Guest Lecture by Dr Michael Kampouridis, CF963 Learning and Computational Intelligence in Economics and Finance 2013 CCFEA, University of Essex, 4th November 2013

University of Kent

Contents of today's talk

- Forecasting
- Financial forecasting
 - What is it?Is it possible?
 - Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting
 - How it works
 - Research on EDDIE 7 and EDDIE 8
 Latest research
 - Latest res

Financial Forecasting

- Forecast price movement of stock/market
- Forecast opportunities (buy, not-buy, sell, arbitrage)
- Forecast threats
 Forecast scarce opportunities

Data used for forecasting

- Daily (daily closing prices)
- Intraday (high frequency)
- Volume
- Indices

Contents of today's talk

- Forecasting
- Financial forecasting
 - What is it Is it possible?
 - Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting
 - How it works
 - Research on EDDIE 7 and EDDIE 8 Latest research

University of Kent

Is it possible?

- Lots of debates!
- Efficient Market Hypothesis (EMH)
 - Prices fully reflect the available information that relates to the financial asset being traded
 - If EMH holds, then no point of forecasting Lot of works examining the EMH from both
 - theoretical and empirical perspective • Evidence both in favor of and against EMH
 - "Successful" financial forecasting attempts FX market, bond market, volatility forecasting, stock market crash, ...

University of Kent

Contents of today's talk

Forecasting

- Financial forecasting
 - What is it? Is it possible?
 - Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting
 - - How it worksResearch on EDDIE 7 and EDDIE 8
 - Latest research

University of Kent

University of Kent

- Fundamental analysis
 - · Examine a company's financial statements and balance sheets in order to predict future trends of their shares
 - Depends on statistics, past records of assets, earnings, dividends, interest rates, sales, products, management, markets
- Technical analysis
 - Use historical data in order to predict future events Belief that there are patterns in the stock prices and
 - that these patterns repeat themselves
 - Technical indicators Moving Average, Filter, Trade Break Out, Momentum, Momentum Moving Average

University of Kent

University of Kent

Contents of today's talk

- Forecasting
- Financial forecasting
 - What is it? • Is it possible?
 - Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting

 - How it works
 Research on EDDIE 7 and EDDIE 8 Latest research

Computational Intelligence for financial forecasting

- Artificial Neural Networks
- Genetic Algorithms
- Genetic Programming
- Grammatical Evolution
- Support Vector Machines
- Learning Classifier Systems
- Genetic Network Programming
- Differential Evolution

Computational Intelligence for financial forecasting

- Artificial Neural Networks
- Genetic Algorithms
- Genetic Programming
- Grammatical Evolution
- Support Vector Machines
- Learning Classifier Systems
- Genetic Network Programming
- Differential Evolution

Evolution

University of Kent

University of Kent

"Evolution is the change in the inherited characteristics of biological populations over successive generations".-Wikipedia, Article on Biological Evolution

actical-support/management-community/blogs/Evolution-of-Leadership-788

Genetic Programming

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ("generations")

Genetic Programming

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ("generations")

University of Kent

Genetic Programming

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ("generations")

University of Kent

Fitness function

- A function to measure how well a candidate solution/individual fits the data
- More about this later

Genetic Programming

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ۲ ("generations")

University of Kent

Genetic Programming

- Initialise random population of individuals/trees (in our case trading strategies)
- Evaluate each tree and assign fitness
- Select trees in order to produce new offspring by the use of different operators (e.g. crossover, mutation)
- Repeat the previous two step for a number of times ("generations")

University of Kent

University of Kent

Contents of today's talk

- Forecasting
- Financial forecasting
 - What is it? Is it possible?
 - Methods
- Computational Intelligence for financial forecasting

• EDDIE for financial forecasting

- How it works Research on EDDIE 7 and EDDIE 8
 Latest research

- EDDIE is a GP tool that attempts to answer the following question:
 "Will the price of the X stock go up by r% within the next n
 - "Will the price of the X stock go up by r% within the next n days"?
 Users specify X, r, and n

	Expert	More	Define
Siven	adds:	input:	target:
Daily	50 days	12 days	∱ 4% in
losing	M.A.	Vol	20 days?
90	80	50	1
99	82	52	0
87	83	53	1
82	82	51	1

Assume I have a If MA_12 Then Buy (1)	a trading strategy/tr < 81	ee:		
Else Not-Bu	y (0)			
12 days Moving Average	Prediction	Target (Reality)	Classification	
80	1	0	FP	
00			FN	
82	0	1	FN	
82 79	0 1	1	TP	

omulo				
ample	Fitness	Rate of Correctnes s (RC)	Rate of Missing Chances	Rate of Failure (RF)
Tree 4	0.04	0.00		0.00
Tree 1	0.24	0.62	0.30	0.33
Tree 2	0.235	0.61	0.41	0.30
Tree 3	0.26	0.65	0.25	0.35
Tree 4	0.05	0.50	0.70	0.60
Tree 5	0.42	0.75	0.15	0.05
Average	0.24	0.626	0.362	0.326
Standard Deviation	0.13	0.08	0.21	0.195
Max	0.42	0.75	0.7	0.6
Min	0.05	0.5	0.15	0.05
				University

Research agenda for EDDIE 7 and EDDIE 8 New Grammar (EDDIE 8) • Why use technical indicators with pre-specified period length? (e.g. 12 Moving Average) • Investigate if prediction performance (i.e. fitness) can be improved by allowing the GP to look for the optimal period length • Allow any length between a parameterised range, e.g. 2-65 days Terminals: MA, TBR, FLR, Vol, Mom, MomMA are function symbols Period is an integer within a parameterised range, [MinP, MaxP] Decision is an integer, Positive or Negative implemented Threshold is a real number University of Kent University of Kent

Research results on EDDIE 7 vs EDDIE 8

- EDDIE 8 was able to search in the extended search space and discover new, better solutions that EDDIE 7 could not
- EDDIE 8 could not always outperform EDDIE 7
 Trade-off between 'searching in a bigger space' and 'search effectiveness'

Further Discussion

- Results are affected by the patterns in the datasets
 If results come from EDDIE 8's search space, then EDDIE 8 is able to outperform EDDIE 7
 - If results come from EDDIE 7's search space, then EDDIE 8 is having difficulties in finding as good solutions as EDDIE 7 does
 - Solutions are still in EDDIE 8's search space, but they come from a very small area of it (EDDIE 7's space), and thus it is very hard for EDDIE 8 to search effectively in such a small space

University of Kent

Contents of today's talk

Forecasting

- Financial forecasting
 - What is it?
 - Is it possible?Methods
- Computational Intelligence for financial forecasting
- EDDIE for financial forecasting
 - How it worksResearch on EDDIE 7 and EDDIE 8
 - Latest research

University of Kent

Simulated Annealing		Significantly improved: 27 Significantly worsened: 7			
Dataset	Heuristic	Fitness	RC	RMC	RF
Baralaura	Original	0.3633	0.7100	0.2449	0.0411
Darciays	S.A.	0.4350	0.8167	0	0.0541
DAT	Original	0.3303	0.6667	0.2780	0.1083
DAI	S.A	0.3690	0.7433	0	0
Codbury	Original	0.3685	0.7533	0.1341	0.2131
Cadbury	S.A.	0.3733	0.7600	0	0.2179
Imp Tob	Original	0.2802	0.6367	0.3946	0
Inp iop	S.A.	0.2929	0.6533	0	0
Sabradara	Original	0.2369	0.6100	0.2333	0.2456
Schlodels	S.A	0.3054	0.6800	0	0.1780
Clay	Original	0.2066	0.6800	0.5922	0.4222
GKY	S.A.	0.3059	0.6967	0	0
Sample BEST Results for SA					

Tabu Search			Significantly improved: 31 Significantly worsened: 4			
Dataset	Heuristic	Fitness	RC	RMC	RF	
Paralaura	Original	0.3633	0.7100	0.2449	0.0411	
Darciays	T.S.	0.4350	0.8167	0	0.0392	
DAT	Original	0.3303	0.6667	0.2780	0.1083	
DAI	T.S.	0.3323	0.6900	0.2287	0	
Codbury	Original	0.3685	0.7533	0.1341	0.2131	
Caubury	T.S.	0.3817	0.7700	0	0.1928	
Imp Tob	Original	0.2802	0.6367	0.3946	0	
inip iob	T.S.	0.2989	0.6567	0.0541	0	
Cobrodoro	Original	0.2369	0.6100	0.2333	0.2456	
Schloders	T.S.	0.2815	0.6567	0.0444	0.2429	
Sky	Original	0.2066	0.6800	0.5922	0.4222	
GRY	T.S.	0.3207	0.7000	0.1165	0	
Sample BEST Results for TS BETTER WORSE University of						

Guided Local Search			Significantly improved: 35 Significantly worsened: 3		
Dataset	Heuristic	Fitness	RC	RMC	RF
Developer	Original	0.3633	0.7100	0.2449	0.0411
Darciays	GLS	0.4350	0.8167	0	0.0260
DAT	Original	0.3303	0.6667	0.2780	0.1083
DAI	GLS	0.3690	0.7433	0	0
Codbury	Original	0.3685	0.7533	0.1341	0.2131
Caubury	GLS	0.4153	0.8067	0	0.1897
Imp Tob	Original	0.2802	0.6367	0.3946	0
imp iob	GLS	0.3197	0.6767	0	0
Cohrodoro	Original	0.2369	0.6100	0.2333	0.2456
Schioders	GLS	0.2909	0.6700	0	0
Class.	Original	0.2066	0.6800	0.5922	0.4222
Sky	GLS	0.2214	0.6733	0	0.4706
Sample BEST Results for GLS					

Overall results

- Meta-heuristics made the search more effective
- Seem to have good generalization, as they introduced improvements to all datasets
- GLS was the most effective meta-heuristic from the ۲ ones tested (Smonou, 2012) Trade-off: slowed down the runtime of the algorithm
- Improvements in the GLS performance (Shao,
 - 2013)
 - Improved the predictive performance of the algorithm
 Implemented Fast Local Search, which made the GLS 80% faster

Meta-heuristics and hyper-heuristics for EDDIE

- Use different meta-heuristics to search in the space of the technical indicators and their periods
 - Hill climbing, Simulated Annealing, Tabu Search, Guided Local Search. Use EDDIE 8 with any of the above meta-heuristics
- Combine successful meta-heuristics into different frameworks: hyper-heuristics

Hyper-heuristics for EDDIE 8

- Combine many meta-heuristics into a hyperheuristics framework
- Other ways of selecting the heuristics exist A lot of research in looking for 'good' hyper-heuristic frameworks

Best-so-far framework:

- Select which meta-heuristic to use based on:
 - How well a given heuristic has performed individually
 How well a given heuristic has performed as a successor of a previously invoked heuristic

 - The elapsed time since the heuristic was called
- The above method is called the Choice Function

University of Kent

University of Kent

Methodology

- Applied 14 low-level heuristics to 30 different datasets
- Examine the effect of each heuristic to each dataset
- Created league tables reporting "Performance" of dataset (selected the "best" 10)
 Performance of each heuristic
- Combined the most prominent heuristics into hyperheuristic frameworks

Results on hyper-heuristics

- Overall improvement of the algorithm's predictive performance
- Hyper-heuristics had the ability to decide which meta-heuristic is more effective at a given time, and apply it to the trees of the population
- Hyper-heuristics would select different metaheuristics based on the dataset being used

University of Kent

More research on Hyper-heuristics: Choice Function

- Hyper-heuristics with Choice Function made EDDIE 8 the most successfully algorithm of the EDDIE series (Aluko, 2013)
- Improvements were again quite a lot compared to diminutions (Aluko, 2013)

Conclusion

- Financial forecasting
- EDDIE
- Results on EDDIE 8
- Meta- and hyper-heuristics for EDDIE 8

University of Kent

Where to next?

- Meta-learning
- Research on GPU (Graphics Processing Unit) cards
- Application of other promising meta-heuristics

Potential MSc dissertation projects

- 3rd consecutive year we will be running this
- So far 3 students from Essex have been involved
 Distinction projects. 80% dissertation mark. Best dissertation prize.
- Similar projects in Kent with equal success
- Opportunity to work on a real-world problem
 Appealing to industry
 Extremely useful research experience if you are
 - Extremely useful research experience if you are considering a PhD
 - Publication potential

University of Kent

Potential MSc projects

- Application+comparison of different hyper-heuristic frameworks on the periods of EDDIE
- Investigation of the impact of "external" technical indicators on a given data set
- Comparison of different attribute selection methods on the indicators of EDDIE

Interested?

- Feel free to email me at <u>M.Kampouridis@kent.ac.uk</u> if you have any questions
- You can of course also email Edward
- I should be in Essex for the next couple of days, so we can meet if you want

University of Kent

University of Kent

University of Kent

EDDIE available to download

• ZIP file available at http://www.kampouridis.net/teaching/cf963/

Related references on EDDIE for financial forecasting

- Kampouridis, M., Tsang, E.: "Investment Opportunities Forecasting: Extending the Grammar of a GP-based Tool", International Journal of Computational Intelligence Systems, Vol. 5 (3), pp. 530-541 (2012)
- Kampouridis, M., Alsheddy, A., Tsang, E.: "On the investigation of hyper-heuristics on a financial forecasting problem", Annals of Mathematics and Artificial Intelligence, Springer (Accepted for publication-2012)
- Kampouridis, M.: "An Initial Investigation of Choice Function Hyper-Heuristics for the Problem of Financial Forecasting", Proceedings of the IEEE Congress on Evolutionary Computation, Cancun, Mexico (2013)
- Smonou, D., Kampouridis, M., Tsang, E.: "Metaheristics Application on a Financial Forecasting Problem", Proceedings of the IEEE Congress on Evolutionary Computation, Cancun, Mexico (2013)

University of Kent

