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Crisis events such as the 1987 stock market crash, the Asian Crisis and the bursting of the 

Dot-Com bubble have radically changed the view that extreme events in financial markets have 

negligible probability.  This paper argues that the use of the Generalized Extreme Value (GEV) 

distribution to model the Risk Neutral Density (RND) function provides a flexible framework that 

captures the negative skewness and excess kurtosis of returns, and also delivers the market implied tail 

index of asset returns.  We obtain an original analytical closed form solution for the Harrison and 

Pliska (1981) no arbitrage equilibrium price for the European option in the case of GEV asset returns. 

The GEV based option prices successfully remove the well known pricing bias of the Black-Scholes 

model. We explain how the implied tail index is efficacious at identifying the fat tailed behaviour of 

losses and hence the left skewness of the price RND functions, particularly around crisis events. 
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1. Introduction 
 

The 1987 stock market crash,  the Asian Crisis (July–October 1997), the September 1998 

LTCM debacle, the bursting of the high technology Dot-Com bubble of 2000-02 with 30% losses of 

equity values, events such as 9/11, and sudden corporate collapses of the magnitude of Enron - have 

radically changed the view that extreme events have negligible probability. In mainstream financial 

theory extreme events which occur with small probabilities have not been a matter of concern as in the 

dominant model of  lognormal asset prices the probability of extreme events is negligible.2  However, 

recently there has been a growing pragmatic and theoretical interest in the shape and fatness of the tails 

of the distributions of stock returns.  

Extreme value theory is a robust framework to analyse the tail behaviour of distributions.  

Extreme value theory has been applied extensively in hydrology, climatology and also in the insurance 

industry (see, Embrechts et. al. 1997).   Despite early work by Mandelbrot (1963) on the possibility of 

fat tails in financial data and evidence on the inapplicability of the assumption of log normality in 

option pricing, a systematic study of extreme value theory for financial modelling and risk management 

has only begun recently.  Embrechts et. al. (1997) is a comprehensive source on extreme value theory 

and applications.3  

The objective of this paper is to use the Generalized Extreme Value (GEV) distribution in the 

context of European option pricing with the view to overcoming the problems associated with existing 

option pricing models.  Within the Harrison and Pliska (1981) asset pricing framework, the risk neutral 

probability density function (RND, for short) exists under an assumption of no arbitrage.  By definition 

of a no arbitrage equilibrium, the current price of an asset is the present discounted value of its 

expected future payoff given a risk-free interest rate where the expectation is evaluated by the RND 

function.  Breeden and Litzenberger (1978) were first to show how the RND function can be extracted 

from traded option prices.   

The Black-Scholes (1973) and lognormal based RND models have well known drawbacks. 

First, the implied volatility smiles or smirks are inconsistent with the constancy required in the 

lognormal case for volatility across different strikes for options with the same maturity date.  Further, 

this class of models cannot explicitly account for the negative skewness and the excess kurtosis of asset 

returns.  Since, Jackwerth and Rubinstein (1996) demonstrated the discontinuity in the implied 

skewness and kurtosis across the divide of the 1987 stock market crash -  a large literature has 

developed which aims to extract  the RND function from traded option prices so that the skewness and 

fat tail properties of the distribution are better captured than is the case in lognormal models.  

                                                           
2 As noted by Jackwerth and Rubinstein (1996) in a lognormal model of assets prices, the probability of 
a stock market crash with some 28% loss of equity values is 10-160, an event which is unlikely to 
happen even in the life time of the universe. 
3 Embrechts (1999, 2000) considers the potential and limitations of extreme value theory for risk 
management. Without being exhaustive here, De Haan et. al. (1994) and Danielsson and de Vries 
(1997) study quantile estimation. Bali (2003) uses the GEV distribution to model the empirical 
distribution of returns. Mc Neil (1999) gives an extensive overview of extreme value theory for risk 
management, see also Dowd (2002, pp.272-284).  The EVIM package of Gençay et. al. (2001) for 
extreme value analysis in MatLab has become a user friendly tool for financial data analysis. 
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Pricing biases caused by left skewness of asset returns that cannot be captured in the implied 

lognormal asset pricing models are now well understood (see, Savickas, 2002, 2004). Typically, in 

periods when the left skewness of asset prices increases, the Black-Scholes option prices for them will 

overprice out-of-the-money call options and underprice in- the-money call options relative to when 

there is greater symmetry in the distribution function.   Further, there is evidence that the option price is 

highly sensitive to the tail shape change which is a matter that is distinct to its sensitivity to the 

variance of the price distribution.  However, the lack of closed form solutions to the option pricing 

model, the large number or parameters needed or the lack of easy interpretation of implied parameters 

have prevented many of the proposed models intended to deal with both the fat tails and the skew in 

asset prices from being of practical use in pricing and hedging.   

This paper argues for the use of the Generalized Extreme Value (GEV) distribution for asset 

returns in call option pricing models for the following reasons: 

 

(i) It can provide a closed form solution for the European option price. 

(ii) It yields a parsimonious European option pricing model with only three 

parameters defining the tail shape, location and scale.   

(iii) It provides a flexible framework that subsumes as special cases a number of 

classes of distributions that have been assumed to date in more restrictive settings. 

(iv) It most significantly, can deliver the market implied tail index for the asset returns.  

The latter is found to be time varying in a way that mirrors the lack of invariance 

in the recursively estimated tail index of asset returns (see, Quintos, Fan and 

Phillips, 2001) with jumps in the fat tailedness in crisis periods.   

(v) We follow the convention (see Dowd 2002, p.272) that asset returns are modelled 

in terms of losses when Extreme Value Theory is used. When extreme events are 

prominent, the GEV model for negative returns yields a Fréchet type implied 

density function for returns. The corresponding RND for the price is left skewed 

and exhibits a fat tail on the left.  

(vi) The success of the GEV based RND for the asset price in removing well known 

pricing biases associated with the Black Scholes model can be now established 

precisely in terms of changes in tail shape.  

(vii) Having obtained a closed form solution for the option pricing model, we can also 

obtain a closed form solution for the new “greek” in the lexicon of option pricing, 

which measures the sensitivity of the option price to the tail index.  

(viii) The closed form delta hedging formulation can also be given. 

 

This paper covers the first (vi) features listed above of the GEV RND model of option pricing 

and leave the last two for further work. 

We will briefly now comment on how the GEV RND based option pricing model fits into the 

large edifice,  given in Figure 1 below,  built of  the different methods used for the extraction of the 

implied distributions and their respective option pricing models that have arisen since the work of  
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Breeden and Litzenberger (1978). Based on Jackwerth (1999) survey, the different methods can be 

classified into three main categories: parametric, semi parametric and non-parametric. Parametric 

methods can be divided into three sub-categories: generalized distribution methods, specific 

distributions and mixture methods. Generalized distribution methods introduce more flexible 

distributions with additional parameters beyond the two parameters of the normal or lognormal 

distributions. Within this subcategory, Aparicio and Hodges (1998) use generalized Beta functions of 

the second kind, which are described by four parameters, and Corrado (2001) uses the generalized 

Lambda distribution. Under the specific distributions being assumed for the RND function, we find the 

Weibull distribution by Savickas (2002 and 2004), and the skewed Student-t by de Jong and Huisman 

(2000). The Variance Gamma distribution used by Madan, Carr and Chang (1998), and Levy processes 

used among others by Matache, Nitsche and Schwab (2004) are more recent specifications with these 

methods having parameters that can control fat tails and skewness of the asset price.  Up to seven 

parameters are associated with these models.   

Parametric
methods

Non-parametric
methods

Generalized
distributions

Specific
distributions

Mixture
methods

Generalized Beta functions (Aparicio and Hodges1998)

Generalized Lambda Distribution (Corrado 2000)

Generalized Extreme Value (GEV) distribution

Mixture of two normals (Ritchey 1990)

Mixture of three lognormals (Melick and Thomas 1997)

Kernel methods (Ait-Sahalia and Lo 1998)

Maximum entropy  methods (Buchen and Kelly 1996)

Curve fitting methods (Shimko 1993)

Semi parametric
methods

Hypergeometric functions (Abadir and Rockinger 1997)

Gram-Charlier expansions (Corrado and Su 1997)

Edgeworth expansions (Jarrow and Rudd 1982)

Weibull distribution (Savickas 2002, 2004)

Skewed Student-t (de Jong and Huisman 2000)

Variance Gamma (Madan, Carr and Chang1998)
Lévy process (Matache, Nitsche and Schwab 2004)

 
Figure 1: Classification of most common RND estimation methods 
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Finally, the third sub-category within parametric methods is the mixture methods, which 

achieve greater flexibility by taking a weighted sum of simple distributions. The most popular method 

here is mixture of lognormals. Ritchey (1990) and Gemmill and Saflekos (2000) use two lognormals, 

and Melick and Thomas (1997) use three lognormals. One problem associated with the mixture of 

distributions is that the number of parameters is usually large, and thus they may overfit the data. For 

example, the mixture of two lognormals needs to estimate five parameters.  

Under the category of semi parametric methods, we find the Hypergeometric function used by 

Abarid and Rockinger (1997), and expansion methods such as the Gram-Charlier expansions used by 

Corrado and Su (1997) and Edgeworth expansions used by Jarrow and Rudd (1982). The non-

parametric methods can be again divided in three groups: kernel methods, maximum-entropy methods, 

and curve fitting methods. Kernel methods are related to regressions since they try to fit a function to 

observed data, without specifying a parametric form. Second, the methods based on maximum-entropy 

find a non-parametric probability distribution that tries to match the information content, while at the 

same time satisfying certain constraints, such as pricing observed options correctly.  In the third group 

in this category, there are the curve fitting methods that try to fit the implied volatilities or the risk-

neutral density with some flexible function.  The model presented in this paper, as highlighted in 

Figure 1, falls in the general category of parametric models, and more specifically, within the sub-

category of generalized distributions.  In Section 2 of the paper we give a brief introduction on Extreme 

Value Theory and present the Generalized Extreme Value (GEV) distribution and its properties to 

indicate how the flexibility of this three parameter class of distribution can capture skew and fat tails as 

and when dictated by the data with no a priori restrictions.   

The rest of the paper is organized as follows. In section 3.1, the use of the GEV distribution 

for the RND returns in the context of the Harrision and Kreps (1991) no arbitrage pricing model is 

discussed. In Section 3.2, the closed form solutions for the arbitrage free European call and put option 

price equations are derived in the case of the GEV distribution for the RND function. Sections 3.3 and 

3.4 discuss the components of the closed form solution for the proposed GEV option pricing model. 

Section 4 reports the empirical results on the estimated implied GEV parameters and RND function for 

the FTSE 100 European option price data from 1997 to 2003.  Section 4.1 gives the data description, 

and Section 4.2 the methodology. In Sections 4.3 and 4.4, the fit of the postulated GEV option pricing 

model is compared to the benchmark Black-Scholes and is found to be superior at all levels of 

moneyness and at all time horizons, removing the well known price bias of the Black-Scholes model. 

In Section 4.5, the analysis of the implied tail indexes is given, and in Section 4.6, the role of implied 

RND functions in the event studies surrounding periods of “extreme” downward movements of the 

FTSE-100 index is given.  Finally, Section 5 gives the conclusions of the paper. 
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2. Extreme Value Theory and the GEV distribution 
 

Unlike the normal distribution that arises from the use of the central limit theorem on sample 

averages, the extreme value distribution arises from the limit theorem of Fisher and Tippet (1928) on 

extreme values or maxima in sample data. The class of GEV distributions is very flexible with the tail 

shape parameter ξ (and hence the tail index defined as α= ξ-1) controlling the shape and size of the tails 

of the three different families of distributions subsumed under it.  The three families of extreme value 

distributions can be nested into a single parametric representation, as shown by Jenkinson (1955) and 

von Mises(1936). This representation is known as the “Generalized Extreme Value” (GEV) distribution 

and is given by: 

 
( )( ) 0,01with1exp)( /1 ≠>++−= − ξξξ ξ

ξ xxxF . (1.a) 
 

Applying the formula that xex →+ − ξξ /1)1( , as 0→ξ  we have, 
 

.)exp()(0
xexF −=      (1.b)          

 
The standardized GEV distribution, in the form in von Mises (1936) (see, Reiss and Thomas, 2001, p. 

16-17), incorporates a location parameter μ  and a scale parameter σ, and is given by: 
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The corresponding probability density functions obtained as the derivative of the distribution function, 

are respectively: 
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)(exp1)( /)(/)(
,,0

σμσμ
σμ σ

−−−− −= xx eexf                                              0=ξ . (3.b) 

 
The distributions associated with ξ > 0 are called Fréchet and these include well known fat 

tailed distributions such as the Pareto, Cauchy, Student-t and mixture distributions. If  ξ = 0,  the GEV 

distribution is the Gumbel class and includes the normal, exponential, gamma and lognormal 

distributions where only the lognormal distribution has a moderately heavy tail.  Finally, in the case 

where ξ < 0, the distribution class is Weibull.  These are short tailed distributions with finite lower 

bounds and include distributions such as uniform and beta distributions. Figure 2 below illustrates the 

GEV density functions for each the three classes of distributions that the GEV can take based on the 
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shape parameter ξ.  Note that the three graphs only differ in the value of ξ, having the same value for 

location and scale parameters. Typically, ξ > 0 is known to characterize asset returns in terms of losses, 

as given in Figure 2c. The corresponding density functions for the price in each of these cases are 

shown in Figure 3. Note the left skew in the price density function is greatest in Figure 3c, for the case 

when ξ > 0, when the negative returns density function belongs to the GEV-Fréchet class. This 

observation plays a crucial role in the analysis that follows. 

 

 
(a) ξ = - 0.3 

 
(b) ξ = 0 

 
(c) ξ = + 0.3 

Figure 2: Density functions for returns: (a) GEV-Weibull, (b) GEV-Gumbel and (c) GEV-Fréchet. 

 

 
(a) ξ = - 0.3 

 
(b) ξ = 0 

 
(c) ξ = + 0.3 

 
Figure 3: Density functions for the corresponding prices: (a) GEV- Weibull returns, (b) GEV- 

Gumbel returns and (c) GEV- Fréchet returns. 

 
 
3. The GEV Option Pricing Model 
 

3.1 Arbitrage Free Option Pricing and the Risk Neutral Density 
 

Let St denote the underlying asset price at time t.  The European call option Ct is written on 

this asset with strike K and maturity T. We assume the interest rate r is constant.  Following the 

Harrison and Pliska (1981) result on the arbitrage free European call option price,  there exists a risk 

neutral density (RND) function, g(ST), such that the equilibrium call option price can be written as:  

 
( ) ( ) ( )∫

∞−−−− −=−=
K TTT

tTr
T

tTrQ
tt dSSgKSeKSeEKC )()0,max( )()( .   (4)

            
Here [ ]⋅Q

tE  is the risk-neutral expectation operator, conditional on all information available at time t, 

and g(ST) is the risk-neutral density function of the underlying at maturity.  Similarly, the arbitrage free 

option pricing equation for a put option is given by: 
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[ ] ∫ −=−= −−−− K

TTT
tTr

T
Q
t

tTr
t dSSgSKeSKEeKP

0

)()( )()()0,max()(
.  (5) 

 
In an arbitrage-free economy, the following martingale condition must also be satisfied: 

 
( )T

Q
t

tTr
t SEeS )( −−= .         (6)  

 
3.2 European Call and Put Option Price with GEV returns  
 

In this paper, we assume that the distribution of asset returns for a holding period equal to 

time to maturity of the option is represented by the GEV distribution. We derive closed form solutions 

for the call and put option pricing equations by analytically solving the integrals in (4) and (5). For the 

purpose of obtaining an analytic closed form solution, it was found necessary to define returns as 

simple returns. 4 Further, following the convention in Extreme Value Theory (see Dowd 2002, p.272), 

where Fréchet type distributions with ξ > 0 for the tail shape parameter are associated with losses, we 

model asset returns in terms of losses: 

 

t

T

t
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TT S
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S
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By assuming that LT  follows the standardised GEV distribution given in (2.a), 0≠ξ , the density 

function for the negative returns is given by: 
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The RND function g(ST) in (4) for the underlying price ST  is given by the general formula: 
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t

T
T

T
TT S

Lf
S
LLfSg 1

=
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By substituting (8) into (9), we obtain the RND function of the underlying price in terms of the 

standardized GEV density function as in equation (3.a): 
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with 
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σ
ξ
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T
T S
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4 Numerical results not reported in this paper show that the implied parameters (ξ, μ, σ ) obtained when 
using simple returns or log returns are not statistically different from each other. 
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We will consider the case when ξ > 0.5 Note that when ξ > 0, the negative returns distribution 

is Fréchet and this implies that the price RND function g(ST) in (10), in order to satisfy the condition in 

(11), is truncated on the right,6 and therefore, the upper limit of integration for the call option price in 

(4)  becomes ( )ξσμ +−1tS .  Substituting g(ST) in (10) into the call price equation in (4), we have: 
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Consider the change of variable: 
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Under this change of variable, the underlying price ST and dST can be written in terms of y as follows: 
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Also, the density function in (10) for the underlying price at maturity in terms of y becomes: 
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Note now that under the change of variable the lower limit of integration for the call option equation in 

(12) becomes: 
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while the upper limit of integration in (12) becomes 0.  Substituting for ST and dST as defined in (14) 

into (12), and using the new limits of integration we have: 
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Simplifying and rearranging (17) we have: 

                                                           
5 An identical result is obtained for the case when ξ < 0 (see footnote below). Appendix B derives the 
closed form solutions for the call and the put in the case of ξ = 0. 
6 On the other hand, when ξ < 0 the distribution of ST is truncated on the left, and therefore, the lower 
limit of integration for the call option price in (4) becomes max[K, St (1 - μ + σ/ξ)] and the upper limit 
remains  ∞ .  However, the closed form solutions for the call and the put is identical for both cases 
when ξ > 0 and ξ < 0.   
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The integral 1ψ in (18) above can be evaluated in terms of the incomplete Gamma function (see 

Appendix C for proof), and its solution is: 

 

 ( ) ( )ξξξ ξξψ /1/1/1
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The solution of integral 2ψ  in (18) is: 
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Combining results for 1ψ and 2ψ , we obtain a closed form for the GEV call option price 
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Grouping the terms with St together we have: 
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The derivation of closed form solution for the put option price under GEV returns can be found in the 

Appendix A, and yields the following equation: 
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 where ( ) 011 >−+= μσξh .  Note that h is a constant, given a set of parameters μ, σ, and ξ. 
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3.3 Analysis of the GEV call option pricing model 
 

This section aims to give some insights into the closed form solution for the GEV based call 

option pricing equation derived in the previous section.  The closed form solution for the call option 

price with the implied GEV related RND function given in (22) has two components: the first 

involving St, and the second involving K. These two components can be interpreted along the same 

lines as the Black-Scholes model. The key to understanding the GEV option pricing formula lies with 

the term  

  

ξ

ξ
μ

σ
ξ

/1

/1
11

−

− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−

− = tS
K

H ee .       (24) 

 
This term can be found to be the cumulative GEV distribution function as defined in (2.a) for 

the “standardized moneyness” of the option defined as ( ) tt SKS /− . Hence, it corresponds to the 

probability p of the call option being in the money at maturity.7 For a given set of implied GEV 

parameters  {μ, σ , ξ} we can work out (see, Figure 4) the range of  exercise prices K in relation to the 

given St  which yield:  
ξ/1−−He = 1 for deep in-the-money call options, 

ξ/1−−He = 0 for deep out-of-the-

money call options, and  0 < 
ξ/1−−He < 1 for all other cases.  

 
Figure 4: Probability of the option being in the money at maturity: for  

GEV p=exp(-H-1/ ξ)  and for Black-Scholes p=N(d2)  

Figure 4 plots the probability p= 
ξ/1−−He of exercising the option at maturity, given by the 

GEV model with two different values of ξ, and also for the Black-Scholes model8.  When ξ>0, the 

density function of losses is Fréchet, and thus, the implied price density function is left skewed with a 
                                                           
7 Recall that in the case of the Black-Scholes model the probability of the option being in the money at 
maturity is given by N(d2), where N() is the standard cumulative normal distribution function, and 

T
TrKSd t

σ
σ )2/()/ln( 2

2
−+

=  

8 To make the three cases comparable, we use the same traded call option price data to estimate the 
GEV model (see Section 4 for details) and the Black-Scholes model. Then, to obtain the second case 
for the GEV model, we fix ξ to be equal to the initial estimate, but with opposite sign, and estimate the 
other two GEV parameters. 
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fat tail on the left, as shown respectively in Figures 2c and 3c. Since the latter implies there is a higher 

probability of downward moves of the underlying than in the Black-Scholes case, we see from Figure 

4 how the probability of exercising the option when ξ < 0 approaches 1 much slower than for the 

Black-Scholes model.  

On the other hand, when ξ < 0, the GEV density of the losses is of Weibull type, and thus the 

implied price density function is right-skewed, resulting in a higher probability of upward moves. 

Therefore, the probability p of exercising the option as we lower the strike price K reaches 1 faster than 

in the Black-Scholes case. Note that for high strike prices and for any value of ξ, the probability of the 

option being in the money goes to zero faster than for the Black-Scholes case. 

When the call option is deep in-the-money (ITM) with K <<  St   and  
ξ/1−−He = 1 , the call 

price converges to a linear function of the expected payoff (see Appendix D for proof). Thus,  

 

[ ]( ) KeSKSEeKC tTr
tT

Q
GEVt

tTr
t

)()()( −−−− −=−= .    (25) 

 
Here [ ]T

Q
GEVt SE   is the conditional first moment of the price RND function, which by the 

martingale condition equals St.  For this range of strike prices, the option prices obtained with the GEV 

model converge to those given by the Black-Scholes model. When the option is deep out of the money, 

then tSK >>  and 
ξ/1−−He = 0 , and it is easy to verify  that the call price is zero.  

 
Figure 5 below displays the call option prices obtained with the GEV model (dashed lines) 

and with the Black-Scholes model (solid line). The Black-Scholes model overprices the out-of-the-

money (OTM) options with respect to the GEV model. The GEV model yields higher values of call 

prices when ξ< 0 than when ξ > 0. For in-the-money options, the Black-Scholes model underprices call 

options with respect to the GEV model. The GEV model gives higher prices when ξ > 0 than when ξ < 

0. For at-the-money (ATM) options, the price given by both models is approximately the same. Note 

that for deep ITM options, i.e. for much lower values of K (not shown in the graph) both GEV and 

Black-Scholes prices converge to the present discounted value of the intrinsic value of the option, 

increasing linearly as K falls. 

 

For OTM options, the GEV model gives higher call option prices when ξ < 0, because in that 

case upward movements in the underlying price are more likely and the price density is truncated on 

the left (see Figure 3a). On the other hand, when ξ > 0 downward movements in the price are more 

likely and the price density function is truncated on the right (see Figure 3c). In contrast, for ITM 

options, the GEV model gives higher option prices when ξ > 0. This can be explained in terms of the 

asymmetry in the peakedness of the two densities. When ξ > 0, the RND function for the price is left 

skewed, with peakedness at higher values of the underlying than when ξ < 0. 



 - 13 - 

 
Figure 5: Call option prices for the GEV model and the Black-Scholes model  

(ITM: in-the-money; ATM: at-the-money; OTM: out-of-the-money) 

 
3.4 Analysis of the GEV put option pricing model 
 

The analysis for the closed form solution of the GEV put option pricing model in equation 

(23) is analogous to what was done in the case of the call option.  The probability of a put being in the 

money is given by  

 
ξξξ /1/1/1

1
−−− −−− −≈− HHh eee  . (26) 

 

Here, note  
ξ/1−−he  is approximately equal to 1 and hence (26) is one minus the probability of 

the call being in the money at maturity.  In Figure 6 , while considering the case of a Fréchet 

distribution in losses with ξ > 0 , for low strike prices relative to the underlying, we have a greater 

probability of the put option being in the money at maturity as compared to either the Black-Scholes 

case or the GEV case when ξ < 0.  

 

Figure 6: Probability of the put option being in the money at maturity: for  

GEV p= 1 - exp(-H-1/ ξ)  and for Black-Scholes p=N(-d2)  
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Figure 7 below displays the put option prices obtained with the GEV model (dashed lines) 

along with the Black-Scholes model (solid line). The Black-Scholes model substantially underprices 

the out-of-the-money (OTM) put options relative to the GEV model. The GEV model yields higher 

values of OTM put prices when ξ > 0 than when ξ < 0. For in-the-money (ITM) options, the Black-

Scholes model only marginally overprices put options with respect to the GEV model. The GEV model 

gives higher prices for ITM put options when ξ < 0 than when ξ > 0. For at-the-money (ATM) options, 

the prices given by both the GEV and the Black-Scholes models is approximately the same. Note that 

for deep ITM put options, both GEV and Black-Scholes prices converge to the present discounted 

value of the intrinsic value of the option, t
tTr SKe −−− )(  , which increases linearly with K. 

 

 
Figure 7: Put option prices for the GEV model and the Black-Scholes model  

(ITM: in-the-money; ATM: at-the-money; OTM: out-of-the-money) 
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4. Results 
 
4.1 Data description 
 

The data used in this study are the daily settlement prices of the FTSE 100 index call and put 

options published by the London International Financial Futures and Options Exchange (LIFFE). These 

settlement prices are based on quotes and transactions during the day and are used to mark options and 

futures positions to market. Options are listed at expiry dates for the nearest four months and for the 

nearest June and December. FTSE 100 options expire on the third Friday of the expiry month. The 

FTSE 100 option strikes are in intervals of 50 or 100 points depending on time-to-expiry, and the 

minimum tick size is 0.5. There are four FTSE 100 Futures contracts a year, expiring on the third 

Friday of March, June, September and December. 

 

To synchronize the maturity dates for futures and options we only consider options with the 

same four maturity dates as the FTSE 100 futures contracts. The period of study was from 1997 to 

2003, so there were 28 expiration dates (7 years with 4 contracts per year). This period includes some 

events, such as the Asian crisis, the LTCM crisis and the 9/11 attacks, which will be used to analyze 

how the implied RNDs behave before/after such events, which resulted in a sudden fall of the 

underlying FTSE 100 index. Table 1 below summarizes the average number of different daily strikes 

for each of the years in the period under study, including both call and put options. 

 

Period Average Number of daily strikes 
1997 20 
1998 26 
1999 31 
2000 35 
2001 39 
2002 38 
2003 34 
All Years 32 

Table 1: Average number of strikes per year 

 

The European-style FTSE100 options, though they are options on the FTSE 100 index, can be 

considered as options on the futures on the index, because the futures contract expires at the same date 

as the option. Therefore, the futures will have the same value as the index at maturity, and can be used 

as a proxy of the underlying FTSE 100 index. By using this method, we avoid having to use the 

dividend yield of the FTSE 100 index, and the martingale condition in (6) becomes: 

 
( )T

Q
tt SEF = ,         (27) 

 

where Ft is the price of the FTSE 100 futures contract at t, and ST  is the FTSE 100 index at maturity T. 

 
The LIFFE exchange quotes settlement prices for a wide range of options, even though some 

of them may have not been traded on a given day. In this study we only consider prices of traded 

options, that is, options that have a non-zero volume. The data were also filtered to exclude days when 
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the cross-sections of options had less than three option strikes, since a minimum of three strikes is 

required to estimate the three parameters of the GEV model. Also, options whose prices were quoted as 

zero or that had less than 2 days to expiry were eliminated. Finally, option prices were checked for 

violations of the monotonicity condition.9 

  

The risk-free rates used are the British Bankers Association’s 11 a.m. fixings of the 3-month 

Short Sterling London InterBank Offer Rate (LIBOR) rates from the website www.bba.org.uk. Even 

though the 3-month LIBOR market does not provide a maturity-matched interest rate, it has the 

advantages of liquidity and of approximating the actual market borrowing and lending rates faced by 

option market participants (Bliss and Panigirtzoglou 2004). 

 
The option data used in this study can be divided into 6 moneyness categories, following the 

classification in Bakshi, Cao and Chen (1997). Note that moneyness is defined as S/K. A call option is 

out-of-the-money (OTM) if S/K is smaller than 0.97; at the money (ATM) if S/K is greater than 1.03, 

and at-the-money when S/K is in the range (0.97, 10.3). On the other hand, a put option is out-of-the-

money (OTM) if S/K is greater than 1.03, in-the-money if S/K is smaller than 0,97, but in-the-money is 

defined as with call options. An additional classification is done in terms of days to expiration: short 

term (less than 30 days to expiration), medium term (30-60 days), and long term (60-90). There are 

options data available for time to expiration longer than 90 days, but the number of prices available for 

such long time horizons is smaller. Table 2a and Table 2b below report the average option price for 

call and put options for each category, and the number of option observations in that range (shown in 

braces). 

 

  Days to Expiration  

 
Moneyness 

S/K <30 30-60 60-90 Subtotal 
OTM <0.94 £6.47 £20.27 £35.61  
  {1327} {2599} {2219} {6145} 
 0.94-0.97 £19.66 £59.75 £100.55  
  {1416} {1494} {915} {3825} 
ATM 0.97-1 £51.85 £117.94 £170.36  
  {1655} {1436} {895} {3986} 
 1-1.03 £130.15 £192.56 £250.25  
  {1370} {1046} {695} {3111} 
ITM 1.03-1.06 £248.87 £293.68 £355.07  
  {819} {562} {303} {1684} 
 >1.06 £584.89 £631.84 £702.52  
  {993} {715} {493} {2201} 
      
Subtotal  {7580} {7852} {5520} {20952} 

Table 2a: Sample properties of call options in period 1997-2003. 
 

As can be seen, the medium term time to maturity category has the greatest number of data 

points, followed by the short term and then long term, for both puts and calls. In terms of moneyness, 
                                                           
9 Monotonicity requires that the call (put) prices are strictly decreasing (increasing) with respect to the 
exercise price. 
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the largest number of observations is found in the OTM category (47% of total number of 

observations). For put options, the largest number of observations is also found in the OTM category, 

accounting for 60% of the total number of observations. 

 

  Days to Expiration  

 
Moneyness 

S/K <30 30-60 60-90 Subtotal 
ITM <0.94 £704.87 £640.78 £775.36  
  {1128} {579} {552} {2259} 
 0.94-0.97 £255.18 £297.75 £348.61  
  {746} {558} {280} {1584} 
ATM 0.97-1 £129.78 £193.59 £248.69  
  {1362} {987} {578} {2927} 
 1-1.03 £58.70 £129.17 £184.05  
  {1583} {1352} {813} {3748} 
OTM 1.03-1.06 £30.06 £82.74 £133.13  
  {1378} {1225} {744} {3347} 
 >1.06 £11.96 £29.19 £50.13  
  {3416} {5375} {3880} {12671} 
      
Subtotal  {9613} {10076} {6847} {26536} 

Table 2b: Sample properties of put options in period 1997-2003. 
 
4.2 Methodology 

 

For each expiry date listed in Table 3 below, a target observation date was determined with 

horizons of 90, 60, 30 and 10 days to maturity. If no options were traded on the target observation date, 

the nearest date with traded options was used. The estimation of the implied RND was conducted using 

the GEV model and the Black-Scholes model, for each of these dates, separately for calls and for puts.  

The structural GEV parameters ξ, μ and σ were estimated by minimizing the sum of squared 

errors (SSE) between the analytical solution of the GEV option pricing equations in (22) and (23) and 

the observed traded option prices with strikes Ki, as indicated in (19) below:  
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σμζ
.   (28) 

 

The optimization problem was solved subject to the constraint of satisfying the martingale 

condition in (27). The optimization was performed using the non-linear least squares algorithm from 

the Optimization toolbox in MatLab. 

 

4.3 Pricing performance  
 

The pricing performance of the GEV and Black-Scholes model is reported in Table 3 and 

Table 4 below in terms of the root mean square error RMSE, which represents the average pricing 

error in pence per option:  
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)(1)( tSSE
N

tRMSE = .       (29) 

 
The GEV option pricing model outperforms the Black-Scholes model at all time horizons. 

Both models consistently display an improvement in performance as time to maturity decreases. 

Specially, the GEV model removes the pricing bias that the Black-Scholes (BS) model exhibits for 

options far from maturity, with the Black-Scholes model having an average error of 11.72 pence per 

option at 90 days to maturity, while the GEV model has an average error of 2.09 pence per option, 

representing a 82% reduction. For options very close to maturity, the average price per option with the 

Black-Scholes model is 3.48 pence, while with the GEV model is 1.06 pence. Even though the Black-

Scholes model improves considerably for options close to maturity, the GEV model still represents a 

70% reduction in pricing error. 

 

 90 60 30 10 
 BS GEV BS GEV BS GEV BS GEV 

Mar-97 20.47 0.58 9.13 1.33 7.96 0.72 3.74 0.85 
Jun-97 7.16 0.55 1.4 0.24 8.68 1.5 5.72 0.6 
Sep-97 4.97 0.49 5.67 1.01 7.57 1.71 3.19 1.29 
Dec-97 37.63 0.47 19.09 1.54 5.69 2.17 2.72 0.98 
Mar-98 7.36 2.56 6.84 2.92 5.17 1.27 6.85 1.52 
Jun-98 47.86 4.65 20.24 2.34 3.33 1.82 4.62 1.14 
Sep-98 3.73 1.91 3.47 0.81 4.63 1.07 5.21 1.83 
Dec-98 23.63 3.59 14.07 2.75 8.16 2.19 2.66 1.05 
Mar-99 20.34 9.1 13.8 5.68 7.66 2.69 4.53 0.71 
Jun-99 9.55 2.66 13.13 2.91 5.33 1.03 2.47 0.69 
Sep-99 10.85 3.16 10.37 2.16 7.89 0.76 2.99 0.53 
Dec-99 5.38 0.77 17.62 3.91 6.58 2.75 3.13 0.85 
Mar-00 7.65 1.69 6.23 1.46 7.35 1.38 2.21 0.73 
Jun-00 7.31 4.55 10.1 0.55 5.35 0.46 4.45 0.4 
Sep-00 7.48 0.78 14.53 1.01 18.63 1.04 5.92 0.55 
Dec-00 2.39 0.58 11.58 2.26 2.7 0.87 4.8 0.43 
Mar-01 5.58 1.11 3.6 0.94 3.84 1.8 3.62 1.56 
Jun-01 5.93 1.15 10.12 1.36 3.15 1.89 1.55 0.78 
Sep-01 3.19 0.69 8.82 1.01 2.33 0.79 7.68 3.38 
Dec-01 9.87 2.88 11.72 3.63 4.62 1.99 1.19 2.34 
Mar-02 22.26 3.08 2.72 1.07 2.28 2.02 2.28 0.32 
Jun-02 1.24 0.73 1.77 1.48 3.23 1.46 0.94 0.84 
Sep-02 9.3 1.16 9.61 0.62 7.22 1.28 4.58 0.6 
Dec-02 17.01 1.63 11.58 2.86 4.75 1.41 3.77 1.26 
Mar-03 17.51 2.23 10.15 1.02 4.29 0.99 1.68 1.46 
Jun-03 6.1 1.5 4.9 1.94 4.53 0.55 2.27 0.71 
Sep-03 3.89 0.63 2.54 1.28 1.21 1.69 1.36 1.38 
Dec-03 2.49 3.57 7.46 3.15 2.62 2.47 1.2 1.02 

Average 11.72 2.09 9.37 1.90 5.60 1.49 3.48 1.06 
 

Table 3: RMSE for call options in pence 
 

 



 - 19 - 

A similar result is obtained for put options, shown in Table 4 below, even though the average 

error per option is greater for puts than for calls, for all times to maturity and for both models. As 

anticipated from the analysis in Section 3.4, it is important to note that for put options, the Black-

Scholes model suffers a far greater deterioration in pricing performance when compared to the GEV 

model. 10 The pricing performance improves in both models as time to maturity decreases, with the 

GEV model removing the pricing bias that the Black-Scholes model exhibits for options far from 

maturity.  

 

 90 60 30 10 
 BS GEV BS GEV BS GEV BS GEV 

Mar-97 1.11 0.42 2.99 1.74 1.88 0.79 1.66 0.67 
Jun-97 5.27 0.41 4.96 0.51 3.78 1.28 1.03 0.84 
Sep-97 3.08 0.56 3.45 0.77 3.9 0.49 1.69 1.24 
Dec-97 6.31 0.79 6.04 1.12 10.59 0.98 3.16 0.83 
Mar-98 20.38 4.13 11.27 0.72 6.08 1.73 2.43 1.25 
Jun-98 11.57 2.13 13.29 2.65 10.01 1.44 3.41 0.88 
Sep-98 13.52 4.4 10.4 2.09 9.89 2.91 6.83 1.78 
Dec-98 38.22 5.82 28.57 1.51 13.82 1.7 4.64 0.78 
Mar-99 29.75 5.14 19.36 4.39 11.53 2.12 3.5 0.66 
Jun-99 22.64 3.17 15.14 1.55 10.25 2.04 3.12 0.72 
Sep-99 24.35 4.05 17.97 1.52 11.37 1.23 3.56 0.52 
Dec-99 22.25 3.28 25.68 4.88 7.79 2.28 2.79 0.69 
Mar-00 15.9 2.82 14.41 2.45 9.81 1.77 2.1 0.92 
Jun-00 13.99 1.23 17.35 1.44 6.53 0.99 2.72 0.33 
Sep-00 8.33 0.86 4.37 0.53 1.14 0.43 5.19 0.49 
Dec-00 6.72 1.23 9.04 2.15 8.45 1.16 5.38 0.46 
Mar-01 15.48 1.67 9.76 1.25 4.81 1.74 5.71 1.24 
Jun-01 12.7 1.26 8.17 2.01 5.79 2.94 4.94 0.75 
Sep-01 7.08 0.9 10.75 0.8 4.45 0.41 21.16 6.06 
Dec-01 23.11 4.24 18.89 3.14 8.22 2.11 4.86 2.14 
Mar-02 16.19 1.74 6.76 1.48 7.42 2.29 1.68 0.31 
Jun-02 6.46 1.79 9.02 2.22 8.57 2.28 4.26 1.33 
Sep-02 13.99 1.32 18.34 1.38 9.58 1.65 4.86 0.49 
Dec-02 24.63 1.84 15.98 2.02 8.97 0.86 4.98 0.91 
Mar-03 20.72 1.49 14.05 1.08 8.25 1.51 3.34 1.62 
Jun-03 14.04 2.29 9.87 0.77 6.68 0.67 1.54 0.64 
Sep-03 8.76 1.65 6.41 1.03 4.25 1.93 2.39 1.27 
Dec-03 9.84 1.43 10.89 1.5 5.17 1.56 1.52 1.13 

Average 14.87 2.22 12.26 1.74 7.46 1.55 4.09 1.11 
 

Table 4: RMSE for put options in pence 
 

                                                           
10 The deterioration of pricing performance is calculated as the average increase in RMSE across all 
maturities for put options relative to call options. It was found to be 27.1% for the Black-Scholes 
model, and 1.6% for the GEV model. 
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4.4 Removal of pricing bias  
 

It has been well documented that the Black-Scholes model exhibits a pricing bias for out of 

the money and in the money options, while pricing quite accurately in the money options (Rubinstein, 

1985). The pricing bias is defined in equation (30) as the deviation of the calculated price with respect 

to the observed market price for each option contract: 

 

Price bias = Market price – Calculated price . (30) 

 

To summarize the results, the pricing bias was averaged across the 28 maturities given in 

Table 3 at each level of moneyness, and for a 90 day and 10 day time horizon. The average pricing 

bias for call options is plotted below in Figure 8a for a 90 day time horizon and in Figure 8b for a 10 

day time horizon. In keeping with the results obtained in the previous section, the Black-Scholes model 

shows deterioration in pricing accuracy for far from maturity contracts. The GEV model outperforms 

the Black-Scholes model at all levels of moneyness, and at both time horizons. At far from maturity, 

see Figure 8a,  the Black-Scholes model overprices OTM and deep ITM call options, while it 

underprices ATM and ITM call options. The Black-Scholes model performs at its worst for deep OTM 

call options, with the highest error at 20 pence per option. We can see that the GEV model greatly 

removes this pricing bias, giving an maximum error of 4 pence for deep OTM options, and around 1 

penny at the other levels of moneyness.  
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Figure 8a:  Average price bias in terms of moneyness for call options 90 days to maturity 

 

In Figure 8b, we can see that for close to maturity options, the Black-Scholes model 

overprices OTM and ITM options, and underprices ATM options, but with the pricing bias oscillating 

only between +2 pence and -5 pence. The GEV model displays a modest pricing bias of about ±1 

pence. Both models display a reduction in pricing bias as time to maturity decreases. 
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Figure 8b:  Average price bias in terms of moneyness for call options 10 days to expiration 

 

Figure 9a and Figure 9b below display the pricing bias for put options. From Figure 9a we 

can see that for far from maturity put options (90 days to maturity) the Black-Scholes model overprices 

ITM and ATM put options, and underprices OTM put options. The pricing bias is considerable for 

OTM put options, at 20 pence on average. On the other hand, the GEV model has a small pricing bias 

of around one penny across the board. For close to maturity options, Figure 9b shows that the Black-

Scholes model underprices ITM and OTM put options by a maximum of around 5 pence, and 

overprices ATM put options by 3.5 pence, whereas the GEV model displays a small pricing error that 

oscillates around  ±1.3 pence. 
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Figure 9a: Average price bias in terms of moneyness for puts 90 days to expiration 
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Figure 9b: Average price deviations in terms of moneyness for puts 10 days to expiration 

 
4.5 Implied tail indices and summary statistics of implied RNDs 
 

The time series of the implied GEV tail shape parameter ξ for negative returns from 1997 to 

2003 are displayed in Figure 10a for put options and in Figure 10b for call options. These were 

obtained by taking holding periods equal to the time to maturity of the option with the closest 

expiration date. Note at two days to maturity we switch to the GEV returns implied by the next option 

contracts with the nearest expiration date. Only the values of ξ that were found to be statistically 

significant different from zero at 95% confidence interval are displayed. There is a typical time-to-

maturity effect for the implied ξs, by which they tend to become smaller closer to maturity. For 

example, if ξ > 0 when far from maturity, then ξ become either close to zero or negative as time to 

maturity approaches. If ξ < 0 at far from maturity, then ξ becomes more negative as time to maturity 

approaches. However, sometimes close to maturity contracts can manifest a jump from a negative ξ to 

a positive ξ, as in some crisis events, with 9/11 being a good example. 

 

On comparing Figure 10a and Figure 10b, it can be seen that fat tails in negative returns are 

best captured when using put options, since there are a larger number of traded put options at low strike 

prices than there are call options (the OTM put options, see Table 2b). The number of option 

observations at low strike prices, i.e. where S/K > 1.06, is six times greater for put options than for call 

options. These put options traded at low strike prices relative to the value of the underlying are used to 

protect portfolios against downside moves of the index, and thus, it can be argued that they contain 

more market information regarding extreme downward moves of the underlying. 
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Figure 10a:  Implied shape parameter ξ of GEV returns for put options 
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Figure 10b: Implied shape parameter ξ of GEV returns for call options 
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This is also reflected in Table 5 below, which shows that the percentage of statistically 

significant positive values of ξ is roughly four times more for put options (12.7%) than for call options 

(3.1%). 

 

 

 

Table 5: Number of days in which the implied tail shape parameter ξ is positive (ξ  > 0), negative 
(ξ  < 0) or not statistically different from zero (ξ  ≈ 0) for calls (in rows) and puts (in columns). 

The percentage of days when each case occurs is also shown, below the number of days. 
 

On the days when both put and call options give positive ξ (2.73% of days), on average the 

value of ξ for put options is 61.7% larger than for call options.  In contrast, when ξ < 0 for both put and 

call options(59.54% of days), the ξs obtained when using call options are on average 50% more 

negative that when using put options. There are 64 days when put options give positive ξ and call 

options give negative ξ.  In fact, on days corresponding to crisis events such as 11th September 2001  

and 24th September 1998 (LTCM crisis), put options yielded some of the highest positive ξs, while call 

options implied a value of ξ not significantly different from zero, i.e. implying a GEV-Gumbel 

distribution for returns. The RND functions for 11th September 2001 when using call options and put 

options separately is shown in Figure 11 below to illustrate this point.  

 

 
 

Figure 11: The GEV based implied RND functions when using calls, with ξ calls ≈ 0  puts,  
with ξ puts = 0.139, and the Black-Scholes implied RND on 11th September 2001 

 

Puts 
Calls ξ puts > 0 ξ puts < 0 ξ puts ≈ 0 Total 

45 1 5 51 
ξ calls > 0 

2.73% 0.06% 0.30% 3.10% 
64 980 311 1355 

ξ calls < 0 
3.89% 59.54% 18.89% 82.32% 

100 14 126 240 
ξ calls ≈ 0 

6.08% 0.85% 7.65% 14.58% 
209 995 442 1646 

Total 
12.70% 60.45% 26.85%  
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Table 6 below displays the yearly summary moment statistics of the implied RND functions 

for the Black-Scholes and GEV models. 11 The GEV statistics show a consistent left skewness and 

leptokurtosis in the implied RND function of the price, with 1998 and 1999 showing the greatest 

deviations from the Gaussian assumptions. On average, the RNDs implied by put option prices yield a 

more left-skewed and more leptokurtic densities than the ones implied by call option prices. The values 

of volatility, given by the standard deviation of the RND function, when using put option or call option 

prices are almost the same for the GEV based RNDs. In contrast, in the Black-Scholes case, the 

average standard deviation of the RND functions implied by call options is substantially lower than for 

put options. 

   

Volatility (%) BS Volatility (%) GEV Skewness GEV Kurtosis GEV 
Year 

Calls Puts Calls Puts Calls Puts Calls Puts 
1997 4.53 6.95 7.25 7.19 -0.69 -0.87 3.81 4.49 
1998 7.14 10.12 10.11 10.42 -1.02 -1.21 5.37 6.07 
1999 6.63 9.20 9.35 9.32 -1.01 -1.38 5.03 7.23 
2000 5.68 8.15 8.35 8.36 -0.70 -0.91 3.84 4.67 
2001 6.11 8.16 8.5 8.31 -0.61 -0.86 3.54 4.36 
2002 7.51 9.49 9.67 9.7 -0.68 -0.97 3.78 4.75 
2003 6.34 8.07 8.56 8.56 -0.69 -1.02 3.88 4.97 

All years 6.28 8.59 8.83 8.84 -0.77 -1.03 4.18 5.22 
 

Table 6: Yearly summary statistics of implied GEV based and Black-Scholes (BS) RND functions 
of the price from 1997 to 2003 

                                                           
11 Skewness is the third central moment of the implied probability density function standardised by the 
third power of the standard deviation. It provides a measure of asymmetry, and measures the relative 
probabilities above and below the mean outcome.  Kurtosis is the fourth central moment of the implied 
probability density function standardised by the fourth power of the standard deviation. It provides a 
measure of the degree of 'fatness' of the tails of the implied density function. Fatter tails in a density 
function are usually associated with a greater degree of ‘peakedness’ in the centre of the density 
function. 
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4.6 Event study 
 

In this section the changes in RND functions for the price and the implied density functions 

for the returns before and after special events are compared. The major events that occurred within the 

period of study (1997 – 2003) are the Asian Crisis, the LTCM crisis and the 9/11. The implied 

distributions in this section are obtained by using put options only, because, as explained in the 

previous section, put options are used for protecting against downside risk, and therefore, they reflect 

more accurately the implied probability of downward moves. 

 
4.6.1 The Asian Crisis 

 
The Asian Crisis has been pin pointed to happen around 20th October 1997. Figure 12 below 

displays the RND functions for prices (left panel) and the implied returns density functions (right 

panel)using the GEV and the Black-Scholes models. In both cases the GEV density exhibits a fatter 

than normal left tail. Note that in the case of implied return distributions, since we have modelled 

negative returns, losses are on the positive side, and profits are on the negative side of the x axis. In all 

cases, after the Asian crisis, the implied densities show a fatter tail for losses, implying higher than 

normal probabilities of downside moves. 

 

 
Price 

 
Negative returns 

  

 
Price 

 
Negative returns 

 
Figure 12: RND functions for prices and implied density functions for negative returns before 

and after the LTCM Crisis 
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4.6.2 The LTCM crisis 

 

Figure 13 below shows the RND functions for prices (left panel) and the implied returns 

density functions (right panel) extracted from option prices before the major events in the LTCM crisis 

happened, on 14 September 1998, and after, on 24 September 1998. The options used had expiration in 

December 1998. The density functions shown were extracted using both the GEV and the Black-

Scholes models. The tail shape parameter ξ changed from -0.035 before the LTCM crisis, to 0.076 on 

the 24th of September. The skewness of the GEV distribution changed from -0.94 to -1.68, and the 

kurtosis almost doubled, from 4.55 to 8.88 the day of the event (see Table 7 below). This indicates that 

the market expectations changed considerably after the 24th of September, expecting more downward 

moves of the index.  

 

 
Price 

 
Negative returns 

  

 
Price 

 
Negative returns 

 
Figure 13:  RND functions for prices and implied density functions for returns before and after 

the LTCM Crisis 
 

4.6.3 The 11th September  2001 events 

 

Figure 14 shows the RND functions for the prices (left panel) and the implied density 

function for returns (right panel) extracted from option prices with expiration on September 2001, for 

the GEV and the Black-Scholes models. The implied tail shape parameter ξ for returns changed from -

0.104 the day before the events, implying a thin tail, to 0.139, implying a fatter tail. As can be seen in 

Figure 14 below, the tail of the GEV based RND price distribution is fatter than the equivalent Black-
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Scholes density function for the 11 of September. The skewness of the GEV distribution changed from 

-0.62 to-2.37, and the kurtosis more than quadrupled, from 3.53(which is close to the kurtosis of the 

normal distribution) the day before the events to 16.69 the day of the event. This indicates that the 

market expectations changed immediately, expecting more downward moves of the index.  

 

 
Price 

 
Negative returns 

  

 
Price 

 
Negative returns 

 
Figure 14: Implied RND functions (price) and implied density functions for returns before and 

after the 9/11 events  
 
4.6.4 Implied moments of the RND functions around special events 
 

Table 7 below summarizes the higher moments of the GEV based and Black-Scholes implied 

RND functions before and after each of the three events.  

 
Event Expiry Date ξ Std Dev Skewness Kurtosis BS σ (%) 

17-Oct-97 -0.0844 8.89 -0.7059 3.7533 10.32 
Asian Crisis Dec-97 

10-Nov-97 -0.0120 11.62 -1.0420 5.0470 12.57 
14-Sep-98 -0.0351 5.54 -0.9439 4.5481 4.13 

LTCM Dec-98 
24-Sep-98 0.0756 22.12 -1.6806 8.8816 21.62 
10-Sep-01 -0.1042 5.11 -0.6199 3.5256 5.31 

9/11 Sep-01 
11-Sep-01 0.1390 10.46 -2.3706 16.6929 9.32 

Table 7: Moments of the GEV based implied RND functions, and the standard deviation of the 
implied Black-Scholes (BS σ) RND function around special events 

 
 

In all three events, the tail shape parameter ξ increases after the event, which indicates that the 

implied densities reflect the market sentiment of increased fear of downward moves. However, as 
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noted in previous studies (Gemmill and Saflekos, 2000), the RND functions do not predict the 

downward moves. After each of the three events, left skewness increases, indicating a higher 

asymmetry in the returns distribution and greater probability of losses. In the GEV cases, kurtosis 

doubles or even quadruples after the events, implying that extreme losses become more probable.  

 

5. Conclusions 
 

We have developed a new option pricing model that is based on the GEV distribution of the 

returns, and obtained closed form solutions for the Harrison and Pliska (1981) no arbitrage equilibrium 

price for the European call and put options.  It was argued that the three parameter (ξ, μ, σ ) GEV 

density function for asset negative returns which in turn yielded the GEV based RND function, has 

great flexibility in defining the tail shape of the latter implied by traded option price data without 

aprioiri restrictions on the class of distributions.  In particular, no apriori restriction is imposed that the 

GEV distribution function of negative returns belongs to the Fréchet class with fat tails.  That, as we 

saw, results in the RND function for the price to display left skewness and leptokurtosis.  Some recent 

option pricing models that aim to capture the leptokurtosis and left skew in the RND function, in 

contrast, start with assumptions of fat tailed distributions.  Other option pricing models that attempt to 

overcome the drawbacks of the Black-Scholes model fail to obtain closed form solutions or have far 

too many parameters.         

  As discussed in Section 3.1, the closed form solution for the GEV based call option pricing 

model has an analogous interpretation as the Black-Scholes price equation in that it crucially depends 

on the probability of being in the money.  In the GEV case, the latter is governed by the cumulative 

distribution for the GEV, which is defined by the implied GEV parameters ξ, μ and σ.  From the 

analysis in Sections 3.3 and 3.4, there is a very clear indication that ξ > 0 results in a smaller 

probability for a call option being in the money at maturity compared to the Black-Scholes case. In 

contrast, for the put option, ξ > 0 results in a higher probability of being in the money at lower strikes 

when compared to the Black-Scholes case. When applying the GEV option pricing model for the FTSE 

100 index options, it was found that the GEV based pricing biases were substantially smaller than the 

ones from the Black-Scholes, for all times to maturity and at all moneyness levels.  

From Figures 8a and 8b, we can see that the implied tail shape parameter for returns was 

found to be time varying. Though this has a strong time-to-maturity effect, cases of high positive ξ in 

the market implied density function for negative returns associated with the GEV-Fréchet class were 

confined to periods associated with crisis events. For most other periods, the implied tail shape 

parameter indicated Weibull or Gumbel distributions for negative returns.  However, the annual 

summary statistics of the moments of the GEV implied RND functions in Table 6 consistently shows 

considerable left skewness and excess kurtosis. Based on both the analysis on implied tail index (Table 

5) and that of the moments for the GEV RND function (Table 6), we find that put options, which have 

more observations at low strike prices, yield greater evidence of left skewness and leptokurtosis than 

do call options. 
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In all three event studies that were undertaken, the shape parameter ξ increases after the crisis 

event, which indicates that the implied distributions reflect the market sentiment of increased fear of 

downward moves. However, as noted in previous studies (Gemmill and Saflekos, 2000), the implied 

RND functions do not predict the downward moves but only reflect it. Additionally after each of the 

three events, both left skewness and kurtosis increase, exceeding well in excess of the normal 

distribution. 

 Future work will analyse the hedging properties of the GEV based option pricing model, and 

its scope for delta hedging. Further, the market implied tail index and the GEV based RND have useful 

and interesting applications in risk management. Indeed, we can obtain the Ait-Sahalia and Lo (2000) 

Economic-VaR (E-VaR)12 under GEV assumption for returns and compare it with the statistical or 

historical VaR calculations. It will be interesting to see if the quantile analysis of the GEV based RND 

functions obtained from traded put options can deliver better VaR performance than the conventional 

methods. 

 

 
 
 

Department of Economics and Centre of Computational Finance and Economic 

Agents (CCFEA), University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.; 

scher@essex.ac.uk;http://www.essex.ac.uk./~sheri/,  

and 

Centre of Computational Finance and Economic Agents (CCFEA), University of 

Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.;aalent@essex.ac.uk; 

http://privatewww.essex.ac.uk/~aalent/. 

                                                           
12  It has been argued that E-VaR is a more general measure risk since it incorporates the market’s 
evaluation of risk, the demand–supply effects, and the probabilities that correspond to extreme losses 
(Panigirtzoglou and Skiadopoulos 2004). 
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Appendix A: Derivation of the put option price equation for ξ > 0 
 
 

The derivation of the closed form solution for the put option price equation is similar to the 

derivation for the call option price equation. When applying the change of variable defined in  (13) to 

the put option price equation, after having substituted for the price RND function g(ST) in (10), the  

upper limit of integration K in the put option equation becomes  H as defined in (16), while the lower 

limit of integration in the put option equation becomes ( ) σμξ /11 −+=h . Using these new limits 

of integration we have  
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Evaluating the first integral in (A.1) yields: 
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To solve the second integral in (A.1), consider the change of variable ξ/1−= yt , and ξ−= ty  

dttdy ξξ −−−= 1 , which yields: 
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We can solve this integral directly by using the definition of the generalized Gamma function (see 

Appendix C):  

 ∫ −−=Γ=Γ−Γ 1
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1
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ta dtetzzazaza ,                                                         (A.4) 

and we obtain the following result: 
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Combining results for 1ψ and 2ψ  and rearranging, we obtain a closed form solution for the put option 

equation: 
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Appendix B: Derivation of the call option price equation for ξ = 0 
 

The derivation of the closed form solution of the call option price when ξ = 0 follows a similar 

procedure than the one outlined in Section 3.2. By assuming that negative returns are distributed 

following the standardised GEV distribution when ξ = 0 given in (2b), and applying the formula in (9) 
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we obtain the RND function of the underlying price g(ST) in terms of the standardized GEV density 

function given in equation (3b) as follows: 
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Substituting g(ST) in (B.1) into the call price equation in (4), we have: 
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Consider the change of variable: 
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Under this change of variable, the underlying price ST and dST can be written in terms of y as follows: 

 
 ( )ySS tT σμ +−= 1            and            dySdS tT σ= .  (B.4) 

 
Also, the density function in (B.1) for the underlying price at maturity in terms of y becomes: 
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Note now that under the change of variable the lower limit of integration for the call option equation in 

(B.2) becomes: 
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while the upper limit of integration in (B.2) remains infinity. Substituting for ST and dST as defined in 

(B.4) into (B.2), using the new limits of integration, and rearranging we have: 
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The integral 1ψ in (B.7) above can be evaluated in terms of the incomplete gamma function , and its 

solution is: 
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The solution of integral 2ψ  in (B.7) is: 
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Combining results for 1ψ and 2ψ  and rearranging, we obtain a closed form for the GEV call option 

price: 
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Following a similar procedure, the closed form solution of the GEV model for the put option price 

when ξ = 0 is found to be:  
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Appendix C: The Gamma function 
 

The function )(aΓ  is the Euler gamma function, and is defined as: ∫
∞ −−=Γ

0

1)( dteta ta . 

When the lower limit of integration is greater than zero, it is know as the incomplete gamma function 

),( 0zaΓ , and is defined as: 
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The definition of the generalized incomplete gamma function ),,( 10 zzaΓ is given by the integral: 
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The three versions of Gamma functions are summarized in the Table C.1 below:  
 

Table C.1: Definitions of the Gamma functions 

Name Notation Definition 

Gamma function )(aΓ  ∫
∞ −−=

0

1 dtet ta  

Incomplete Gamma function ),( 0zaΓ  ∫
∞ −−=
0

1

z

ta dtet  

Generalized incomplete Gamma function ),,( 10 zzaΓ  ∫ −−= 1

0

1z

z

ta dtet
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 Appendix D: Simplification for deep in the money options 
 

The GEV option pricing equation in (22) can be simplified for the special case when the 

option is deep in the money, i.e St >> K. In that case, the terms involving H can be simplified, and as 

1
/1

→
−− ξHe , it implies that 0/1 →− ξH . Substituting these approximations into the call option 

equation in (22) and rearranging, the call option price becomes a linear function of K: 
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The mean of the standardized GEV returns distribution is given by (see Dowd, 2002, p.273): 
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Using the definition of  tTT SSR −=1 , and applying the expectations operator: 
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Thus, we can rewrite the simplified equation for the call option in (D.1) to yield the result given in 
(25):  
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