLR
EDDIE 8
3 4 5
15

Vol

Mom

Mom
MA

6 sz\ 46
14 16 46 25
7 EDDIE7 37 17 39
B o 13 6428
61 54 50) 44
8 11 EDDIE 7
51

32

10 31

University of Kenit

Contents of today's talk

® Forecasting

® Financial forecasting
= Whatis it?
= |s it possible?
= Methods

o Computational Intelligence for financial forecasting

e EDDIE for financial forecasting
= How it works
= Research on EDDIE 7 and EDDIE 8

= Latest research

University of Kenit

Meta-heuristics and hyper-heuristics for EDDIE

e Use different meta-heuristics to search in the space
of the technical indicators and their periods
= Hill climbing, Simulated Annealing, Tabu Search, Guided
Local Search, .....
= Use EDDIE 8 with any of the above meta-heuristics
e Combine successful meta-heuristics into different
frameworks: hyper-heuristics
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Heuristics

Example of Iterative Hill Climbing

| Buy@ | [motiuy@© ]
Original GDT fitness = 0.22
Iil Fitness under Period=13: 0.23

- Fitness under Period=14: 0.24
Moving Average 14

Fitness under Period=15: 0.22
Hill Climbing terminates.
New period stored in GDT=14

Hill Climbing for 3 periods
University of Kemit
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Methodology

e Select a fraction k of the population

e At every generation, apply the meta-heuristic to this
fraction

e Every time, the search space is considered to be all
indicators/periods of the given GP tree

University of Kemit

Significantly improved: 27

Simulated Annea“ng Significantly worsened: 7

Significantly improved: 31
Significantly worsened: 4

Tabu Search

Original 0.3633 0.7100 0.2449 0.0411 Original 0.3633 0.7100 0.2449 0.0411
Barclays Barclays
S.A. 0.4350 0.8167 0 0.0541 T.S. 0.4350 0.8167 0 0.0392
BT Original 0.3303 0.6667 0.2780 0.1083 BT Original 0.3303 0.6667 0.2780 0.1083
SA 0.3690 0.7433 0 0 T.S. 0.3323 0.6900 0.2287 0
Original 0.3685 0.7533 0.1341 0.2131 Original 0.3685 0.7533 0.1341 0.2131
Cadbury Cadbury
S.A. 0.3733 0.7600 0 0.2179 T.S. 0.3817 0.7700 0 0.1928
Original 0.2802 0.6367 0.3946 0 Original 0.2802 0.6367 0.3946 0
Imp Tob Imp Tob
S.A. 0.2929 0.6533 0 0 T.S. 0.2989 0.6567 0.0541 0
Original 0.2369 0.6100 0.2333 0.2456 Original 0.2369 0.6100 0.2333 0.2456
Schroders Schroders
SA 0.3054 0.6800 0 0.1780 T.S. 0.2815 0.6567 0.0444 0.2429
oK Original 0.2066 0.6800 0.5922 0.4222 oK Original 0.2066 0.6800 0.5922 0.4222
v S.A. 0.3059 0.6967 0 0 v T.S. 0.3207 0.7000 0.1165 0
Sample BEST Results for SA Sample BEST Results for TS
University of Kenit University of Kenit

Significantly improved: 35
Significantly worsened: 3

Guided Local Search

Original 0.3633 0.7100 0.2449 0.0411
Barclays
GLS 0.4350 0.8167 0 0.0260
BT Original 0.3303 0.6667 0.2780 0.1083
GLS 0.3690 0.7433 0 0
Original 0.3685 0.7533 0.1341 0.2131
Cadbury
GLS 0.4153 0.8067 0 0.1897
Original 0.2802 0.6367 0.3946 0
Imp Tob
GLS 0.3197 0.6767 0 0
Original 0.2369 0.6100 0.2333 0.2456
Schroders
GLS 0.2909 0.6700 0 0
oK Original 0.2066 0.6800 0.5922 0.4222
v GLS 0.2214 0.6733 0 0.4706
Sample BEST Results for GLS
University of Kenit

Overall results

o Meta-heuristics made the search more effective

e Seem to have good generalization, as they
introduced improvements to all datasets

o GLS was the most effective meta-heuristic from the
ones tested (Smonou, 2012)
= Trade-off: slowed down the runtime of the algorithm
e Improvements in the GLS performance (Shao,
2013)
= Improved the predictive performance of the algorithm

= Implemented Fast Local Search, which made the GLS
80% faster

University of Kenit
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Meta-heuristics and hyper-heuristics for EDDIE

o Use different meta-heuristics to search in the space
of the technical indicators and their periods
= Hill climbing, Simulated Annealing, Tabu Search, Guided
Local Search, .....
= Use EDDIE 8 with any of the above meta-heuristics

e Combine successful meta-heuristics into different
frameworks: hyper-heuristics

University of Kemit
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Hyper-heuristics for EDDIE 8

e Combine many meta-heuristics into a hyper-
heuristics framework

e Other ways of selecting the heuristics exist
= Alot of research in looking for ‘good’ hyper-heuristic
frameworks

e Best-so-far framework:
= Select which meta-heuristic to use based on:
« How well a given heuristic has performed individually
« How well a given heuristic has performed as a
successor of a previously invoked heuristic
» The elapsed time since the heuristic was called

e The above method is called the Choice Function

University of Kemit

Methodology

e Applied 14 low-level heuristics to 30 different
datasets

e Examine the effect of each heuristic to each dataset

e Created league tables reporting
= “Performance” of dataset (selected the “best” 10)
= Performance of each heuristic

e Combined the most prominent heuristics into hyper-
heuristic frameworks

University of Kenit

Results on hyper-heuristics

e Overall improvement of the algorithm’s predictive
performance

e Hyper-heuristics had the ability to decide which
meta-heuristic is more effective at a given time, and
apply it to the trees of the population

e Hyper-heuristics would select different meta-
heuristics based on the dataset being used

University of Kenit
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More research on Hyper-heuristics: Choice .
; Conclusion
Function
e Hyper-heuristics with Choice Function made EDDIE e Financial forecasting
8 th_e most successfully algorithm of the EDDIE e EDDIE
series (Aluko, 2013)
. . e Results on EDDIE 8
e Improvements were again quite a lot compared to o
diminutions (Aluko, 2013) e Meta- and hyper-heuristics for EDDIE 8
University of Kemit University of Kemit
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Where to next? Potential MSc dissertation projects
o Meta-learning e 3" consecutive year we will be running this
e Research on GPU (Graphics Processing Unit) cards e So far 3 students from Essex have been involved
L - . = Distinction projects. 80% dissertation mark. Best
e Application of other promising meta-heuristics dissertation prize
e Similar projects in Kent with equal success
e Opportunity to work on a real-world problem
= Appealing to industry
= Extremely useful research experience if you are
considering a PhD
= Publication potential
University of Kenit University of Kenit
| |
Potential MSc projects Interested?

e Application+comparison of different hyper-heuristic
frameworks on the periods of EDDIE

e Investigation of the impact of “external” technical
indicators on a given data set

e Comparison of different attribute selection methods
on the indicators of EDDIE

University of Kenit

e Feel free to email me at M.Kampouridis@kent.ac.uk
if you have any questions

® You can of course also email Edward

e | should be in Essex for the next couple of days, so
we can meet if you want

University of Kenit
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EDDIE available to download

e ZIP file available at
http://www.kampouridis.net/teaching/cf963/

University of Kemit
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Related references on EDDIE for financial
forecasting

e Kampouridis, M., Tsang, E.: “Investment Opportunities Forecasting:
Extending the Grammar of a GP-based Tool”, International Journal of
Computational Intelligence Systems, Vol. 5 (3), pp. 530-541 (2012)

e Kampouridis, M., Alsheddy, A., Tsang, E.: “On the investigation of
hyper-heuristics on a financial forecasting problem”, Annals of
Mathematics and Artificial Intelligence, Springer (Accepted for
publication-2012)

e Kampouridis, M.: “An Initial Investigation of Choice Function Hyper-
Heuristics for the Problem of Financial Forecasting”, Proceedings of
the IEEE Congress on Evolutionary Computation, Cancun, Mexico
(2013)

e Smonou, D., Kampouridis, M., Tsang, E.: “Metaheristics Application
on a Financial Forecasting Problem”, Proceedings of the IEEE
Congress on Evolutionary Computation, Cancun, Mexico (2013)

University of Kemit

Thank you!

® Questions?

University of Kenit

13





