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When studying a time series of implied Risk Neutral Densities (RNDs) or other implied 

statistics, one is faced with the problem of maturity dependence, given that option contracts have a 

fixed expiry date. Therefore, estimates from consecutive days are not directly comparable. Further, we 

can only obtain implied RNDs for a limited set of expiration dates. In this paper we introduce two new 

methods to overcome the time to maturity problem. First, we propose an alternative method for 

calculating constant time horizon Economic Value at Risk (EVaR), which is much simpler than the 

method currently being used at the Bank of England. Our method is based on an empirical scaling law 

for the quantiles in a log-log plot, and thus, we are able to interpolate and extrapolate the EVaR for any 

time horizon. The second method is based on an RND surface constructed across strikes and maturities, 

which enables us to obtain RNDs for any time horizon. Removing the maturity dependence of implied 

RNDs and related statistics is useful in many applications, such as in (i) the construction of implied 

volatility indices like the VIX, (ii) the assessment of market uncertainty by central banks (iii) time 

series analysis of EVaR, or (iv) event studies.  
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1. Introduction 
 

The majority of studies on extracting information implied by traded option prices have 

focused on the analysis of the implied distributions at a single point in time. These include event 

studies, as in Bates (1991) for the study of the 1987 crash, Gemmill and Saflekos (2000) for the study 

of British elections, and Melick and Thomas (1996) for the analysis of oil prices during the Gulf war 

crisis. It is only recently that the dynamics of the implied distributions has received some attention with 

the work of Panigirtzoglou and Skiadopoulos (2004). A problem encountered when looking at the 

dynamics of RNDs, or RND related statistics, is the maturity dependence of information implied by 

options, given the fixed maturity of option contracts. There are two separate effects: time-to-maturity 

effect and contract-switch effect (Melick and Thomas, 1998). Implied RNDs are usually constructed 

using the options with shortest time to maturity. The time to maturity effect is due to the decrease of 

uncertainty as the expiry date of the options approaches, reducing the time horizon of the RND. This 

means that both the time horizon of the RND and the degree of uncertainty decrease as the expiry date 

approaches. The degree of uncertainty jumps up again in the contract-switch point, when the contract 

with the shortest time to maturity expires, and we replace it with the next expiration date contract. This 

maturity dependence needs to be removed in order to make information extracted from option prices 

useful.  

 

We briefly survey some of the proposed methods in the literature for removing this maturity 

effects from implied RNDs and related statistics. Gemmill and Saflekos (2000) conducted event studies 

around crisis periods and British elections. They adjusted the RNDs to give the same maturity before 

and after the event, since as they point out, without an adjustment, there is a narrowing of the 

distribution as maturity approaches. However, the adjustment they make is based on an ad-hoc scaling 

of the variances with the square root of time, and linear scaling of the mean. Butler and Davies (1998), 

who used RNDs to assess market views on monetary policy, suggested an alternative approach to this, 

by using options of two maturities and then synthesizing an implied distribution for a constant time 

horizon. 

 

Some other studies that looked at time series of implied statistics worked around the problem 

of maturity dependence by only using one day a month, to ensure that each point in the time series has 

the same time to maturity. For example, Gemmill and Saflekos (2000) estimated the skewness time 

series of implied distributions from 1987 to 1997, but were only able to estimate 120 data points (one 

per month), in order to ensure each of the points in the time series had the same number of days to 

maturity (forty-five days).  If one were able to estimate a constant time horizon RND every day, this 

type of time series could be build from daily estimates, instead of only monthly, and therefore, a more 

accurate picture and richer study of the information embedded in option prices could be obtained.  

 

One of the recent attempts to construct a daily time series of implied statistics was done in 

Vähämaa (2005), who estimated a daily time series of implied skewness with constant maturity of 30 
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days by linear interpolation between two skewness estimates from adjacent maturities. Malz (2001) 

used a similar method, performing linear interpolation of option implied volatilities with adjacent 

maturities to calculate constant time horizon implied volatilities. Similarly, Härdle and Hlávka (2005) 

found that the variance of implied RND decreases linearly as the option moves closer to its maturity, 

and suggested that implied RND estimates calculated for neighbouring maturities can be linearly 

interpolated in order to obtain an implied RND estimate with arbitrary time to maturity. 

 

The issue of removing the time to maturity effect has also been addressed when constructing 

implied volatility indices such as the VIX (CBOE, 2003). The VIX represents the expected stock 

market volatility over the next 30 calendar days, implied by S&P 500 index option prices. Its 

calculation uses the two nearest-term expiration months in order to bracket a 30-day horizon. It 

calculates the implied volatility for each of the two maturities, and then it interpolates them to arrive at 

a single value with a constant maturity of 30 days. A constant maturity needs to be used because 

implied volatilities change as the time to maturity changes (Fleming et. al., 1995).  

 

All these methodologies simply calculate a constant time horizon implied statistic by linear 

interpolation between only two maturities that bracket the horizon of interest. But in all major markets, 

there are usually options trading with more than two maturities.  Not much attention has been paid at 

looking how the moments of implied RNDs scale with time along all maturities available. An attempt 

to capture the time dependency of implied volatilities with time to maturity was done in Dumas et. al. 

(1998) by modelling the implied volatility surface as a function of maturity and time. However, no 

study has looked at how implied RNDs and implied higher moments vary with time to maturity. 

 

The most sophisticated method to date to remove this maturity effect is the one proposed by 

Clews et. al. (2004), who construct constant horizon RNDs. To achieve that, they convert option prices 

to implied volatilities (IV) in the delta space, and then they interpolate this IV - delta surface at the 

required time horizon to obtain a set of interpolated data points. Finally, they convert the interpolated 

IV-deltas back to option prices, and estimate the implied RND that, by construction, will have the 

required time horizon. They employ a non-parametric method to estimate the implied RND, which 

consists of calculating the second derivative of the call pricing function using the Breeden and 

Litzenberger (1978) result. Having obtained a constant time horizon RND, it is easy to construct a time 

series of constant time horizon implied statistics. For example, this methodology is used by the 

Monetary Instruments and Markets Division at the Bank of England to report daily estimates of 

Economic-VaR (EVaR)1 with a constant 3 month time horizon2.  The Bank of England also estimates 

                                                           
1 The term Economic-VaR was coined by Ait-Sahalia and Lo (2000) to distinguish the market implied 
VaR (EVaR) from the historic backward looking VaR, which they call Statistical-VaR (SVaR). 
2 For the EVaR calculations, the Bank of England uses a constant time horizon of 3 months for the 
FTSE 100 index at different confidence levels ranging from 5% to 95%, in intervals of 5%. These BoE  
EVaR estimates are available at http://www.bankofengland.co.uk/statistics/impliedpdfs/  
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RNDs for other assets using this method, such as physical commodities, and uses them in some of the 

Inflation Reports3. 

 

The BoE methodology for removing the time to maturity effects has the following drawbacks. 

Conversions to and from delta space make this methodology difficult to both understand and 

implement. Additionally, when interpolating in the delta space, this methodology uses options only 

from the two maturities that bracket the required horizon, and does not use the option data available for 

all other maturities. Because of the need to interpolate between two maturities, this methodology is 

unable to calculate implied RNDs for shorter horizons than the closest maturity, or longer horizons 

than the longest maturity, given that the implied volatility surface in delta space is non-linear, and 

therefore not easily extrapolated. For instance, it is not possible to estimate a daily 10 day constant time 

horizon implied RND, and therefore, it is not possible to report the daily 10 day EVaR, which is one of 

the most relevant time horizons used in the industry for VaR. 

 

In this paper we introduce two new methods to exclude this systematic impact of time to 

maturity on the implied RNDs and related statistics. Our methods use option prices for all maturities 

available in the estimation, instead of using only options for two maturities. Additionally, our methods 

are computationally less arduous than the BoE one. First, we propose a new method to calculate a fixed 

horizon EVaR, based on an empirical scaling law in the quantile space for parametric based RND 

extraction methods4. The main steps of our method are as follows: using option prices with different 

maturities, we construct a discrete term structure of implied RNDs, one RND for each maturity. Then, 

for each RND in the term structure, we obtain the EVaR estimates at different confidence levels (i.e. 

99%, 95%, etc). Finally, we discover a linear behaviour of the EVaR values with time to maturity in 

the log-log scale5, which can be exploited to estimate an empirical scaling law for each confidence 

level. In this paper we demonstrate this linear behaviour of EVaRs in the log-log scale for the 

following parametric RND extraction methods: Black-Scholes, mixture of lognormals (Ritchey 1990) 

and GEV model (Markose and Alentorn, 2005). 

 

One of the advantages of this linear relationship, apart from being considerably less complex 

than the method proposed by the BoE, is that it allows us to both interpolate and extrapolate any 

holding period. Therefore, we can obtain EVaR values at any time horizon. For example, we can obtain 

a daily 10 day EVaR regardless of the time to maturity of the closest maturity contracts. When 

comparing these results with the BoE non-parametric time series, we find that the GEV EVaR is 

                                                           
3 For example, in the May 2001 Inflation Report, changes in the 6 months constant time horizon 
implied distributions of oil price, derived from option prices for West Texas Intermediate (WTI) crude 
oil, were used to argue that the market uncertainty about oil prices increased considerably between 
February and May of 2001 (BoE, 2001) 
4 When implied VaR has to be evaluated at high confidence intervals, the non-parametric methods fail 
to give a reliable estimate, given that those methods are unable to describe the tails of the distribution 
outside the range of available strikes. Therefore, in this paper we use parametric methods. 
5 Menkens(2004) and Provizionatou et. al. (2005) were the first to point out the linear relationship of 
VaR estimates using the log-log plot in the context of historical VaR. Here, we find a linear 
relationship for implied VaR. 
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remarkably close to the series generated by the BoE non-parametric method, whereas the Black-

Scholes method yields lower EVaR estimates, and the mixture of lognormals method yields higher 

EVaR estimates. 

 

In the second part of this paper we extend the notion of a discrete term structure of RNDs to 

obtain, for a given day, an implied RND surface. This concept is then applied to the GEV model, by re-

parameterizing the GEV option pricing model so that the scaling of the implied volatility is a parameter 

that will be estimated. By making the RND model an explicit function of time and by utilizing all 

options with different maturities, we are able to obtain for each day, not only the constant horizon 

implied VaR, but all implied statistics without maturity effects for any time horizon. This implied RND 

surface has several useful applications, such as in the (i) construction of implied volatility indices like 

the VIX, (ii) assessment of market uncertainty by central banks (iii) time series analysis of EVaR, and 

(iv) event studies. In this paper, we briefly discuss these applications.  

 

The rest of the paper is structured as follows. In the next section we present the method to 

remove maturity effects from EVaR using an empirical scaling law in the quantile space. In Section 3 

we extend the original GEV model to obtain an implied RND surface, and briefly discuss practical 

applications for this method. We conclude in Section 4.  

 

2. Removing maturity effects for Economic VaR 
 

2.1 The term structure of RNDs 

 

In most derivatives markets there are traded option contracts for several different maturities. 

For example, in the UK there are options on the FTSE 100 index expiring every month for the next 

three months, and quarterly (March, June, September and December) for the next eight quarters. That 

is, at any one time, there are around 10 different maturities available. However, not all of these 

maturities have traded option prices, because option contracts with very long maturities are not traded 

very often. In fact, the average number of maturities with traded options for the FTSE 100 index 

between 1997 and 2003 was found to be around 5 maturities, as shown in Table 1 below.  

 

Year Average number of maturities available 
1997 3.96 
1998 4.57 
1999 5.19 
2000 5.49 
2001 5.84 
2002 6.19 
2003 6.09 

Average 5.33 
Table 1: Average daily number of maturities with traded option prices for the FTSE 100 index. 
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Despite having a considerable number of different maturities with traded option prices, it is 

common in the RND extraction literature to only use option prices from a single maturity, usually the 

maturity with the closest expiration date. Here, we propose, on a daily basis, the extraction of an RND 

for each of the maturities with a sufficient number of traded option prices 6. Then, using this discrete 

set of RNDs, each with a different maturity, we can construct what we call a term structure of implied 

RNDs. This term structure can be visualized as a 3 dimensional chart that displays, for a given day, 

how the implied RNDs vary across different maturities. For purposes of illustration, Figure 1 below 

displays the implied RND term structure for a typical day, 21 August 2001, using the GEV model. A 

comprehensive comparison between the three parametric methods will be made later on in the paper, 

Note from Figure 1 that the main feature of the term structure, which we find to be independent of the 

RND extraction method used, is that the peakedness of the RNDs decreases as the time horizon 

increases. This illustrates the so called maturity effect. This term structure of implied RNDs will be 

used in the following section to obtain constant time horizon EVaRs. 
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Figure 1: Term structure of GEV based implied RNDs for 21 August 01. The coloured stars on the 

graph indicate the EVaR values for each RND at different confidence intervals. 

 

 

                                                           
6 The number of option prices needed to extract the RND must be at least equal to the number of 
degrees of freedom for the parametric method used. The number of degrees of freedom is equal to the 
number of parameters that need to be estimated minus the number of constraints. For example, the 
GEV model has three parameters while the mixture of lognormals have five parameters. We only use 
one constraint, based on a martingale condition that the mean of the RND has to be equal to the Futures 
price. 
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2.2 Economic Value at Risk (EVaR) 

 

The most popular measure for risk management is Value-at-Risk, denoted by VaR(q, k), which 

is an estimate, with a given degree of confidence q, of how much can be lost from a portfolio over a 

given time horizon k. An alternative measure of risk is Economic VaR (EVaR), which was proposed by 

Ait-Sahalia and Lo (2000) and it is calculated under the option-implied risk neutral density. It has been 

argued that EVaR is a more general measure of risk, since it incorporates the investor’s risk 

preferences, the demand–supply effects, and the probabilities that correspond to extreme losses 

(Panigirtzoglou and Skiadopoulos 2004). EVaR can be seen as a forward looking measure to quantify 

market uncertainty about the future course of financial asset prices, whereas Statistical VaR (SVaR) is 

a backward looking measure, based on the historical distribution of returns. 

 

Ait-Sahalia and Lo (2000) estimated EVaR from RNDs extracted using a non-parametric 

method. Given that EVaR is calculated as the quantile of the RND at the tails, if one uses a non-

parametric distribution, the tails of the RND have to be arbitrarily extrapolated, because there are no 

options trading at very low or very high strike prices. As pointed out by Neuhaus (2000), in connection 

with the study of Coopers (2000), there are not always sufficient number of strikes and traded option 

prices to cover the whole distribution, so if only part of the density function is estimated, it can be 

difficult to correctly allocate the missing probability mass.  Some studies using non-parametric 

techniques (Anagnou et. al. 2002) have explicitly taken this limitation on board by choosing not to 

model the tails, and instead, estimating only a truncated density for the range of strikes with available 

traded option prices. Alternatively, when estimating the RND using a parametric approach, the tails of 

the implied distribution outside the range of available strikes are implicitly given by the distribution 

function that has been assumed. In particular, the GEV distribution explicitly includes a tail shape 

parameter. Given the limitations of non-parametric methods, we will be employing parametric methods 

in what follows. 

 

2.3 Calculating EVaR with parametric RND methods 

 

When extracting RNDs with a parametric method, we can use a non-linear optimization 

algorithm to estimate the set of method specific parameters θ , which minimizes the sum of squared 

errors between the traded option prices at different strikes but for the same maturity T, and the prices 

given by the model: 
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In this paper, we use three different parametric RND extraction methods to study scaling of 

EVaR. EVaR is obtained by calculating the quantile of the implied RND at the required confidence 

level q. The first parametric method we use is the Black-Scholes model, which is commonly used as 
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the benchmark. The Black-Scholes model assumes that log returns are normally distributed, with mean 

Tμ and variance T2σ . The EVaR values for this model are obtained using the inverse of the normal 

cumulative distribution function (cdf) equation. The normal inverse function is defined in terms of the 

normal cdf H as given in equation (2): 

 

( ) ( )TTqHkqEVaR σμ ˆ,ˆ|, 1−=  (2) 

 

Here, ),( kqEVaR  denotes Economic Value at Risk with a confidence level q, and a time 

horizon of k days. It is calculated using the implied parameters }ˆ,ˆ{ˆ σμθ =  obtained from equation (1) 

above. The second parametric RND extraction method we use is the mixture of lognormals (hereafter 

MLN). This method was introduced by Ritchey (1990) and has been extensively used in the literature, 

given that it is very flexible, and allows the modelling of different levels of skewness, as well as 

bimodal densities. The MLN method models the RND as a weighted sum of two lognormals, and given 

by:  

),|()1(),|()( 2211 TShpTTShpSf TTT σμσμ −+=  (3) 

 

There are five unknown parameters },,,,{ 2121 pσσμμθ = , the means of each lognormal 

function 1μ  and 2μ , the standard deviations 1σ  and 2σ , and the weighting coefficient p. We obtain 

the set of implied parameters θ̂  by using equation (1). Then,  EVaR  is calculated as the quantile of the 

MLN density, which consists of a weighted sum of the two inverse cdfs, and given by: 

 

( ) ),ˆ,ˆ|()ˆ1(),ˆ,ˆ|(ˆ, 22
1

11
1 TqHpTqHpkqEVaR σμσμ −− −+=  (4) 

 

The last RND extraction method we use is the GEV option pricing model in Markose and 

Alentorn (2005). This model is based on the Generalized Extreme Value (GEV) distribution, which is a 

distribution characterized by a set of three parameters },,{ ξσμθ = , the location parameterμ , the 

scale parameter σ , and the tail shape parameter ξ . Again, we estimate the set of implied parameters 

}ˆ,ˆ,ˆ{ˆ ξσμθ =  using equation (1). The quantile equation of the GEV distribution gives us the EVaR 

value associated with a given confidence level q, and as shown by Dowd (2004: pp. 274) is a function 

of the GEV parameters as follow: 

 

( ) ( )[ ]ξ
ξ
σμ

ˆ
)log(1ˆ

ˆˆ, −−−−= qkqEVaR  ξ ≠ 0 (5) 

 

( ) [ ])/1log(logˆˆ, qkqEVaR σμ −=  ξ = 0 (6) 
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For purposes of illustration, Table 2 below displays the actual EVaR values for 21 August 

2001, corresponding to the coloured stars in the implied RND term structure of Figure 1, for the GEV 

case. Note that a comparison between the three methods will be made later on in the paper. As one 

would expect, the EVaR values increase both with confidence level and with time horizon. Also, note 

how the number of options prices available decreases as time to maturity increases, that is, the options 

with the closest to maturity dates are the ones that have the widest range of traded strikes. 

 

EVaR Expiry 

month 

Days to 

maturity 

Number 

strikes 70% 80% 90% 95% 99% 

Sep-01 31 44 2.4% 4.4% 7.4% 10.1% 15.6% 
Oct-01 59 31 3.1% 5.9% 10.2% 14.0% 21.7% 
Nov-01 87 13 3.7% 7.2% 12.7% 17.5% 27.4% 
Dec-01 122 16 4.2% 8.5% 15.0% 20.8% 32.6% 
Mar-02 213 13 5.7% 11.4% 20.1% 27.7% 42.8% 
Jun-02 304 10 6.9% 13.7% 23.8% 32.4% 49.0% 
Table 2: EVaR values for each available maturity and at different confidence levels  

on 21 August 2001, for the GEV model. 

 

2.4 Scaling of EVaR 

 

When calculating EVaR for a given time horizon of k days, ideally, one would use a RND 

implied by options that mature in k days. For example, to calculate the 10 day EVaR we would use 

prices of options that mature in 10 days. However, in practice, we only have option prices for a small 

set of fixed expiration dates. For example, in the above Table 2, for 21st August 2001, a 10 day EVaR 

can not be readily reported, given that the closest maturity is at 31 days. Hence, to obtain an EVaR for 

a given time horizon, we need to resort to scaling.  

Interest in scaling SVaR has arisen due to the requirements of the Basel accord, which states 

that banks should report the daily 10 day VaR at the 99% confidence level of their portfolios. However, 

there are some difficulties on estimating the 10 day VaR, due to the need for a long time series in order 

to compute the 10 day returns, and then, calculate the quantiles of their distribution. In practice, the 

square root of time scaling rule is widely used to scale up the 1 day VaR to the 10 day VaR. This 

scaling rule is only appropriate for time series that have Gaussian properties, but it has been well 

established in the literature for a long time, such as in Fama (1965) and Mandelbrot (1967), that 

financial data is non-Gaussian. Following the wide spread use of VaR as a risk measure and reporting 

requirement, there have been several recent studies that looked at the problem of scaling VaR, such as 

McNeil and Frey (2000), Kaufmann and Patie (2003), Danielsson and Zigrand (2004), Menkens (2004) 

and Provizionatou et. al. (2005).  

 

When estimating EVaR for a given time horizon k, we are faced with a similar problem, but 

instead of having to scale up the 1-day VaR to the k-day VaR, we usually need to scale down from the 

maturities available. Without resorting to a scaling law, we would only be able to calculate the 10 day 

VaR for only one day each month, the day when there are exactly 10 days to maturity for the closest to 
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maturity contract. In the case of FTSE 100, a 10 day EVaR can only be obtained around the first Friday 

of each month, since contracts mature in the third Friday of the month.  Following an approach as in 

Menkens (2004) and Provizionatou et. al. (2005), we have identified an empirical scaling law for 

EVaR with respect to time to maturity which is linear in a log-log plot. In general, we define:  

  

EVaR(k,q) = k b(q) EVaR(1,q) (7) 

 

where k is the number of days, and b(q) is the scaling parameter for a confidence level q. When 

applying logarithms to both sides of the above equation, and rearranging, we can write down the linear 

equation with a slope b(q) and intercept c(q) as shown in equation (8) below. The intercept term c(q) is 

the logarithm of the 1-day EVaR at a confidence level q. 

 

log(EVaR(k,q)) = b(q) log(k) + c(q) (8) 

 

Note how the two coefficients, the slope b(q)  and the intercept c(q), are quantile dependent, 

and thus written as a function of q. We can estimate these two coefficients for a given day and for a 

given quantile q, by fitting a linear relationship between the vector of estimated EVaR and the vector of 

number of days to maturity. These vectors have one element for each of the maturities available in the 

term structure, as shown in equation (9) below. 
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Here ki is the number of days left to expiration for maturity i = 1,…,n . Once the parameters  b̂ and ĉ  

are estimated for a given day and for a given confidence level q, we can obtain an estimate for the k-

day EVaR using equation (10) below: 

( ) ))(ˆexp(),( ˆ qckqkEVaR qb=  (10) 

 

For illustration purposes, Figure 2 below displays, for the GEV case, the log-log plot of the 

EVaR values for a typical day (21 August 2001) obtained from the term structure of RNDs in Figure 1. 

Figure 2 also shows the regression line for each of the quantiles. It is easy to see that the EVaR values 

increase linearly with time in the log-log plot. As was shown in Table 2, the number of different strikes 

with options traded decreases as time to maturity increases. Therefore, the implied RNDs for far from 

maturity dates are usually estimated with a smaller number of option prices, and therefore, EVaR 

estimates from these RNDs will have a wider confidence interval. Instead of using a simple Ordinary 

Least Squares (OLS) regression, we found it useful to employ a Weighted Linear Squares (WLS) 
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regression, where the weights are a function of the number of option prices available in each maturity. 

More details about this can be found in Appendix A. 

 

 
Figure 2: log-log plot of EVaR estimates for 21 August 01, with the estimated linear scaling rule for 

each confidence level for the GEV model. 

 

2.5 Empirical analysis  

 
The data used in this study are the daily settlement prices of the FTSE 100 index call and put 

options from 1997 to 2003.7 Using option prices for all maturities from the 1733 days in our sample 

period, we obtain the scaling law coefficient b and the intercept c in equation (8), for different 

confidence levels. The average values of the regression coefficient b and the exponential of the 

intercept, exp(c), are displayed in Table 3 below. We can see that the slope b increases with the 

confidence level, and that intercept, i.e. the 1 day EVaR also increases with confidence level, as one 

would expect. We also report the percentage of days where b was found statistically significantly 

different than one half.8 On average, irrespective of the confidence level, we found that in around 50% 

of the days the scaling was significantly different than 0.5, the scaling implied by the square root of 

time rule.   

 

                                                           
7 A detailed description of the filtering rules used can be found in Markose and Alentorn (2005). 
8 Newey-West (1987) heteroskedasticity and autocorrelation consistent standard error was used to test 
the null hypothesis H0 : b= 0.5. We employed this methodology when testing the statistical significance 
of the estimated slope b, because E-VaR estimates are for overlapping horizons, and therefore are 
autocorrelated. The Newey-West lag adjustment used was n - 1. 
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Confidence level q b(q) EVaR(1,q) = exp(c) 

70% 0.41 
(51.3%) 0.6% 

80% 0.48 
(51.1%) 0.9% 

90% 0.51 
(52.4%) 1.4% 

95% 0.53 
(52.1%) 1.9% 

99% 0.56 
(52.6%) 2.7% 

 

Table 3: Average regression coefficients b and exp(c) across the 1733 days in the sample, for the GEV 

case. The percentage number of days where b was found statistically significantly different than 0.5 is 

indicated in brackets.  

 

 Figure 3 below displays the time series of 90 day EVaR estimates at the 95% confidence level 

for each of the three methods given in equations (2), (4) and (6), together with the estimates from the 

Bank of England non-parametric method.9 The 90 day FTSE returns are displayed in pink.  

Table 4 below shows the sample mean and standard deviation of each of the four EVaR time series.   If 

we use the BoE values as the benchmark, we can see that on average, the mixture of lognormals 

method overestimates EVaR, while the Black-Scholes method underestimates it. Among the three 

parametric methods, the GEV method yields the time series of EVaRs closest to the BoE one. This can 

be seen both in the  

Table 4 and also in the Figure 3, where the BoE time series practically overlaps the GEV time series. 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Ja
n 

97

A
pr

 9
7

Ju
l 9

7

O
ct

 9
7

D
ec

 9
7

A
pr

 9
8

Ju
l 9

8

S
ep

 9
8

D
ec

 9
8

M
ar

 9
9

Ju
n 

99

S
ep

 9
9

D
ec

 9
9

M
ar

 0
0

Ju
n 

00

S
ep

 0
0

D
ec

 0
0

M
ar

 0
1

Ju
n 

01

S
ep

 0
1

D
ec

 0
1

M
ar

 0
2

Ju
n 

02

S
ep

 0
2

D
ec

 0
2

M
ar

 0
3

Ju
n 

03

S
ep

 0
3

D
ec

 0
3

FTSE 90 days returns GEV E-VaR BoE E-VaR MLN E-VaR BS E-VaR  
 

Figure 3: BoE EVaR vs. GEV EVaR vs. Mixture lognormals for 90 days  95% 
 

                                                           
9 A detailed comparison of the backtesting performance of these methods for calculating EVaR can be 
found in Alentorn and Markose (2005). When comparing the backtesting performance of EVaR with 
SVaR, it was found that EVaR yields higher and more volatile estimates than SVaR. 
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Method Sample mean Sample standard deviation 

BoE method 0.217 5.9% 

GEV model 0.212 6.0% 

Mixture lognormals 0.259 8.5% 

Black Scholes 0.147 4.7% 

 

Table 4: sample mean and standard deviation of the four EVaR time series. 

 

 

 Figure 4 displays the time series of the b estimates (the slope of the scaling law) for the GEV 

case at the 95% confidence level. Even though the average value of b at this confidence level is 0.53 

(see Table 3), it appears to be time varying, takings values that range from 0.2 to 1. 
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Figure 4: Time series of b estimates for the GEV model at 95% confidence level. 
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3. Modelling the implied RND surface 
 

In this section, we will construct an implied RND surface to capture the variation of RNDs 

with time to maturity10, instead of only considering a discrete term structure of RNDs as was done in 

the previous section.  In the discrete term structure of RNDs, we obtained a different set of implied 

RND parameters Ө for each of the maturities in a given day.  In this section, in order to obtain an 

implied RND surface, we will constrain Ө to be the same for all maturities in a given day.  

 

For parametric RND models in which volatility is an explicit function of time, such as BS and 

MLN, this unique set of parameters Ө that fits option prices of all maturities can be readily obtained, 

without making any changes to the model. However, for the GEV case, as the GEV option pricing 

equation is not an explicit function of time, we will need to modify the model to make it an explicit 

function of time, by allowing the mean and volatility to scale with time. For illustration purposes, the 

implied RND surface obtained from the modified GEV model is plotted below in Figure 5, and it 

corresponds to the discrete term structure of RND in Figure 1, for 21 August 2001. 
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Figure 5: The implied RND surface for the GEV case for 21 August 2001. 
 

                                                           
10 Some work on capturing the time to maturity dependence of information embedded in option prices 
was done in the context of implied volatility surfaces, as in Dumas et al. (1998).  They proposed the 
modelling of the implied volatility surface as a function of both strike and time to maturity, where time 
to maturity was modelled using a quadratic function. A similar approach was taken by Tompkins 
(2001), but instead of using a quadratic function of time to maturity, he used a cubic functional form. 
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3.1 The implied RND surface for the GEV model 

 

The GEV based RND extraction method in Markose and Alentorn (2005) is not an explicit 

function of time. As a consequence, on any given day the implied GEV parameters are different for 

each of the available maturities in the term structure of RNDs. In this section we will modify the GEV 

model and make it a function of time, in such a way that for a given day, it will yield a unique set of 

parameters consistent with option prices for all maturities.  

 

Note that the GEV option pricing model in Markose and Alentorn (2005) is based on the 

assumption that negative returns or losses LT, as defined in equation (11) below, follow a GEV 

distribution: 
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The standardized GEV distribution, in the form in von Mises (1936) (see, Reiss and Thomas, 

2001, p. 16-17), incorporates a location parameter μ, a scale parameter σ, and a tail shape parameter ξ, 

and it is given by: 
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 The first step in obtaining an implied RND surface is to allow the mean of the GEV 

distribution to be a function of time. Reiss and Thomas (1997, pp. 15-18) show that the mean of the 

GEV distribution is related to the location, scale and tail shape parameters as follows: 
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The mean of any RND is constrained by the forward no-arbitrage identity11, which follows 

from the martingale condition. Using the price at t of a futures contract Ft,T that expiries at T, and the 

                                                           
11 The forward no-arbitrage identity states that the mean of an RND for a given maturity T has to equal 
the price at t of a Futures contract with maturity T, and is given by Et

Q
 (ST) = Ft,T. In the original GEV 

model this condition was enforced by minimizing the squared of the difference between the mean of 
the GEV RND and the Futures price as an additional constraint to the non-linear optimization problem. 
The approach we propose in this paper is more efficient, because by rewriting the GEV distribution as 
a function of the Futures price, we reduce the number of parameters to be estimated from three to two. 
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definition of losses in (11) we can impose the martingale condition for the distribution of losses as 

follows:  

 

( )
t

Tt
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Q
t S

F
LE ,1−=  (15) 

 
Equating the right hand sides of equations (14) and (15) and rearranging, we can write the 

location parameter μ in terms of the futures price TtF ,  and the other two GEV parameters σ and ξ as 

follows: 
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The second step in obtaining an implied RND surface for the GEV model consists on making 

the volatility of the GEV distribution a function of time. Reiss and Thomas (1997, pp. 15-18) show that 

the volatility of the GEV distribution is related to the scale and tail shape parameters as follows: 
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 As can be seen in equation (17), in the GEV model the volatility is not a function of time. But 

we know that the volatility of an RND function grows with time, because uncertainly increases as the 

time horizon increases. In order to make our GEV model a function of time, we need to model how the 

volatility scales with time. Instead of assuming a specific scaling12, we propose modelling the volatility 

as a function of T b as shown below:  

 

( ) ( ) bTTVolatility σ
ξ

ξξ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −Γ−−Γ
=

121)(
2

 (18) 

 
Here, σ  is the annualized GEV scale parameter, and b is a new implied parameter that 

models how volatility scales with time to maturity. Note that we do not allow ξ to scale with time13. 

Equation (18) above implies the following substitution in the GEV distribution equation: 

  
bTσσ ≡  (19) 

                                                           
12 The Black-Scholes model assumes that the volatility scales with T . 
13 This is based on results not reported in this paper, which showed that ξ does not seem to scale with 
time, once we correct for the scaling of volatility. When we allowed ξ to scale with T c, where c was a 
new implied parameter, it was found that c was insignificantly different than 0 for over 80% of the days 
in the sample. Additionally, including this scaling parameter for ξ did not improve the explanatory 
power of the model (in terms of adjusted R2). 
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Substituting into the GEV distribution in (12) the equation for μ in (16) and the equation for σ 

in (19) we obtain a functional form for the GEV distribution, in which by construction, its mean and 

volatility are a function of time to maturity T: 
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Following the same steps as in Markose and Alentorn (2005), we can derive a closed form 

solution for the European call option price as follows: 
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can be easily obtained for the put option price. 

 

3.2 Empirical analysis 

 

The structural GEV parameters ξ, σ and scaling parameter b can be estimated by minimizing 

the sum of squared errors (SSE) between the analytical solution of the GEV option pricing equations in 

(21) and the observed traded option prices for all available strikes Ki, and all available maturities Tj as 

indicated in (22) below:  
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 Note how in the previous section, the SSE was calculated only across different strikes for a 

given maturity. Here we have a double summation, across both strikes and maturities. In the original 

GEV study, Markose and Alentorn (2005) tested the empirical performance of the GEV based option 

pricing model, only using option prices with shortest time to maturity. Here we evaluate the pricing 

performance of the modified GEV model, which captures option price differences across both strikes 

and maturities simultaneously, and compare it with the pricing performance of the Black-Scholes and 

Mixture of Lognormals (MLN) model. The results are displayed in Table 5 below, in terms of RMSE, 

or average pricing error in pence per option. We can see that, when fitting option prices from several 

maturities, the GEV RND model, by allowing the scaling of implied volatility to vary, achieves the best 

pricing performance, even though it has one degree of freedom less than the MLN method. 

 



Page 18 of 28 

Option pricing model Average pricing 

error 

Number of degrees 

of freedom 

Black - Scholes 15.27 1 

Mixture lognormals 13.59 4 

GEV based RND surface 11.32 3 

 

Table 5: Average pricing error per option for the GEV RND surface, Black Scholes and Mixture of 

Lognormals, when pricing both calls and puts, all strikes and maturities simultaneously. 

 

 One of the three parameters that we obtain from the estimation of the GEV RND surface is the 

implied tail shape parameter ξ. The time series of the implied tail shape parameter was first studied in 

Markose and Alentorn (2005), but the estimator suffered from maturity dependence effects, exhibiting 

a jump on the contract-switch date, and a downward trend as the time horizon shortened. The implied 

tail shape parameter estimated using the maturity corrected GEV option pricing model in this paper is 

more appropriate to analyse its time series behaviour. Recall that when we have a positive ξ the implied 

RND of the losses is of Fréchet type, and has thicker than normal tails. On the other hand, when we 

have a negative ξ the implied RND is of Weibull type and has thinner than normal tails. Our period of 

study, 1997 to 2003, s includes some events, such as the Asian crisis, the LTCM crisis and the 9/11 

attacks, which resulted in a sudden fall of the underlying FTSE 100 index, and can be useful in 

analyzing the market reaction. We can see from Figure 6 below that ξ was negative for most part of 

1997, and jumped to positive values around the Asian crisis. Similarly, its value considerably increased 

around the LTCM crisis in September 1998. It stayed negative for most part of 2000 and 2001, at an 

average of -0.72, except on the days following the 9/11 events, where it increased to around +0.1.  
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Figure 6: Time series of implied tail shape parameter ξ. Crisis periods where the tail shape parameter 

substantially increased are indicated.  
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Another parameter we obtain from the estimation of the GEV RND surface is the implied 

scaling of volatility b, and Figure 7 below shows its time series. Under the Black-Scholes model, this 

parameter is assumed to take a value of 0.5 (i.e. scaling volatility with the square root of time). The 

implied scaling by the GEV RND surface for the period of study is on average 0.52, but its daily time 

series ranges from 0.24 to 0.74.  When testing on a daily basis the null hypothesis: 

 

H0 : b = 0.5 

 
to test if b is significantly different than 0.5 we find that we can reject the null hypothesis 86.4 % of the 

days, at the 95% confidence level.14 
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Figure 7: Time series of implied scaling parameter b. This parameter captures how the implied 

volatility scales with time. 

 

To further test the statistical significance of b, we re-estimated the model by fixing b = 0.5 

(thus, removing one degree of freedom). The average pricing error was 18.25, a substantial increase 

from 11.32, the error obtained with the GEV model that allows b to differ from 0.5. The error obtained 

when fixing b = 0.5 is even worse than the Black-Scholes error (see Table 5). 

                                                           
14 The standard error for the estimator was calculated from the Hessian matrix obtained from the non-
linear squares algorithm in Matlab. Following the methodology in Andersson and Lomakka (2005), we 
analyzed the residuals of our estimation (the pricing errors). When tested by a Bera-Jarque test, we 
were able to reject normality at the five percent significance level. Additionally, we tested whether the 
errors were independent of strike price, and correlations within some groups were significant. 
Therefore, since the errors are neither normally distributed nor independent, the parameter estimates 
are unbiased, but the estimate of the covariance matrix is inconsistent. Therefore, the results from the 
hypothesis testing should be interpreted with care. 
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3.3 Applications of the implied GEV RND surface 

  

The model for the implied GEV RND surface presented in this paper can be used in 

applications that need to extract information from option prices. Specifically, applications that need to 

correct the time to maturity effect, such as event studies, or the construction of a time series of constant 

time horizon implied statistics. 

 

First, we will look at how the GEV RND surface can be used to remove the maturity effects 

when conducting before/after type event studies. We can use the GEV RND surface method to obtain 

two RNDs with the same horizon, one using option prices before the event, and one using option prices 

after the event. Then, any changes in the RNDs can be attributed to the reaction of the market to the 

event, rather than having this effect mixed with the change of the RND due to the shortening of time to 

maturity after the event. Table 6 below displays the GEV implied parameters before and after each of 

the three crisis events in our period of study, and the implied moments of the returns distribution. As 

we have previously seen in Figure 6, the implied tail shape parameter ξ increased considerably after the 

events, in some cases going from negative to positive. The implied volatility, skewness and kurtosis 

also increased substantially after the events. Note that the implied higher moments of the RND differ 

substantially from the moments of the normal distribution (skewness of 0 and kurtosis of 3) even 

before the events. 

 

 

Event Date σ ξ b Implied  
Volatility 

Implied  
Skewness 

Implied 
Kurtosis 

17-Oct-97 0.169 -0.077 0.463 19.8% 0.74 3.84 
Asian Crisis 

3-Nov-97 0.208 0.082 0.400 30.1% 1.74 9.36 

8-Sep-98 0.251 0.098 0.479 37.4% 1.89 10.78 
LTCM 

23-Sep-98 0.232 0.219 0.424 44.5% 4.12 68.53 

7-Sep-01 0.214 -0.113 0.492 24.2% 0.58 3.43 
9/11 

12-Sep-01 0.202 0.094 0.389 29.8% 1.85 10.42 

Table 6: GEV implied parameters and moments of the GEV based RND around crisis events. The 

implied moments have been calculated using a 1 year horizon, to obtain annualized values. 

 

 

We can see a graphical representation of the changes of the RNDs before and after the events 

in Figure 8. The blue lines display the GEV based RND for the price distribution, while the red dotted 

lines display the corresponding Black-Scholes RND for comparison purposes. We can see how the 

non-gaussian characteristics of the RND become more accentuated after the events, with the left tail 

becoming thicker, and the distribution more skewed. 
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a) Before Asian crisis 

 
b) After Asian crisis 

 
c) Before LTCM crisis 

 
d) After LTCM crisis 

 
e) Before 9/11 events 

 
f) After 9/11 events 

 
Figure 8: Implied risk neutral densities with a 30 day horizon before and after each of the 

three events. 
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A second application for the model of the implied GEV RND surface is in calculating constant 

time horizon EVaR. When comparing the EVaR estimates obtained from the GEV RND surface with 

the estimates obtained from the scaling law in Section 2, we find that they are very similar to each 

other, and also very similar to the BoE EVaR time series. The estimates obtained using the GEV RND 

surface are slightly less volatile than the ones obtained using the empirical scaling law. The reason for 

this may be that the estimation of the implied parameters for the GEV RND surface is more robust than 

the estimation of the implied parameters for single maturity RNDs, since there is a larger number of 

observations to estimate the same number of parameters in the former than in the later. 

 
 The last application of the implied GEV RND surface we will consider is in the construction 

of an implied volatility index, like the VIX. In 1993 the Chicago Board Options Exchange (CBOE) 

introduced the CBOE Volatility Index (VIX), which represents the expected stock market volatility 

over the next 30 calendar days, implied by S&P 500 index option prices 15. VIX represents a 

hypothetical option that is at-the-money and has a constant 22 trading days (30 calendar days) to 

expiry. The VIX calculation uses the two nearest-term expiration months in order to bracket a 30-day 

horizon. It calculates the implied volatility for each of the two maturities, and then it interpolates them 

to arrive at a single value with a constant maturity of 30 days. The VIX has become the benchmark for 

stock market volatility, and a gauge of market uncertainty, often called “the investor’s fear gauge”. 

Similar indices also exist for other markets such as the NDX for the NASDAQ, the VDAX for the 

German Futures and Options Exchange (VDAX) and the VX1 and VX6 for the French Exchange 

MONEP.  

 

The GEV RND surface can be used as an alternative method of calculating the VIX. Instead 

of calculating a fixed horizon implied volatility by interpolating between implied volatilities from two 

maturities, one could obtain the implied volatility for a fixed horizon using equation (18), with the 

implied parameters of the implied RND surface. Figure 9 below shows the time series of the 30 

calendar day implied volatility for the FTSE 100 index obtained using the GEV RND surface. From 

1997 to 2003, the implied volatility reached its highest value around the LTCM crisis in September 

1998. Other periods of high volatility can be identified around the Asian Crisis (October 1997) and the 

9/11 events in September 2001. 

 

                                                           
15 Initially the VIX calculation used options on the S&P 100, but in 2003 the calculation algorithm was 
modified and options on the S&P 500 are used since then.  



Page 23 of 28 

0

4

8

12

16

20

Ja
n 

97

A
pr

 9
7

Ju
l 9

7

O
ct

 9
7

D
ec

 9
7

A
pr

 9
8

Ju
l 9

8

Se
p 

98

D
ec

 9
8

M
ar

 9
9

Ju
n 

99

Se
p 

99

D
ec

 9
9

M
ar

 0
0

Ju
n 

00

Se
p 

00

D
ec

 0
0

M
ar

 0
1

Ju
n 

01

Se
p 

01

D
ec

 0
1

M
ar

 0
2

Ju
n 

02

Se
p 

02

D
ec

 0
2

M
ar

 0
3

Ju
n 

03

Se
p 

03

D
ec

 0
3

 
Figure 9: Implied volatility series for a constant time horizon of 30 calendar days implied by 

FTSE 100 index option prices, using the GEV model 

 

 

 An advantage of using the GEV RND surface to calculate a time series of implied volatilities, 

over the VIX method is that with the GEV RND surface one can obtain a time series of implied 

volatilities for any constant time horizon, while the VIX methodology can only calculate it for time 

horizons equal or greater than the closest maturity date, because it needs options with maturities that 

bracket the required horizon. 

 

4. Conclusions 

 

In this paper we have proposed two new methods for removing the maturity effects from 

implied RNDs and related statistics. The first method was based on an empirical scaling law for EVaR 

in the quantile space, obtained by exploiting the linear behaviour of EVaR with time horizon in a log-

log scale. We confirmed this linear behaviour of EVaR for three different parametric RND extraction 

methods. Comparing the results with the BoE EVaR estimates, the mixture of lognormal method was 

found to overestimate EVaR, while the Black-Scholes method was found to underestimate it. The 

EVaR estimates we obtained with the GEV method are very similar to the BoE estimates, even though 

the estimation techniques are very different. Recall that the BoE is a non-parametric method, and 

interpolation is done in the delta space, whereas the GEV method is a parametric method, and 

interpolation is done in the quantile space. These findings are partially in line with the existing 

literature, such as Melick and Thomas (1997) where it was found that EVaR estimates are very 

sensitive to the RND extraction technique used. Some advantages of our method with respect to the 
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BoE one are that our method is simpler; it delivers an empirical scaling law for EVaR, and allows us to 

extrapolate outside the range of available maturities. 

 

The second method for removing maturity effects was based on modelling an implied RND 

surface across maturities and strikes. We extended the original GEV model in Markose and Alentorn 

(2005), to explicitly model the scaling of implied volatility with a new parameter. EVaR estimates from 

this second method were very close to the ones obtained in the first method. But this second method 

has many more applications. We showed how the implied tail shape parameter we obtain from this 

modified model does not suffer from maturity effects, and a time series of this parameter can be used to 

study how the market views on the probabilities of extreme moves changed around crisis periods or 

special events. We also showed how the implied GEV RND surface can be used to construct an 

implied volatility index, similar to the VIX, in event studies and to obtain constant time horizon EVaR 

estimates. 
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Appendix A: Using WLS to improve the estimation of the linear scaling law 
 

 The linear regression suggested in Section 2 of this paper to scale EVaR can be affected by 

EVaR values that have been calculated from an RND estimated with very few option prices. The EVaR 

estimates in such cases will have very wide confidence intervals. As an example, take the 12 Nov 97 

(see Figure A.1 below) at the 95% confidence level. The R2 of the OLS regression was 64.8%, a very 

poor fit as can be seen from Figure A.1 below. The EVaR value obtained for the furthest away maturity 

was obtained from an RND estimated using only 4 option prices, and thus the confidence intervals of 

the EVaR estimate are much wider than the EVaR values obtained for closer maturities, which are 

based on RNDs extracted using around 25 contracts. 

 
Figure A.1: Example of linear regression using OLS vs. WLS for a day when there are some maturities 

with very few option prices available. 

 

One method to solve this issue is to use a Weighted Linear Squares (WLS) regression, using 

the number of option prices available at each maturity to weight the EVaR values. The Weighted 

RMSE is given by: 
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where the weights w are calculated as the percentage of option prices in each maturity 
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Table A.1 below shows the average weighted R2 at each confidence level for the GEV model. 

Note how the fitting performance increases with confidence level, while is lowest at 96.8% for the 

lowest quantile of 70%. 

 

Confidence level 70% 80% 90% 95% 99% 
OLS R2 87.9% 97.9% 98.8% 98.7% 97.9% 
WLS R2 96.8% 99.4% 99.6% 99.5% 99.3% 

 

Table A.1: Average weighted R2 at each quantile 
 

The linear fit of the 3 parametric models is shown in the table A.2 below. The GEV has the 

best linear fit, while the non-parametric method has the worst linear fit.  

 
RND method WLS R2 
GEV 99.7% 
Mixture lognormals 98.7% 
Black-Scholes 98.5% 
Non-parametric (BoE) 69.95 

 
Table A.2: Average WLS R2

 of the linear regression in the quantile space for the 95%  

confidence level over 1733 days (1997-2004) 
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