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Abstract

Empirical studies show that investors prefer to hold only a very

small number of different assets. This implies that their portfolios

are inferior as including more assets would reduce their (unsystem-

atic) risk and would their increase their return / risk premium. At the

same time, however, it is common knowledge in the finance industry

and in the literature that “small portfolio” with just a few different as-

sets can be very well diversified – provided the “optimal” assets have

been chosen. Finding such an optimized portfolio with a constraint

on the number of different assets in it, i.e., a cardinality constraint, is

a challenge that can hardly be approached with traditional optimiza-

tion techniques. Hence, proofs for such “small portfolios” had often

to resort to simplifying assumptions or anecdotal evidence.

A new approach in numerical optimization are heuristic methods.

These methods differ from their traditional counterparts in several

important aspects: (i) They incorporate stochastic elements in their

search process and are therefore less prone to get stuck (and even-

tually report) inferior solutions. For many of these methods, there

exist convergence proofs stating that they actually are able to identify
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1 Introduction 2

the true global optimum. (ii) Most of these heuristic methods are ex-

tremely flexible and can therefore be applied to all sort of different

problems and constraints that would not be approachable otherwise.

This paper addresses the issue of finding an optimal portfolio

structure when there is a limit on the number of different assets that

may be included. Using Ant Systems, empirical studies are performed

for NYSE, FTSE and DAX data. The results confirm that small portfo-

lios can indeed be very well diversified – provided the asset and weight

selection has been done with a suitable method. We also find that the

heuristic method used in this paper is such a suitable method and is

able to outperform standard approaches.

JEL Classification: G11, C14, C61

1 Introduction

One of the central results of Modern Portfolio Theory is that, in perfect mar-

kets with no constraints on short selling and frictionless trading without

transactions costs, investors will want to hold as many different assets as

possible: Any additional security that is not a linear combination of an al-

ready included asset will contribute to the portfolio’s diversification of risk

and could therefore increase the investor’s utility.

In practice, however, this situation is rather impractical, since the amount

of transactions costs which has to be paid for many different small stocks,

would raise the total cost considerably as has been shown in Maringer

(2002a) and Maringer (2005). Moreover, the administration of such port-

folios with a large number of different assets may become very tedious.

Hence, investors seem to prefer portfolios with a rather small number of

different assets (see, e.g., Blume and Friend (1975), Börsch-Supan and Ey-

mann (2000), Guiso, Jappelli, and Terlizzese (1996) or Jansen and van Dijk

(2002)).

Another important aspect in portfolio selection is that in practice, most of

the risk diversification in a portfolio can be achieved with a rather small,
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2 The Model 3

yet well chosen set of assets.1 Hence, in practice, the crucial question of

finding the right weight for an asset is linked to the problem whether or not

to include this asset in the first place.

Building on Maringer (2001), Maringer (2002b), Keber and Maringer (2001)

and Maringer and Kellerer (2003), this paper is concerned with the portfo-

lio optimization problem under cardinality constraints, i.e., when there is

an explicit constraint on the number of different assets in the portfolio. In

particular, the case of an investor is considered who wants to optimize her

Sharpe Ratio in a modified Tobin framework. The remainder of this paper

is organized as follows. In section 2, the optimization problem and the opti-

mization method will be presented. Section 3 summarizes the main results

from an empirical study of this issue, section 4 concludes.

2 The Model

2.1 Optimization Problem

From a theoretical point of view, the portfolio selection problem with a car-

dinality constraint can be regarded as Knapsack Problem (KP).2 The KP

in its simplest version deals with selecting some of the available goods by

maximizing the overall value of the resulting combination (objective func-

tion) without exceeding the capacity of the knapsack (constraint(s)). The

investor’s problem, however, demands two significant modifications of the

classical KP:

• In the classical KP, each good has a given value which does not de-

pend on what other goods are or are not in the knapsack. For portfo-

lios, however, the “value” of any included asset depends on the overall

structure of the portfolio and the other assets in the knapsack because

of the diversification effects.

1 See, e.g., Elton, Gruber, Brown, and Goetzmann (2003, chapter 4).

2 See Maringer and Kellerer (2003). For a general discussion, see Kellerer, Pferschy, and

Pisinger (2004).
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2 The Model 4

• In the classical KP, the goods have fixed weights, and one has to decide

whether to take the good or not (“0/1 KP”). The investor has to jointly

decide (i) whether to include an asset or not and (ii) what amount of

her endowment to invest in this asset.

In this paper we assume that investors can choose among one risk-free asset

and up to N risky securities and want to maximize their (standardized) risk

premium.

Tobin (1958) showed that any portfolio consisting of one risk-free asset and

one ore many risky assets will result in a linear relationship between ex-

pected return r and the risk associated with this portfolio, σ ,

r = rs +θP ·σ

where rs is the return of the safe asset. θP is the risk premium per unit risk

and is often referred to as (ex ante) Sharpe Ratio, SRP . Given the standard

assumptions on capital markets with many risky and one risk-free asset, a

rational risk averse investor will therefore split her endowment and invest a

portion ofα in the safe asset and (1−α) in some portfolio of risky assets,P ,

where the structure of P determines θP . The investor will therefore choose

the weights, xi, for assets i within the portfolio of risky assets in order to

maximize the investment’s risk premium per unit risk, θP . In passing note

that the investor’s level of risk aversion is reflected in her α and that the xi’s

ought to be the same for any investor. Thus, the portfolio P (usually called

tangency portfolio) can be determined without considering the investor’s

attitude towards risk and regardless of her utility function.

If there exists a marketM = {1, ..,N} with N assets k of which shall be in-

cluded in the portfolio P , the investor’s optimization problem can be writ-

ten as follows:

max
P

θP = SRP =
rP − rs

σP

Dietmar Maringer, Small Is Beautiful. Diversification With a Limited Number of Assets



2 The Model 5

subject to

rP =
N

∑
i=1

xi · ri

σP =

√√√√ N

∑
i=1

N

∑
j=1

xi · x j ·σi j

N

∑
i=1

xi = 1 and





xi ≥ 0 ∀i ∈ P
xi = 0 ∀i 6∈ P

P ⊂M
|P| = k

where σi j is the covariance between the returns of assets i and j and ri is the

return of asset i.

Like the (actually simpler) “0/1 KP” this optimization problem is NP–hard.

It is usually approached in practice by rules of the thumb (based on certain

characteristics of the individual assets3 ) or by reducing the problem space

by making a priori selections (e.g., by dividing the market into several seg-

ments and choosing “the best” asset of each segment4). As neither of these

methods reliably excludes only “irrelevant” combinations, they tend to re-

sult in sub-optimal solutions. An alternative way to solve the problem is the

use of meta-heuristics which are not based on a priori neglecting the ma-

jority of the problem space. The method suggested here has its origin in

biology, namely ant systems.

2.2 Ant Systems

Evolution has provided ants with a simple, yet enormously efficient method

of finding shortest paths.5 While traveling, ants lay a pheromone trail which

helps themselves and their followers to orientate.

3 One popular rule, which will also be applied in this study, states to prefer assets that

have high Sharpe Ratios SRi.

4 See, e.g., Farrell, Jr. (1997, chapter 4) on Asset Classes. Lacking appropriate informa-

tion for our data sets, this approach could not be applied.

5 See Goss, Aron, Deneubourg, and Pasteels (1989).
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2 The Model 6

Figure 1: Simple foraging example for a colony with two ants

To illustrate the underlying principle, we assume a nest N and a food source

F are separated by an obstacle O (Figure 1) and that there are two alternative

routes leaving N both leading to F , yet different in length. Since the colony

has no information which of the two routes to choose, the population (here

consisting of two ants) is likely to split up and each ant selects a different

trail. Since the route on the right is shorter, the ant on it reaches F while

the other ant is still on its way. Supplied with food, the ant wants to return

to the nest and finds a pheromone trail (namely its own) on one of the two

possible ways back and will therefore select this alternative with a higher

probability. If it actually chooses this route, it lays a second pheromone trail

while returning to the nest. Meanwhile the second ant has reached F and

wants to bring the food to the nest. Again, F can be left on two routes: the

left one (=long) has now one trail on it, the right one (=short) has already

two trails. As the ant prefers routes with more pheromone in it, it is likely

to return on the right path – which is the shorter one and will then have a

third trail on it (versus one on the left path). The next time the ants leave

the nest, they already consider the right route to be more attractive and are

likely to select it over the left one. In real live, this self-reinforcing principle

is enhanced by two further effects: shorter routes get more pheromone trails

as ants can travel on them more often within the same time span then they

could on longer routes; and old pheromone trails tend to evaporate making

routes without new trails less attractive.

Based on this reinforcing mechanism, the tendency towards the shorter

route will increase and due to the new pheromone trails will be preferred.

At the same time, there remains a certain probability that routes with less

scent will be chosen; this assures that new, yet unexplored alternatives can

be considered. If these new alternatives turn out to be shorter (e.g., because

Dietmar Maringer, Small Is Beautiful. Diversification With a Limited Number of Assets



2 The Model 7

to a closer food source), the ant principle will enforce it, and – on the long

run – it will become the new most attractive route; if it is longer, the detour

is unlikely to have a lasting impression on the colony’s behavior.

As discussed in Maringer (2002b, 2005), Dorigo, Maniezzo, and Colorni

(1991), Colorni, Dorigo, and Maniezzo (1992a), Colorni, Dorigo, and

Maniezzo (1992b) and Dorigo (1992) first introduced this principle to rout-

ing problems (such as the Traveling Salesman Problem) by simulating real

routes and distances between the cities in artificial nets and implementing

an artificial ant colony where the ants repeatedly travel through these nets.

Meanwhile, this concept resulted in the closely related meta-heuristics Ant

Systems (AS) and Ant Colony Optimization (ACO) which have been applied

successfully to a wide range of logistic problems and ordering tasks.6 In

particular, the introduction of elitists turned out to be very effective. In this

concept the best solution found so far is reinforced each iteration in addition

to the ants of the colony a certain number of elitist ants are traveling along

the best solution found so far and by doing so reinforce this path.7 In addi-

tion Bullnheimer, Hartl, and Strauss (1999) suggest a ranking system where

ants with better solution spread more pheromone than the not so good ones

and where paths of bad solutions receive no additional scent.

The concept of ant colony optimization and how it can be implemented will

be presented in the next section. We will also demonstrate that this ap-

proach can be adopted for the Knapsack Problem in general and the in-

vestor’s problem in particular.

2.3 The Algorithm

2.3.1 Approaching the Knapsack Problem

Applied to the portfolio selection problem, we implement an iterative search

strategy where each iteration consists of three stages. In the first stage, ar-

tificial ants are to travel within a net consisting of N nodes which represent

6 For a comprehensive survey on applications as well as the methodical variants, see,

e.g., Dorigo and Di Caro (1999) or Bonabeau, Dorigo, and Theraulaz (1999).

7 See Dorigo, Maniezzo, and Colorni (1996).
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the available assets. An arc connecting any two nodes i and j where i, j ∈M
and i 6= j shall capture whether a combination of these two is considered fa-

vorable or not. This can be achieved by introducing a matrix
[
τi j

]
N×N where

τi j represents the amount of pheromone. The trail information will then be

used to calculate the probabilities with which the following ants will select

assets.

Let P ′a be the incomplete portfolio of ant a with |P ′a| < k. If i is some asset

already included in this portfolio, i.e., i ∈ P ′a, whereas j is not, i.e., j 6∈ P ′a,

then the probability of choosing asset j shall be

pa j =





∑
i∈P′a

(τi j)γ ·(ηi j)β

∑
i∈P′a

∑
h 6∈P′a

(τih)
γ ·(ηih)

β ∀ j 6∈ P ′a

0 ∀ j ∈ P ′a

. (1)

The probability pa j is mainly influenced by the amount of pheromone τi j

that is on the paths from nodes i ∈ P ′a to node j. γ is a parameter for tuning

that influence. In line with other implementations of ant based strategies,

a matrix [ηi j]N×N is introduced which represents the visibility of j from i.

In routing problems, this information (which unlike the pheromone trails

remains unchanged during the optimization) provides sort of a map thus

providing the ants with guidelines or a priori information on preferred com-

binations. In the asset selection problem, ηi j ≥ 0 might be used to indi-

cate whether the investor regards combination i and j as desirable or not

by transferring some general rule of the thumb onto [ηi j]. Also, the visi-

bility could be employed to reinforce constraints. E.g., if i and j represent

common and preferred stocks, respectively, of the same company and the

investor does not want to hold both in her portfolio, she will set ηi j = 0,

and the probability, asset j is added to a portfolio P ′a already containing i

will become zero. If, on the other hand, she has a strong preference for this

combination, a high value for ηi j will increase the probability that both i and

j get included in the portfolio.

Results for the Traveling Salesman Problem suggest that in addition to eli-

tists and ranking systems, the ants ought to be provided with some sort of

Dietmar Maringer, Small Is Beautiful. Diversification With a Limited Number of Assets



2 The Model 9

a “road map” which usually is based on some a priori heuristics and is cap-

tured in the visibility matrix
[
ηi j

]
.8 In ordering problems such as the Travel-

ing Salesman Problem, the number of updated trails is rather small because

the sequence in which the nodes are selected is of central importance. Thus,

an ant visiting k nodes will update just k− 1 arcs and the chance of not up-

dated arcs and evaporation on “good” arcs must not be neglected.

In our problem, however, it is the combination that matters, thus an ant

selecting k securities will update k · (k−1) arcs in a symmetric matrix. Hav-

ing experimented with general rules and incorporated them into
[
ηi j

]
,9 we

found that they have a rather limited effect on the overall result: favorable

parameters have been found to have far more influence on the reliability of

the results and the speed at which the algorithm converges. We therefore do

not introduce heuristics and “save” the visibility matrix for enhanced opti-

mization problems, e.g., with possible individual preferences. In this study

we assume that there are no such preferences and that the investor is in-

terested only in maximizing the portfolio’s risk premium per unit risk, θP .

Thus, we set the visibility matrix
[
ηi j

]
= 1 and the parameter for tuning its

influence β = 1. By also setting the parameter γ = 1, the probability from

equation (1) melts down to

pa j =





∑
i∈P′a

τi j

∑
i∈P′a

∑
h 6∈P′a

τih
∀ j 6∈ P ′a

0 ∀ j ∈ P ′a
. (1*)

Once any ant has chosen their k assets, stage two of the model can be en-

tered and the optimal portfolio weights are determined by some standard

solution: When short sales are permitted, any ant could determine the max-

imum risk premium θPa that could be achieved with the securities in its

8 See Bonabeau, Dorigo, and Theraulaz (1999).

9 E.g., such rules could make use of the general result that diversification will be the

higher the lower the correlation between the included assets. Hence, the visibility ma-

trix could be derived from the correlation matrix or the covariance matrix by increas-

ing (decreasing) the visibility between i and j when the correlation or covariance is

low (high).
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knapsack by the exact closed-form solution 10

θPa =
rP − rs

σP

where

rP =
a− rs ·b
b− rs · c

σ2
P =

a− 2 ·b · rs + c · r2
s

(b− c · rs)
2

and
[

a b

b c

]
=

[
r′

I ′

]
Σ−1
P

[
r I

]

and Σ−1
P the covariance matrix of the assets included in the portfolio. How-

ever, since our optimization model disallows negative asset weights, deter-

mining the θPa is regarded as a quadratic programming problem.11

In the third stage, when all ants have packed their knapsack and know their

θP ’s, the trail information can be updated which comprises three steps:

• As time goes by pheromone evaporates. Thus, when a period of time

has elapsed, only ρ ·τi j of the original trail is left where ρ ∈ [0,1].

• New pheromone trails are laid. In real life, ants tend to be perma-

nently on the run and are permanently leaving new pheromone trails

without bothering whether their colleagues have already returned to

the nest. In artificial ant systems, however, each ant chooses one path

through the net and waits for the other ants to complete their journey

before starting the next trip. Thus, artificial ant systems usually as-

sume that any ant a spreads a fixed quantity Q of pheromone on its

path which has a length of La and by doing so updates the trail by

10For a more detailed discussion, see Maringer (2005).

11For a more detailed discussion, see Maringer (2005), alternative approaches are dis-

cussed, e.g., in Elton, Gruber, Brown, and Goetzmann (2003) and Brandimarte (2002).

Maringer and Kellerer (2003) present a heuristic that simultaneously selects asset and

optimization the weights.
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∆aτi j = Q
/

La for any arc (i, j) along a’s path. This implies that the

shorter the path the higher the additional trail. Since both in real life

and in ant systems La is to be minimized whereas here θPa is to be

maximized, we adopt this concept and use 1
/
θPa

for a substitute of

La. Thus, the trail update for ant a would be ∆aτi j = Q ·θPa for all

securities i 6= j and i, j ∈ Pa.

Bullnheimer, Hartl, and Strauss (1999) suggest a ranking system that

reinforces the solutions of the best ants of the current population (here

called “prodigies”). In our application, this concept allows only the ω

best ants to update [τi j] where the rank µ = 1, ..,ω determines the

quantity of pheromone Qµ a prodigy can spread. Assuming a simple

linear ranking system where the quantity of pheromone depends on

the ant’s rank, prodigy µ updates arc (i, j) by

∆τi j,µ =





Qµ ·θPµ ∀i, j ∈ Pµ, i 6= j

0 otherwise
(2)

where

Qµ =





((ω−µ)+1) ·Q µ ≤ω

0 µ > ω
.

• Assuming that, in addition to the ants of the current colony, ε elitist

ants are choosing the best portfolio found so far,P∗, and each of them

spread Q pheromone, then each elitist updates the matrix by

∆τ∗i j =





Q ·θP∗ ∀i, j ∈ P∗, i 6= j

0 otherwise
.

Combining evaporation and new trails, the pheromone matrix is to be up-

dated according to

τi j := ρ ·τi j +
ω

∑
µ=1

∆τi j,µ +ε ·∆τ∗i j ∀i 6= j. (3)

Due to this updates, the next troop of ants can apply their predecessors’ ex-

periences: In the next iteration, the probabilities according to (1*) will be

Dietmar Maringer, Small Is Beautiful. Diversification With a Limited Number of Assets



2 The Model 12

initialize pheromone matrix τi j = τ0∀i 6= j and τii = 0;
population size := N;
REPEAT

FOR a := 1 TO Population size DO
Pa := {a};
WHILE |Pa|< k DO

determine selection probabilities pa j∀ j 6∈ Pa according to
definition (1*);

use probabilities pa j to randomly draw one additional asset j;
add asset j to the portfolio, Pa := Pa∪{ j};

END;
determine optimal asset weights such that {SR|Pa} → max!;

END;
rank ants according to their portfolios' Sharpe Ratios;
IF maxSRPa > SRP∗

new elitist is found, replace previous elitist P∗ with new one;
END;
update pheromone matrix;

UNTIL convergence criterion met;
REPORT elitist;

Listing 1: Pseudo-code for the main Ant System routine

influenced, and the ants’ preferences will be shifted towards combinations

of securities that have proven successful. Listing 1 summarizes the main

steps of the algorithm. The computationally most complex parts of the al-

gorithm are the computation of a portfolio’s volatility,O(k2), having to sort

the population,O(A · ln(A)) where A is the number of ants in the colony, and

the update of the pheromone matrix which is quadratic in k and linear in the

number of prodigies plus the elitist, O((k2− k) · (ω+ 1)), and quadratic in

N due to the evaporation,O(N2). The overall complexity of the algorithm is

determined by these individual complexities times the number of iterations.

2.3.2 First Applications of the Algorithm

In order to determine the essential parameters for the algorithm we ran a

series of tests with random numbers for elitists, ε, prodigies, ω, and factor

of evaporation, ρ. We then tried to find correlations between these values
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and the “effectiveness” (i.e., speed and level of improvement during the it-

erations) of the respective ant colony. According to these results we chose

the colony size to equal the number of available assets, i.e., 100, ε = 100 (i.e.,

equal to the number of securities and ants per iteration), ω = 15 (i.e., only

the best 15 per cent of ants where allowed to update according to equation

(2)), and ρ = 0.5 (i.e., half of last round’s trail information evaporates).

The version of the ant algorithm as just presented was first applied to the

portfolio selection problem in Maringer (2001) where the ex ante Sharpe Ra-

tio (SR) (which, as argued, is equal toθP ) is to be maximized for a DAX data

set. In Maringer (2002b) it is applied to finding cardinality constrained port-

folios under a Markowitz/Black framework, and the computational study

therein is based on subsets of a FTSE data set with N = 25, ...,90 where the

expected return is equal to the market’s expected return and the risk is to

be minimized, and the algorithm is found to be superior Simulated Anneal-

ing and a Monte Carlo approach. In addition, for a number of problems,

the heuristically obtained results were compared to those from complete

enumeration, and it was found that the Ant algorithm reported the opti-

mal solution in the majority of runs (often all the runs) even when the al-

ternative method Simulated Annealing was unable to identify the optimum

even once. In Keber and Maringer (2001), the ant algorithm is compared to

Simulated Annealing and Genetic Algorithm based on the SR maximization

problem with the same FTSE data set. Again, it was found that the results of

population based heuristics are superior to Simulated Annealing, that, how-

ever, the population based heuristics also take more time to find appropriate

parameter values.

For the sake of simplicity neither of these studies had a non-negativity con-

straint on the weights which is included in this study. In addition, in all

three previous studies, the ant algorithm did exhibit a typical property of

this method: Ant algorithms perform best when applied to large problems,

whereas it is the rather “small” problems sometimes that cause slightly more

problems to the ant algorithm. When k, the number of different asset in-

cluded in the portfolio, is rather small, the algorithm converges quite fast,

and the colony might get stuck in a local optimum which they cannot es-

cape. In Maringer (2002b), e.g., selecting k = 3 assets appears more de-

manding than selecting k = 6 assets for all markets with N ≤ 78. Though
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even for these cases, the chances of identifying the actual global optimum

in an independent run is for the ant algorithms by magnitude higher than

the results found by Simulated Annealing, it is desirable to have equally high

reliability for small problems.

2.3.3 Refining the Algorithm

In heuristic search strategies, a common stopping criterion is the number

of iterations the elitist hasn’t changed, i.e., for how many iterations the al-

gorithm has produced no further improvement. The search is then stopped

and the current elitist is reported. If there is a chance that the result is only

a local one, a new independent run is started and knowledge acquired in the

previous run is lost. In Artificial Intelligence, another common way of over-

coming a potential local optimum is to introduce a random shock:12 When

an agent hasn’t achieved an improvement over a given number of iterations,

it is randomly “positioned” at a different location will continue the search

from there, yet without necessarily starting a new, perfectly independent

run. Based on this idea, we suggest a similar concept to the ant algorithm.

In ant algorithms (as well as in real life), the ants tend to get stuck in a local

optimum when the pheromone trails for a good, yet not globally optimal

solution are so strong that chances of finding a route aside these tracks are

very low – and are even lowered in due course as the (probably) suboptimal

routes are reinforced. Enforcing alternative routes therefore demands lower-

ing the pheromone level on these (probably) suboptimal tracks. We suggest

a simple means that might do exactly this trick: With a certain probability

the initial pheromone matrix (or a weighted combination of the current and

initial matrices) is reinstated yet the current elitist is kept. This implies that

knowledge and experience acquired in previous runs is kept while the ants

have a higher chance of selecting alternative routes. Metaphorically speak-

ing, this corresponds to “rain” where current pheromone trails are washed

away or at least blurred. We therefore introduce a reset parameter ν ∈ [0,1]
where ν = 1 corresponds to “heavy rain” where all pheromone trails are

swept away and the original pheromone matrix is restored; the closer ν is to

12See, e.g., Russell and Norvig (2003).
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zero, the more of the current trail information endures. This variant has a

similar effect as the local updates of the pheromone trail in Ant Colony Op-

timization (ACO),13 a variant of ant algorithms which is to foster diversity

within the colony’s solutions.

The updating rule (3) for the off-diagonal elements of the pheromone ma-

trix, [τi j] with i 6= j, can then be enhanced with an option where a part of

the old and newly added trails are washed away and the initials trails are

restored:

τi j :=





(
ρ ·τi j +∑µ ∆τi j,µ +ε ·∆τ∗i j

)
· (1−ν)+τ0 ·ν “rain”

ρ ·τi j +∑ω
µ=1 ∆τi j,µ +ε ·∆τ∗i j “sunshine”

(3*)

where the option “rain” is chosen with a probability of prain and the alterna-

tively chosen option “sunshine” corresponds to the original updating rule

(3). Whether this concept is advantageous or not, was tested in a computa-

tional study; the main results will be discussed in section 3.2.

3 Empirical Study

3.1 Data

The empirical study in this paper is based on data sets for the DAX, the

FTSE, and the S&P 100. The DAX data set contains the 30 stocks repre-

sented in the German stock Index DAX30. The FTSE data set is based on

the 100 stocks contained in the London FTSE100 stock index; four of the

stocks, however, had to be excluded due to missing data. In both cases we

used daily quotes over the period July 1998 – December 2000. Based on the

corresponding historic returns we calculated the covariances σi j which are

used for estimators of future risk. The expected returns, ri, were generated

with a standard Capital Asset Pricing Model (CAPM) approach according to

ri = rs + (rM− rs) ·βi with an expected safe return of rs = 5%, expected

13See Bonabeau, Dorigo, and Theraulaz (1999, p. 49) and the literature quoted therein.
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. . .

(a) DAX data set

. . ...

(b) FTSE data set

. . .

(c) S&P 100 data set

Figure 2: Estimated return and risk for the data sets

market risk premia of rDAX− rs = 5.5% and rFTSE− rs = 6%, respectively,14

and with beta coefficients, βi, coming from the historic returns. The dis-

tributions of the assets in the return-volatility space are depicted in Figures

2(a) and 2(b), respectively. In the light of recent developments in the capi-

tal markets, we want to point out that we focus exclusively on the selection

problem and that in this optimization problem the mean and variance of

returns are regarded as exogenously determined.

14The values for the safe interest rate and the markets’ risk premia were chosen to rep-

resent what then would have made reasonable guesses. With the focus on the opti-

mization where the estimates for risk and return can be considered exogenously deter-

mined, the actual values proofed to have little influence on the conclusions drawn in

the computational study.
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Estimating the assets’ returns via the CAPM implies that their (estimated)

Sharpe Ratio differ in their correlation with the market:

SRi =
(

=ri︷ ︸︸ ︷
rs +(rM− rs) ·βi)− rs

σi

=
(rM− rs) · σi·ρiM

σM
σi

=
rM− rs

σM
·ρiM

= SRM ·ρiM

where M is the respective market index. Though this does not affect the co-

variances of any two assets and therefore does not have an immediate effect

on a portfolio’s volatility and Sharpe Ratio, the values for the third data set,

the S&P 100 data set, are estimated differently. Based on daily returns for

the stocks in the S&P 100 stock index from November 1995 through Novem-

ber 2000 and for 23 country, 42 regional and 38 sector indices, the expected

returns for the stocks where estimated from the first 1 000 days with an com-

bined APT15 and GARCH16 approach: First, for any asset the bundle of five

indices was determined that explains most of the asset’s return in sample.

Next, the expected returns and volatility for the indices where estimated

with a GARCH model and the assets’ expected out of sample returns based

on the individual APT models. The assets’ volatilities where estimated with

a GARCH model, the covariances where determined with the assets’ volatil-

ities and their historic correlation coefficients. The factor selection process

is presented in Maringer (2004) which also offers a more detailed presenta-

tion of the underlying method. The results from this estimation procedure

appear quite reliable: Only for eight of the 100 assets, the actual out of sam-

ple returns differ statistically significant from their expected values.17 The

15See Ross (1976). A detailed presentation of the data set and the factor selection prob-

lem can be found in Maringer (2004).

16See Engle (1982), Bollerslev (1986) and Engle (1995).

17Significance test at the usual 5% level of significance; corresponding tests for the DAX

and FTSE data sets had to be omitted in lack of out of sample data. The following pre-

sentation will therefore focus strictly on the selection problem given a certain market

situation which can be considered realistic.
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volatilities and expected returns for this data set are depicted in Figure 2(c).

Though comparable to the DAX data set in the range of the assets’ volatili-

ties and the FTSE data set in the number of assets, the S&P data set differs

from the others in the range of the expected returns since it also contains

assets with negative expected returns.18

3.2 Computational Study for the Modified Update Rule

In order to test whether the concept of casually resetting the pheromone

matrix has a favorable effect on the algorithm’s performance or not,

we ran a series of Monte Carlo experiments where in the initializa-

tion step the value of the reset parameter ν was randomly chosen from

(0.1,0.25,0.50,0.75) and the probability for “rain” was chosen to be prain ∈
{5%,10%,25%,50%,75%}, i.e., with a probability of prain of the update

steps, the modified update rule (labeled “rain” in (3*) was applied and with

a probability of (1− prain), the original update rule (3) (labeled “sunshine”

in (3*)) was applied. For each combination of parameters and different

value of assets in the portfolio, k, approximately 120 independent runs were

performed. For comparison, we also ran the algorithm in its previous ver-

sion with update rule (3) without the “rain” modification by simply setting

prain = 0%; here 1 000 independent runs were performed. For any parame-

ter setting, the number of iterations per run was limited to 200, the colony

size equaled the number of included assets, k.

Based on the S&P 100 data set, the two cases k = 3 and k = 10 are consid-

ered. These two problems differ considerable in the number of candidate

solutions: the former comes with just 161 700 alternatives,19 the latter with

1.73× 1013 alternatives.

18When assets are negatively correlated with the index, both the APT and the CAPM pre-

dict negative risk premia in equilibrium which, when exceeding the safe interest rate,

can also result in negative expected returns. The economic argument behind is that an

investor is willing to pay an (“insurance”) premium for assets that react opposite to the

market trend and are therefore well suited for diversification and hedging.

19From a practical point of view, for k = 3, the number of alternatives would be small

enough for an exhaustive search. Nonetheless, a heuristic optimization method ought

to work well with small problems; hence this case is considered here, too.
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(a) Results for k = 3 (b) Results for k = 10

Figure 3: Range from best to worst reported result (lines) and range covering 90%
of reported solutions (black area) with the traditional update rule (3) (with prain =
0%) and with rain according to rule (3*) for different values of prain (in %) and ν (as
decimals)

Figure 3 depicts the range for the reported solutions depending on the dif-

ferent values for ν and prain. As can be seen for either value of k, the version

without rain reports quite diverse solutions. Though the global optimum

is found eventually, a high number of runs is necessary to reduce the like-

lihood that just a local optimum is reported: for k = 3, in just 16% of all

runs, the global optimum was found, and for k = 10, in just 2 of the 1 000

independent runs the global optimum was reported.

With appropriate values for prain and ν, on the other hand, the algorithm

performs significantly better: For the case with k = 3, in two thirds of the

runs the global optimum was identified by any of the tested version with

prain ∈ (5%,10%,25%) (and arbitrary positive value for ν) or with ν = 0.10

(and arbitrary positive values for prain). For the case where k = 10, in two

thirds of the runs the global optimum was reported with the parameter com-
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binations (p,ν) = (5%, 0.10) and (10%, 0.25), and for any positive value of ν

with prain ∈ (5%,10%,25%), half of the runs reported the global optimum.

Additional experiments showed that the performance of the traditional ver-

sion without rain could be improved by increasing the number of iterations,

yet never reached the modified version’s high ratio of runs in the global op-

timum was identified.

3.3 Financial Results

According to the theory, increasing the number of assets k in the portfolio

P causes an increase in the risk premium SRP provided the right assets are

chosen and assigned the optimal weights. In addition, the marginal contri-

bution of any additional security to the portfolio’s diversification is decreas-

ing. Both effects can be found in the results for either of the markets: The

graphs in Figure 4 depict the bandwidth within which the Sharpe Ratio will

lie when the asset weights are optimized for the best and the worst possi-

ble combination of k assets.20 As can easily be seen, in all three markets, a

relatively small yet well chosen set of assets can achieve a higher SRP than

a large yet badly chosen set of assets. E.g., in the FTSE data set, the opti-

mal combination of k = 5 assets might outperform a poor combination of

k = 84 assets: SRmax
P(k=5) = 0.2863 > SRmin

P(k=84) = 0.2860. Note that this is all

due to good or bad selection of the assets and not due to suboptimal asset

weights.21

The bandwidth for the Sharpe ratio will be the larger the smaller the portfo-

lio and the larger and more diverse the market is: selecting any k = 15 assets

from the DAX data set, e.g., the achievable SRwill be in the range from 0.1658

to 0.2447; is the same number of different assets is selected from the FTSE

and the very diverse S&P data set, the Sharpe Ratios will range from 0.1294

to 0.3202 and from 0.2545 to 1.4497, respectively.

20Finding the “worst” combinations, too, represents an optimization problem where the

sign in the objective function is changed, yet not the way the weights xi∀i ∈ P are

determined. This assures that low values for the Sharpe Ratios actually do come from

selecting the “wrong” assets and not by an inappropriate loading of the weights.

21See Solnik (1973).
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(a) DAX data set (b) FTSE data set

(c) S & P 100 data set

Figure 4: Range for Sharpe Ratios for portfolios under cardinality constraint with
optimized weights

A simple rule of the thumb suggests to prefer assets which themselves have

a high Sharpe Ratio. According to this rule, the available assets are sorted by

their SRin descending order, and the first k assets are selected for the port-

folio. A downside of this rule is that it does not consider the correlation or

covariance between the assets which largely affects the portfolio’s volatility.

Hence, this rule will not necessarily find the optimal solution, particularly

when k is rather small. Having a method that has a higher chance of identi-

fying the actually best combination, one can also evaluate how large the gap

between the SR rule based portfolios and the optima is. As can be seen from

Figure 5 for the DAX data, the Sharpe ratios of portfolios selected with this

popular rule could mostly be achieved with one or more assets less. For the

FTSE data set, this is even more apparent: For the optimal portfolio with k

= 10, the SR is higher than for a portfolio with k = 38 when selected with the

SR rule. The consequences of this gap become even more severe when the

investor faces transactions costs that contain a fixed fee as can be seen from

the results Maringer (2005, chapter 3). Other rule-based selection methods
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(a) DAX data set

(b) FTSE data set

(c) S & P 100 data set

Figure 5: Sharpe Ratios for portfolios under cardinality constraint with different se-
lection processes

Dietmar Maringer, Small Is Beautiful. Diversification With a Limited Number of Assets



3 Empirical Study 23

such as selections based on the companies’ industry, size, or geographic as-

pects exhibit equal shortcomings.

For the Monte Carlo approach, k assets are drawn randomly and their

weights are optimized. This selection process has been replicated a 1 000

times, and the best, the worst, and the average SR for any k and data set are

plotted on the bandwidth for the possible outcomes. As can be seen for the

larger markets, it is very unlikely to randomly draw the worst possible solu-

tion – yet it is also unlikely that the optimal solution is chosen: In the best of

the 1 000 replications, a solution close to that from the SR rule is found, on

average, however, a random selection is significantly below what could be

achieved with a superior selection method: the upper limit, indicating the

optima are the results found with the heuristic search method.

As neither the SR rule nor the MC approach includes the correlations and

covariances between the assets into the selection process, a main aspect

from portfolio selection might be lost. A closer look at what assets actu-

ally are selected and what weights they are given also confirms that the de-

cision of whether to include a certain asset or not depends on what other

assets are included. In Figure 6 the cumulated asset weights are depicted

for the different values of k. In particular the results for the FTSE data set

illustrate that the optimal selection with k assets cannot be determined by

simply searching the asset that fits best to the solution with k− 1 assets: in

smaller portfolios one asset might serve as a substitute for a bundle of other

assets which, however, cannot be included because of the constraints (be it

transactions costs, be it cardinality). Also, what makes a good choice in a

portfolio with few different assets might or might not be a good choice for

large portfolios.

The results for the S&P 100 data set (Figure 6(c)) also exhibits a particularity

of this data set: Given the estimates for the assets’ returns and covariances,

only a limited number of assets are actually assigned positive weights, i.e.,

even for large k only a small number of different assets is included in the

portfolio, and the cardinality constraint is no longer binding. The selection

of these assets depends to some extent on the choice of the safe interest rate,

rs, as (geometrically speaking) the tangency line from the Tobin efficiency

line crosses the y-axis of the mean-variance-diagram at a different point, yet

Dietmar Maringer, Small Is Beautiful. Diversification With a Limited Number of Assets



3 Empirical Study 24

(a) DAX data set

(b) FTSE data set

(c) S & P 100 data set

Figure 6: Cumulated weights for optimal portfolios under cardinality constraint
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the basic results are unchanged. The SR rule “filters” most of the assets that

ought not to be included in any of the optimal portfolios but again still ig-

nores some better combinations in the lack of considering the covariances.

In this type of market situation, however, a Monte Carlo approach will be

likely to also pick one or several of these undesirable assets – and will there-

fore be clearly inferior to a heuristic search strategy.

4 Conclusion

For various reasons, investors tend to hold a rather small number of assets.

In this paper, a method has been presented to approach the associated NP

hard optimization problem of selecting the optimal set of assets under a

given market situation and expectations. The main results from this empir-

ical study are twofold: (i) the well known fact of decreasing marginal contri-

bution to diversification is not only confirmed, but can be exploited by iden-

tifying those assets that, in combination, offer the highest risk premium;

(ii) it has been shown that alternative rules, frequently found in practice,

are likely to underperform as they offer solutions with risk premia lower

than would be possible under the same constraints and market situations.
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