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Abstract

Empirical research on financial market data reports a number of
properties of return time series which are considered as ‘stylized facts’.
In this contribution, statistics for the unconditional distribution of
foreign exchange rate returns are discussed. The robustness of these
properties is assessed using the bootstrap and considering different
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1 Introduction

Although market efficiency is accepted as a general guideline for the analysis
of financial markets (Fama, 1970; Fama, 1991), there is also a general consen-
sus that financial market time series are not well described by a pure random
walk with normal and independent innovations. In fact, ‘stylized facts’ such
as fat tails, volatility clustering and long memory are often mentioned in the
literature (Cont, 2001). Such stylized facts are used as a base for extending
the theoretical understanding of markets and to generate new models.

In fact, taking into account bounded rationality and heterogeneity of
market participants (Shleifer, 2000), agent based models of financial markets
appear to be able to match some of the stylized facts of foreign exchange mar-
kets.1 In fact, this property of agent based models is often used as argument
in favour of this class of models. For example, Lux (1998) and Tay and Linn
(2001) use the first four centered moments, while Arthur et al. (1999) use
the standard deviation and the kurtosis as one of the main benchmarks for
their agent based models. Furthermore, Lux and Marchesi (2000) also con-
sider the tail index.2 When using these characteristics of exchange rates as a
benchmark for agent based models, one has to take into account the robust-
ness of these statistics, i.e. the extent to which their calculated values depend
on a specific (small) sample under consideration. Consequently, identifying
robust properties of the data might eventually help to estimate parameters
of agent based models and to test the validity of the fitted model. However,
methods for this type of econometric validation are still in their infancy (Gilli
and Winker (2003) and Alfarano et al. (2005)).

In this paper, we restrict our analysis to the foreign exchange market.3 As
a base for a further assessment of agent based models, we start by determining
which of the ‘stylized facts’ are actually stylized facts in the sense of non-
trivial statistical properties, which are robust over time and across assets
(Cont, 2001). Furthermore, we measure distributional properties of these
stylized facts using the bootstrap approach.

1E.g., Lux and Schornstein (2005) use a set of characteristics as empirical benchmarks
for a genetic learning based model of foreign exchange markets.

2Properties of the conditional return distribution are also considered in this context.
These properties are discussed in the companion paper Winker and Jeleskovic (2006, forth-
comming).

3See de Vries (1994), Cont (2001) and Krämer (2002) for summaries of statistical
properties of financial market data.
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Given the huge number of statistical properties of foreign exchange data
mentioned in the literature, we concentrate on the unconditional return dis-
tribution in this paper. A companion paper deals with conditional distri-
butions and long range dependence (Winker and Jeleskovic, 2006, forthcom-
ming). Of course, the set of properties covered in this contribution cannot
be exhausting. Nevertheless, it should be ample enough to select appropri-
ate statistics for the purpose of indirect estimation of agent based models as
introduced by Gilli and Winker (2003).

We proceed as follows. Section 2 introduces the data base used for the
empirical analysis and their empirical moments. The shape of the univariate
return distribution, in particular the fat tail property, is analyzed in Sec-
tion 3 and suitable statistics are presented. The robustness of the considered
statistics is assessed in Section 4 by analyzing subsamples of the data and
application of the bootstrap method. Finally, the impact of time aggrega-
tion is covered in Section 5. Section 6 summarizes our main findings and the
implications for indirect estimation approaches.

2 Data and Empirical Moments

2.1 The Data

For the empirical analysis, we use foreign exchange time series at daily fre-
quency (5-day-week). The sample includes 8088 observations of the Ger-
man D-Mark (DM), British Pound (GBP), French Franc (FRF), Swiss Franc
(CHF), and the Japanese Yen (JPY) against the US Dollar in volume nota-
tion for the period 1st of January 1974 to 4th of January 2005.4 The values
for the German D-Mark and the French Franc are the implicit rates after the
introduction of the Euro in 1999. Each time series contains 284 missing val-
ues due to bank holidays. We use the sample 1.1.1975 to 31.12.2004 for the
following analysis if not stated otherwise. For the observations following a
missing value, the return is calculated on the base of the last preceding valid
observation. The return time series are calculated as logarithmic differences
of the price series and denoted by ri, i ∈ {DM, GBP, FRF, CHF, JPY }.

Figure 1 shows the exchange rate time series for the German D-Mark
against the US Dollar in the upper panel, and the corresponding return time

4The data were retrieved from http://fx.sauder.ubc.ca/data.html, a site of the Sauder
School of Business, University of British Columbia.
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series in the lower panel.

Figure 1: Exchange Rate D-Mark against US Dollar and Returns
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2.2 Empirical Moments and Tests for Normality

In Table 1, we start by providing the empirical skewness, kurtosis and two
test statistics for normality of the distribution (Jarque-Bera and Kolmogorov-
Smirnov). While the empirical skewness is close to zero for most series, the
observed kurtosis is clearly above the value of three for a normal distribu-
tion resulting in highly significant Jarque-Bera (JB) statistics.5 Although
some measures of tail behaviour discussed in the next section challenge the
existence of higher order moments, these results strongly support the rejec-
tion of the normal assumption. This finding is supported by the values of
the Kolmogorov-Smirnov statistic (KS) reported in the last column. For the
test of the null hypothesis of a normal distribution, the moments of the nor-
mal distribution have to be estimated. Therefore, the modified statistic and

5Under the null hypothesis of a normal distribution, the Jarque-Bera statistic follows
asymptotically a χ2-distribution with two degrees of freedom.
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critical values from Lilliefors (1967) are used for the test. Again, the null
hypothesis has to be rejected at any conventional level of significance.

Table 1: Test Statistics for Normality Assumption

Series Obs. Mean Std.dev. Skew. Kurt. JB KS
rDM 7554 -6.8E-05 0.0065 0.0314 5.987 2809 0.0490
rFRF 7554 1.1E-05 0.0064 0.1000 7.169 5483 0.0544
rGBP 7554 2.6E-05 0.0061 0.1300 6.677 4276 0.0633
rCHF 7554 -0.00011 0.0076 0.0438 13.699 36033 0.0527
rJPY 7554 -0.00014 0.0066 -0.4858 7.377 6328 0.0704

It should be kept in mind that the goal of our analysis does not consist in
estimating structural parameters of some theoretical stochastic process gener-
ating price or return series.6 Instead, we aim at identifying robust features of
financial market time series which can be used for estimating the parameters
of agent based models. Obviously, a statistic like the Kolmogorov-Smirnov
statistic, which is based on the whole distribution of returns, might provide
more information than a single moment estimator, in particular, when the
distributions are clearly not normal.

3 Fat Tails

3.1 Stable Distributions, Extreme Value Theory and
Tail Index

From the results presented in the previous section, it becomes obvious that
normal distributions are not well suited to model the unconditional distribu-
tion of returns. Several alternative parametric models have been proposed
to match the stylized fact of heavy tails.7 One alternative distributional
assumption consists of the stable class.8 The stable distributions are a gener-

6Consequently, the requirement of ergodicity (Cont, 2001), e.g., is not necessarily bind-
ing for our application.

7This effect becomes less pronounced under time aggregation (see Section 5).
8This class of distributions was characterized by Lévy (1924) in his study of the nor-

malized sums of iid terms.
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alization of the normal distribution. They are characterized by the condition
that a sum of stable random variables is also a stable random variable. The
general stable distribution can be described by four parameters: an index of
stability α ∈ (0, 2] (tail index), a skewness parameter, a scale parameter and
a location parameter.

For values of the tail index α < 2, the stable distribution becomes so
heavy tailed that moments of order two and more do not exist. Conse-
quently, sample estimates of, e.g., variance and kurtosis will not converge
as the sample size increases. Infinite higher moments do not only result in
theoretical modelling problems, but also suggest that empirical variance and
higher moments should increase as the sample size increases. This result is
not supported by empirical findings. Finally, stable distributions do not allow
to explain the empirical finding that return distributions become closer to
normal distributions under time aggregation (see Section 5). These difficul-
ties led to the development of models based on a mixture of distributions and
conditional distributions, e.g., GARCH-models (Winker and Jeleskovic, 2006,
forthcomming).

Instead of searching for a parametric model of the return distribution,
an alternative approach concentrates on extreme events, which correspond
to the tails of the distribution. Extreme value theory (EVT) is a formal
framework to study this tail behavior, in particular of fat-tailed distributions.
The EVT provides models of the asymptotic characteristics at the tails of a
distribution, e.g. of stationary return series. Often this approach provides a
better fit to extreme quantiles than the conventional parametric approaches
(Embrechts, 2000a; Gençay et al., 2003a). Furthermore, the EVT allows to
make inferences about the return distribution beyond the observed range of
sample returns. Similarly to the normal distribution which is the limiting
distribution for sample sums in a central limit theorem, the family of extreme
value distributions is used to study the limiting distributions of the sample
maxima.

To introduce the basic notion of the EVT, let us suppose that a sequence
rt, t = 1, . . . , T of iid random variables9 is given with unknown cumulative
distribution function F . We denote the corresponding order statistics by
r1,T ≤ r2,T ≤ . . . ≤ rT,T and assume that the properly centered and nor-

9The assumption of independent random variables can be dropped and the theoreti-
cal results still hold (McNeil, 1997; Gençay et al., 2003b). The assumption of identical
distribution can also be relaxed (Gençay et al., 2003b).
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malized sample maxima rT,T = max{r1, r2, . . . , rT} for T → ∞ converge in
distribution to a non-degenerating limiting distribution function H . Then,
for a given sequence of aT > 0 and bT , (rT,T − bT )/aT necessarily converge to
the non-degenerate limit H , which is called generalized extreme value (GEV)
distribution (von Mises, 1954; Jenkinson, 1955):

Hξ(r) =

{
e−(1+ξr)−1/ξ

if ξ �= 0

e−e−r
if ξ = 0 ,

(1)

where 1 + ξr > 0 and the shape parameter ξ ∈ R. The tail index is defined
as α = ξ−1.

For ξ = 0, the distribution has exponentially decreasing tails (the Gumbel
class) and for ξ < 0 one obtains the Weibull class with short-tailed distribu-
tions. If ξ > 0, the distribution is called Fréchet-type (or fat-tailed) and the
tail decays with a power law. The larger the shape parameter, the more fat-
tailed the distribution. Thus, an estimate of ξ or α, respectively, provides a
measure of the fat-taildness of the distribution. In particular, the theoretical
p-th moment of the return distribution is only existent if p < α (Embrechts
et al., 1999, p. 165).

3.2 Estimation of the Tail Index

The most popular estimator for the tail index of Pareto-type distributions is
the conditional maximum likelihood estimator introduced by Hill (1975).10

The Hill estimator is based on the order statistics exceeding a high threshold
value m > 0, which is assumed to be known.11 Let k = k(T ) denote the
number of order statistics exceeding the threshold. Then, the maximum
likelihood estimator of ξ conditional on m suggested by Hill is given by

ξ̂k =
1

k

k∑
j=1

log(rT−j+1,T ) − log(rT−k,T ) (2)

In order to obtain satisfactory properties of the Hill estimator, the thresh-
old m has to be chosen such that the following conditions hold (Wagner and
Marsh, 2003):

k(T ) → ∞, k(T )/T → 0, as T → ∞ (3)

10A comparison with alternative estimators is provided by Kearns and Pagan (1997).
11For the lower tail, a symmetric construction is used.
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If these conditions are fulfilled, the Hill estimator exhibits the following prop-
erties (Wagner and Marsh, 2003):

1.) The estimator is consistent (Embrechts et al., 1999),

2.) under some additional assumptions on the tail behavior of F , the es-
timator is asymptotic normally distributed with some asymptotic bias
term (de Haan and Peng, 1998; Segers, 2001),

3.) a theoretically derived optimal rate of convergence is achieved, and

4.) the estimator is asymptotically quite robust with respect to deviations
from independence (Hsing, 1991), e.g. in a GARCH sense (Resnick and
Starica, 1998).

In Table 2, we provide the results for the estimation of the tail index
α = 1/ξ using three different values for the threshold value m, the 2.5%,
the 5% and the 10% quantile of the empirical distribution. The first three
columns provide the estimates for the left tail, while the last three columns
show the corresponding results for the right tail of the return distributions.

Table 2: Hill Estimator of Left and Right Tail Index α

Left Tail Right Tail
Threshold 2.5% 5% 10% 2.5% 5% 10%

rDM 4.69 3.98 3.45 4.29 3.98 3.28
rFRF 4.38 3.56 3.27 4.10 3.73 3.12
rGBP 3.74 3.77 3.40 3.81 3.68 2.97
rCHF 4.52 3.69 3.24 3.97 3.80 3.39
rJPY 3.39 3.38 2.74 4.63 3.69 3.10

The values ranging from 3.3 to 4.0 for a 5% threshold are in line with usual
estimates for foreign exchange data (Lux and Schornstein, 2005, p. 177).12

Nevertheless, comparing the column entries, it becomes evident that a critical
aspect of the Hill estimator is the choice of the threshold value m. One way
to deal with the selection of a suitable threshold or sample fraction k(T )

12Similar values are also obtained by Gilli and Këllezi (2006) for several financial market
indices including stock prices (see also Jansen and de Vries (1991)).
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consists in analyzing the so-called Hill plot, which is based on a series of Hill
estimates (Drees, 1998):

{(k, ξ̂k,T ) : 1 ≤ k ≤ T} (4)

The tail index estimator should be chosen from a stable region of the Hill
plot (Gilli and Këllezi, 2006). Figure 7 provides the Hill plot for the right
tail of rDM (the results for the other series can be found in the appendix).

Figure 2: Hill Plot for rDM
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Obviously, the Hill estimator (solid lines) and its 95% confidence bands
(dashed lines) exhibit marked fluctuations for very small values of k. The
rectangles indicate stable regions for the different exchange rate data. This
stable regions are from 8% to 10% for rDM , 7% to 10.4% for rFRF , 9.4% to
10.5% for rGBP , 8.5% to 9.8% for rCHF and 6% to 7.1% for rJPY . Thus, the
standard choice of the threshold value of 5% or 10% seems adequate for our
data. In Table 3, we provide the average values of the Hill estimator over
these stable regions as well as for the region 5% to 10%.13

Summarizing the results of the estimation of left and right tail indices,
there is overwhelming evidence for a tail index smaller than four, i.e. heavy
tailed return series. Consequently, although the empirical kurtosis might still
be useful as empirical moment, it does not provide an estimator of the (non

13The stable regions for the left tail are qualitatively similar to those for the right tail.
The exact values are available on request.
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Table 3: Average Hill Estimator of Left and Right Tail Index α

Series rDM rFRF rGBP rCHF rJPY

Left Tail
Average α (graphical) 3.35 3.41 3.60 3.40 3.41
Average α (5%-10%) 3.54 3.29 3.26 3.50 3.39

Right Tail
Series rDM rFRF rGBP rCHF rJPY

Average α (graphical) 3.45 3.90 3.76 3.41 3.50
Average α (5%-10%) 3.62 3.40 3.61 3.47 3.10

existent) theoretical fourth moment of the return series. The same reasoning
applies to the Jarque-Bera statistic.

3.3 BM- and POT-Method

One shortcoming of the Hill-estimator lies in the fact that the approximation
in (1) relies on unknown scaling parameters. A different approach is the use
of the three parameter representation of the GEV, the so-called generalized
Pareto distribution (GPD), for r based on r−μ

σ
, where μ is the location and

σ is the scale parameter (von Mises, 1954). In order to obtain estimates of
these parameters, two methods are used.

First, the Method of Block Maxima (BMM) is based on observed extreme
observations in subsamples of the data. To this end, the data set is divided in
n blocks of equal length and the maximum value for each block is calculated
and stored. The GPD is fitted to this set of block maxima by means of
maximum likelihood.14 For the choice of the block length we closely follow
Gilli and Këllezi (2006) using the calendar year. However, in order to allow
for the bootstrap analysis, we fix the block length to 250 days. The estimates
of the tail indices obtained with this method are shown in Table 4. These
estimates are highly sensitive with regard to the chosen block length.

Second, the Peak-over-Threshold Method (POT) uses available data more
efficiently for estimating the tail index. This method is based on extracting
extreme observations from the empirical distribution function F (x) = P(rt ≤

14For the estimation of the GPD to the left tail the returns are multiplied with -1.
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x) for a given high threshold value m. The excess over m is defined by
z = r − m, which is also called the peak over threshold for the returns
r > m. Then, the distribution of excess returns conditional on exceeding the
threshold is given by

Fm(z) =
P(r − m ≤ z|r > m)

P(r > m)
=

F (z + m) − F (m)

1 − F (m)
, (5)

and therefore

F (r) = [1 − F (m)]Fm(z) + F (m) with z = r − m , (6)

for r > m. For increasing thresholds m, the excess distribution Fm(z) con-
verges to the GPD.15 F (m) can be estimated by (T − Tm)/T , where Tm is
the number of returns rt exceeding the threshold m. For given threshold m,
setting μ = m allows to obtain maximum likelihood estimates for σ and ξ.
As before, the estimate of the tail index is given by α = ξ−1.

The results for the POT method depend crucially on the choice of m.
The convergence result requires to choose a high value for m. However,
large values of m will result in a small number of excess returns and a poor
approximation of (6) for a given sample size T . The sample mean excess
function (MEF) provides a means for selecting the threshold m. The MEF
is defined by

eT (m′) =

∑
I(r>m′)(r − m′)∑

I(r>m′)
, (7)

where I is the indicator function. The threshold m will be chosen such that
the portion of the MEF is positiv and linear for m′ > m. Figure 3 shows
plots of the MEF for the left (upper panel) and right (lower panel) tail of
rDM .

While it appears feasible to select m by visual inspection of the MEF
plot for empirical data, this approach cannot be followed for the bootstrap
analysis. Therefore, an automatic procedure for detecting the threshold m
has to be used. To this end, linear regressions of eT (m′) against m′ are run
for m = T − 150, . . . , T − 10. For each regression, the Schwarz informa-
tion criterion (BIC) is calculated. Then, the threshold corresponding to the
smallest value of BIC is considered. If this value coincides with the lower

15See the references provided in Gilli and Këllezi (2006) to work by Balkema and de
Haan(1974) and Pickands (1975).
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Figure 3: Mean excess function for rDM
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bound (T − 150), it is increased in steps of size 5 until a local minimum is
found.16 For the results presented in Table 4, the threshold m selected by
this approach is indicated in parentheses. The same procedure is also used
for each bootstrap replication in Subsection 4.2.

It should be noted that the results for the POT method are highly sensi-
tive with regard to the choice of m. This sensitivity might explain the high
dispersion of the estimates provided in Table 4. Although a sample size of
7554 is typically regarded as quite sensible, it appears too small to obtain
reliable estimates of the tail index based on the BMM and POT methods
given the high threshold values m identified both based on visual inspec-
tion of the MEF plot and the automatic procedure described above.17 This

16Another option is to take a fixed portion of the data length (McNeil and Frey, 2000).
17Gilli and Këllezi (2006) and Gençay and Selçuk (2004) report better results for stock

market time series. These time series exhibit more extreme observations. Thus, the Pareto
distribution can be fitted based on a larger number of observations than for the exchange
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finding is also supported by the results of the bootstrap analysis provided
in Subsection 4.2. Thus, it is questionable, whether the tail index estimates
obtained by the BMM and POT methods can be used as a benchmark for
the analysis of models of exchange rate time series.

Table 4: BBM and POT Estimators of Left and Right Tail Index α

Method Tail rDM rFRF rGBP rCHF rJPY

BMM αleft 1.6264 1.5607 1.5650 1.7265 1.5720
BMM αright 1.6234 1.5750 1.5608 3.1652 1.5608
POT αleft 4.0508 5.4496 3.7721 3.3183 3.0420

(0.0248) (0.0252) (0.0260001) (0.0222) (0.02697)
POT αright 3.8590 3.0335 9.6023 2.1223 7.5520

(0.0231) (0.0238) (0.0280) (0.0243) (0.01614)

4 Robustness

According to the empirical findings presented in the previous section, the
unconditional distribution of exchange rate returns is clearly non normal.
In fact, both the empirical kurtosis and the Hill-estimator of the tail index
indicate heavy tails for all exchange rates considered. However, in order to
be considered as a ‘stylized fact’, which can be used as a base for further
analysis, i.e. indirect estimation of the parameters of agent based models, it
is of importance how robust these findings are.

In order to assess the robustness of the results, we employ two methods.
First, the calculations are repeated for different subsamples of the data in
order to allow for a comparison of the estimates over time. Thereby, both
a rolling window analysis and the analysis for long subsamples are consid-
ered. Second, the distribution of the statistics is estimated by a bootstrap
implementation.

rate time series.

13



4.1 Subsamples

We start with a rolling windows analysis considering overlapping subsamples
of length 200 and 400 days, respectively. The lower moments of the uncondi-
tional returns exhibit marked fluctuations over time when considering these
small subsamples. However, neither for the means nor for the standard devi-
ations of the exchange rate returns a clear trend can be discovered. Figure 4
plots the results for the mean returns over overlapping 400 days windows as
an example. A similar picture emerges for overlapping windows of length
200.

Figure 4: Mean of Exchange Rate Returns (in percent) for Rolling Windows
(400 Days)
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The results for the empirical skewness and empirical kurtosis are less
robust. While the skewness exhibits a few extreme values during the first
1500 days (2500 days for rCHF ), it sticks to values close to zero for the
rest of the sample. Similarly, as shown in Figure 5, the empirical kurtosis
reaches very high values during the first 1500 days (2500 days for rCHF ).18

The dashed horizontal line corresponds to the theoretical kurtosis of a normal
distribution. Thus, although the extreme values during the first sample years

18Although the extreme values reach 75, the plot is censored at 20 in order to provide
more information on the stable period.
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indicate that the empirical kurtosis might not be a robust measure of fat-
taildness of the distribution,19 at least excess kurtosis appears to be a robust
finding. Again, the results using a window length of 200 days are qualitatively
similar.

Figure 5: Kurtosis of Exchange Rate Returns for Rolling Windows (400
Days)
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Given the missing robustness of the empirical kurtosis during the first
sample years, a consideration of the tail index would be of interest. However,
for obvious reasons the rolling window analysis cannot be extended to the
Hill-estimator of the tail index.

However, the results suggest to consider different subperiods of the sam-
ple. For this purpose, we consider the periods 1975-1984, 1985-1994, 1995-
2004 separately. For this ten year periods, it is also possible to obtain esti-
mates of the tail-index. Table 5 summarizes our findings for the three sub-
periods. These results are in line with the findings for the rolling windows
analysis. While for the first two moments no clear tendency can be observed,
skewness tends to become negative after the first subperiod. Furthermore,
the return distributions tend to become less fat tailed. Nevertheless, they
are still far from being normal for all three subperiods.

19This result might have been expected based on the estimates of the tail index as
discussed in the previous section.
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Table 5: Test Statistics for Subperiods

Tail Index
Std. (5% - 10%)

Series Obs. Mean dev. Skew. Kurt. JB KS Left Right
1975 - 1984

rDM 2505 0.0001 0.0059 0.337 9.855 4953 0.075 3.474 3.370
rFRF 2505 0.0003 0.0058 0.442 7.629 2318 0.087 2.634 2.830
rGBP 2505 0.0003 0.0060 0.617 14.037 12874 0.093 3.569 3.282
rCHF 2505 4E-06 0.0078 0.363 28.872 69920 0.089 3.246 2.911
rJPY 2505 -7E-05 0.0059 -0.579 8.655 3477 0.101 3.466 3.451

1985 - 1994
rDM 2532 -0.0003 0.0072 -0.035 4.884 375 0.052 3.637 3.454
rFRF 2532 -0.0001 0.0073 -0.011 5.789 820 0.058 3.526 3.494
rGBP 2532 -0.0002 0.0070 -0.043 4.916 388 0.052 3.132 3.823
rCHF 2532 -0.0003 0.0079 -0.070 4.325 187 0.038 3.954 3.897
rJPY 2532 -0.0004 0.0064 -0.327 5.937 955 0.056 3.088 3.344

1995 - 2004
rDM 2517 -3E-05 0.0063 -0.078 4.297 179 0.037 4.010 4.092
rFRF 2517 -8E-05 0.0050 0.121 4.439 223 0.042 4.323 4.026
rGBP 2517 -4E-05 0.0062 -0.137 4.080 130 0.035 5.138 4.051
rCHF 2517 -6E-05 0.0069 -0.232 4.689 322 0.040 3.516 4.227
rJPY 2517 1E-05 0.0074 -0.545 7.226 1998 0.059 2.923 3.434

A formal test for constancy of the tail index is introduced by Jansen and
de Vries (1991, p. 20).20 It cannot be applied directly to the average estimates
of the tail index provided in Table 5, but requires a fixed threshold m for
each estimate. Therefore, we repeated the analysis for a fixed threshold
of m = 100 falling in the interval 5%-10%. When comparing the current
subperiod with the previous one using the estimate of the previous subperiod
as benchmark, we find a significant change (at the 5% level) of the tail index
for the following cases. For the left tail, rFRF between the first and second
subperiod, and rGBP between the second and third subperiod. For the right

20An alternative approach to test for structural changes in the tail behaviour is proposed
by Quintos et al. (2001).
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tail, no significant change has been found.21

4.2 Bootstrap Analysis

A generalization of the subsample approach is the general bootstrap, i.e. a
general resampling procedure from the empirical return distributions. Al-
though only the unconditional distribution is considered in this paper, we
use both a simple bootstrap and the block bootstrap with differing block
length. In particular, the block bootstrap is used for comparability with the
results for conditional distributions presented in Winker and Jeleskovic (2006,
forthcomming). However, it is expected that the results for the unconditional
return distributions do not differ between simple and block bootstrap.

In Figure 6, the results of the simple bootstrap are plotted by means of
normal kernel plots of the distribution obtained for 1 000 bootstrap draw-
ings.22 In addition to the kernel estimates, a normal (lognormal for the
JB-statistic) approximation to the data is shown as dotted lines in the plots.

Table 6 shows summary statistics for the distribution of rDM obtained
by the simple bootstrap. The corresponding results for the other return
distributions are provided in the appendix. As expected for statistics of the
unconditional distributions, the results for the block bootstrap with window
length 20 days do not differ substantially.23

The results of the bootstrap support our findings from the subsample
analysis. The mean of foreign exchange rate returns is not a stable char-
acteristic as it measures basically the trend of the exchange rate over the
whole sample considered. Thus, the large bootstrap variance of the mean
is not surprising. By contrast, the bootstrap values of the unconditional
variance are surprisingly stable. However, we have also to consider condi-
tional heteroskedasticity (see Winker and Jeleskovic (2006, forthcomming)).
The skewness exhibits large fluctuations in the bootstrap distribution. This
might be a result of the finding that skewness is not significantly different
from zero for the whole sample. Thus, the bootstrap distribution might cor-
respond to random fluctuations. For the empirical kurtosis, the bootstrap

21The alternative methods for estimating the tail index (BMM and POT) are not con-
sidered on subsamples given the difficulties to obtain reasonable estimates for the whole
sample.

22The corresponding results for a block bootstrap with a block length of 20 days are
shown in Figure 8 in the appendix.

23These results are available on request from the authors.
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Figure 6: Bootstrap Distributions (Simple Bootstrap)
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standard deviation is smaller than for the skewness in relative terms. Never-
theless, both for the empirical kurtosis and the Jarque-Bera statistic we have
to keep in mind that the corresponding theoretical moments might not exist.
In fact, the bootstrap results for the tail index estimates (Hill estimator)
are quite robust indicating that the tail index is significantly smaller than
4 for all return time series (see also the results provided in the appendix).
However, the estimates of the tail index obtained from the BMM and POT
methods are very unstable. This finding is due to their dependency on a very
small number of extremum observations. Finally, the bootstrap estimates of
the Kolmogorov-Smirnov statistic fall in a rather small intervall. Thus, this
statistic might also be considered as a robust characteristic of the data.
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Table 6: Bootstrap Distribution of rDM

Statistic DM/US Mean 5% 50% 95% Std.dev.
Mean -0.68E-4 -0.71E-4 -1.98E-4 -0.72E-4 0.49E-4 0.75E-4
Std.dev. 0.0065 0.0065 0.0064 0.0065 0.0066 0.0001
Skewness 0.0314 0.0255 -0.1592 0.0165 0.2241 0.1217
Kurtosis 5.9866 5.9503 4.9149 5.8387 7.4826 0.7985
JB-Statistic 2806 2957 1175 2534 6351 1673
KS-Statistic 0.0490 0.0513 0.0465 0.0512 0.0566 0.0031
Tail index (left) 3.6208 3.6300 3.3709 3.6272 3.9091 0.1656
Tail index (right) 3.5409 3.5602 3.2598 3.5607 3.8545 0.1809
BMM αleft 1.6264 -0.6339 -37.4834 -2.0654 36.7693 177.4995
BMM αright 1.6234 2.8987 -16.8241 2.8594 25.8162 66.1550
POT αleft 4.0508 4.4393 -32.7288 -3.1778 28.0285 165.2139
POT αright 3.8590 3.7838 -20.7924 2.6654 19.6530 59.0284

5 Time aggregation

The final step of our analysis points towards the effects of time aggregation
on the statistical properties of unconditional exchange rate return distribu-
tions. Obviously, the mean return will not be affected by considering the
observations at lower frequency, i.e. weekly or monthly returns.24 Neverthe-
less, other statistics might be affected. In particular, it is often reported
that financial market returns become closer to a normal distribution at lower
frequencies.

Therefore, we recalculate all statistics presented in Tables 1 and 2 for
blocks of 5, 20 and 60 observations corresponding roughly to weekly, monthly
and quarterly data, respectively. Table 7 shows the results for the standard
test statistics including the results for daily returns from Table 1 as a bench-
mark.

In contrast to the mean, the standard deviation shows a clear increasing
trend at a rate of close to square root of the interval length. If the returns
were independently distributed, this is the expected result. Although Winker

24By forming non overlapping intervals, some observations might get lost resulting in
small changes of the overall sample and corresponding effects on the statistics.
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Table 7: Test Statistics under Time Aggregation

Series Obs. Mean Std.dev. Skew. Kurt. JB KS
1-day returns

rDM 7554 -6.8E-05 0.0065 0.0314 5.987 2809 0.0490
rFRF 7554 1.1E-05 0.0064 0.1000 7.169 5483 0.0544
rGBP 7554 2.6E-05 0.0061 0.1300 6.677 4276 0.0633
rCHF 7554 -0.00011 0.0076 0.0438 13.699 36033 0.0527
rJPY 7554 -0.00014 0.0066 -0.4858 7.377 6328 0.0704

5-day returns
rDM 1510 -0.00034 0.0152 0.0642 5.605 428 0.0424
rFRF 1510 0.00013 0.0145 0.3083 6.806 936 0.0503
rGBP 1510 5.8E-05 0.0149 0.1377 5.710 467 0.0528
rCHF 1510 -0.00054 0.0169 -0.0564 5.443 376 0.0522
rJPY 1510 -0.00071 0.0154 -0.9211 9.873 3186 0.0736

20-day returns
rDM 376 -0.00123 0.0323 -0.2210 3.147 3.402 0.0349
rFRF 376 0.00055 0.0297 0.1362 4.086 19.640 0.0399
rGBP 376 0.00035 0.0314 -0.0279 3.179 0.553 0.0454
rCHF 376 -0.00206 0.0353 -0.1748 3.599 7.536 0.0431
rJPY 376 -0.00278 0.0333 -0.4327 4.063 29.429 0.0643

60-day returns
rDM 125 -0.00333 0.0585 0.1476 2.640 1.130 0.0700
rFRF 125 0.00212 0.0579 0.5731 5.426 37.494 0.0446
rGBP 125 0.00146 0.0576 0.2674 2.348 3.702 0.0580
rCHF 125 -0.00571 0.0652 0.0527 2.593 0.919 0.0488
rJPY 125 -0.00806 0.0620 -0.2355 4.106 7.525 0.0535
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and Jeleskovic (2006, forthcomming) show that the returns considered in this
application exhibit some time dependence (like GARCH-effects or long-range
dependence), the convergence of the standard deviation of mean returns un-
der time aggregation does not seem to be affected to a relevant extent. The
repeated change in sign of the skewness is more difficult to explain. For the
kurtosis we find a general decreasing trend with increasing time intervals.
Consequently, while using the JB-statistic, normality of returns has to be
rejected for all return time series at a 5% level for daily and weekly data, it
can be rejected only for rFRF , rCHF , and rJPY for a 20-day horizon and for
rFRF and rJPY at a 60-day horizon. Using the KS-statistic in the Lilliefors-
test, the null hypothesis of normally distributed returns cannot be rejected
for any exchange rate at the 60-day horizon.

These findings for a tendency to normality of exchange rate returns under
time aggregation are supported by the results for the estimators of the tail
indices presented in Table 8. These estimators are calculated as the average
of the Hll-estimators over the interval 5%-10%. Although the estimates for
period lengths of 20 and, in particular, 60 days become less reliable due to
the small sample size, the overall tendency to increasing values of the tail
index is obvious. In particular, for a period length of 20 days, all return time
series exhibit a tail index larger than four corresponding to the existence of
the theoretical fourth moment (kurtosis).

Table 8: Hill-estimator under temporary aggregation.

Period 1 day 5 days 20 days 60 days
Tail Index Left Right Left Right Left Right Left Right
rDM 3.54 3.62 3.91 3.79 4.71 7.43 5.01 23.37
rFRF 3.29 3.40 3.91 3.60 6.39 5.79 12.35 36.64
rGBP 3.26 3.61 3.36 3.19 4.10 5.03 6.33 3.05
rCHF 3.50 3.47 4.00 3.99 5.08 5.04 6.73 23.97
rJPY 3.39 3.10 3.89 3.56 4.71 6.53 5.52 4.74
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6 Conclusion

Although the unconditional distribution of exchange rate returns can only
provide a rather limited set of ‘stylized facts’,25 our results indicate that
some of them are useful as benchmarks for financial market models, e.g.
agent based models.

The mean of the return series just provides information on the trend for
the sample considered. Thus, the large dispersion for this moment found
for subsamples and the bootstrap is not surprising. In contrast, the uncon-
ditional variance appears to be a robust feature both in the bootstrap and
under time aggregation (correcting for the averaging effect). The skewness
appears to be close to zero for all return series considered. The bootstrap
showing a large variance for this moment, it should not be considered as a
benchmark. The empirical kurtosis appears to be a much more robust statis-
tic with the exception of the first few years of our sample. Furthermore,
under time aggregation, a decrease of excess kurtosis is found as reported in
the literature. However, the Hill-estimator of the tail index indicates that
the theoretical fourth moment might not be existing for daily and weekly
exchange rate returns. Consequently, the use of the kurtosis and the Jarque-
Bera statistic as a benchmark requires additional attention. Given that the
Hill-estimator also provides robust estimates of the tail index with increas-
ing values under time aggregation, this might be a more appropriate bench-
mark for the fat-taildness of exchange rate returns. Finally, the Kolmogorov-
Smirnov statistic provides a robust non-parametric estimate of the deviation
of the unconditional distribution from a normal distribution. Obviously, its
use is not constrained to a comparison with a fixed parametric distribution,
but it can also be used to assess differences between empirical distributions
and distributions generated by the simulation of a model, e.g. an agent based
model.

In addition to the analysis of statistics of the unconditional return distri-
butions, the bootstrap also provides estimates of their standard deviations.
This information can also be used when it comes to compare the empirical
distribution with model based distributions when, e.g., Monte Carlo simula-
tion results both in estimates of the statistics and their distribution.

Summarizing our findings it might be stated that from the set of statistics

25The more interesting aspects related to conditional distributions and long range de-
pendence are discussed in Winker and Jeleskovic (2006, forthcomming).
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on unconditional distributions considered in this paper, the (unconditional)
variance, the Kolmogorov-Smirnov statistic and the tail index appear to be
most promising as benchmarks for financial market models. Although the
estimates of the empirical kurtosis appear to be quite robust and exhibit
an interesting feature under time aggregation, its use required additional
attention due to the possible non-existence of the theoretical fourth moment.
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A Further Results

Figure 7: Hill plots for exchange rate times series
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B Further Bootstrap Results

Table 9: Bootstrap Distribution of rFRF

Statistic FRF/US Mean 5% 50% 95% Std.dev.
Mean 0.11E-4 0.08E-4 -1.16E-4 0.06E-4 1.25E-4 0.74E-4
Std.dev. 0.0064 0.0064 0.0062 0.0064 0.0066 0.0001
Skewness 0.0999 0.0918 -0.1334 0.0762 0.3336 0.1494
Kurtosis 7.1693 7.0970 5.5974 6.9919 8.8993 1.0034
JB-Statistic 5479 5633 2128 5029 11054 2808
KS-Statistic 0.0544 0.0565 0.0511 0.0565 0.0624 0.0034
Tail index (left) 3.4041 3.4228 3.1540 3.4206 3.7015 0.1642
Tail index (right) 3.2916 3.3132 3.0531 3.3043 3.5880 0.1670
BMM αleft 1.5607 -6.3204 -42.7591 -4.8036 31.0540 86.6562
BMM αright 1.5750 1.1486 -4.5699 3.2175 21.8487 83.2922
POT αleft 5.4496 2.9790 -36.4431 -2.2808 35.1590 158.8977
POT αright 3.0335 2.9195 -9.1539 2.7098 20.0833 49.0743
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Table 10: Bootstrap Distribution of rGBP

Statistic GBP/US Mean 5% 50% 95% Std.dev.
Mean 0.26E-4 0.23E-4 -0.93E-4 0.26E-4 1.33E-4 0.70E-4
Std.dev. 0.0061 0.0061 0.0060 0.0061 0.0062 0.0001
Skewness 0.1300 0.1275 -0.0814 0.1310 0.3165 0.1177
Kurtosis 6.6767 6.6636 5.9048 6.6301 7.5103 0.5044
JB-Statistic 4272 4338 2692 4165 6452 1183
KS-Statistic 0.0633 0.0647 0.0593 0.0645 0.0707 0.0035
Tail index (left) 3.6054 3.6166 3.3100 3.6137 3.9429 0.1989
Tail index (right) 3.2611 3.2740 3.0249 3.2703 3.5195 0.1535
BMM αleft 1.5650 -18.8731 -41.0539 2.6932 39.5610 657.3083
BMM αright 1.5608 -6.3126 -32.3930 -4.4989 12.8303 45.8525
POT αleft 3.7721 3.6553 -28.2655 1.8700 33.9194 205.2695
POT αright 9.6023 2.3739 -36.5203 -3.2861 49.3620 136.5969

Table 11: Bootstrap Distribution of rCHF

Statistic CHF/US Mean 5% 50% 95% Std.dev.
Mean -1.08E-4 -1.09E-4 -2.52E-4 -1.09E-4 0.37E-4 0.87E-4
Std.dev. 0.0076 0.0075 0.0073 0.0075 0.0078 0.0002
Skewness 0.0438 0.0611 -0.6272 0.0298 0.8307 0.4374
Kurtosis 13.6992 13.3188 5.7076 13.3847 22.1348 4.8311
JB-Statistic 36009 41071 2324 33963 11521 35901
KS-Statistic 0.0527 0.0540 0.0471 0.0538 0.0608 0.0042
Tail index (left) 3.4652 3.4790 3.2043 3.4784 3.7515 0.1629
Tail index (right) 3.5035 3.5230 3.2119 3.5139 3.8462 0.1917
BMM αleft 1.7265 -0.7792 -6.9730 1.5959 8.2941 45.4457
BMM αright 3.1652 3.0660 1.5629 1.5980 10.7893 17.0052
POT αleft 3.3183 2.6697 -14.7760 2.1455 9.2199 75.1262
POT αright 2.1223 3.1704 -3.8357 1.9129 12.2847 38.2573
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Table 12: Bootstrap Distribution of rJPY

Statistic JPY/US Mean 5% 50% 95% Std.dev.
Mean -1.42E-4 -1.44E-4 -2.75E-4 -1.47E-4 -0.20E-4 0.78E-4
Std.dev. 0.0066 0.0066 0.0064 0.0066 0.0068 0.0001
Skewness -0.4862 -0.4889 -0.7094 -0.4804 -0.2998 0.1277
Kurtosis 7.3763 7.3464 6.2287 7.2704 8.7019 0.7542
JB-Statistic 6320 6441 3431 6035 10818 2296
KS-Statistic 0.0705 0.0719 0.0654 0.0717 0.0787 0.0040
Tail index (left) 3.0992 3.1114 2.8427 3.1110 3.3694 0.1625
Tail index (right) 3.3893 3.4113 3.1485 3.4099 3.6669 0.1620
BMM αleft 1.5720 -6.4014 -35.0290 1.5927 48.9208 258.5851
BMM αright 1.5608 -0.0056 -25.6277 -0.8545 27.9452 40.7210
POT αleft 3.0420 3.1576 -50.5164 2.0072 44.3912 181.7041
POT αright 7.5523 3.1911 -7.4871 -0.9743 -0.0359 104.2892
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Figure 8: Bootstrap Distributions (Block Length 20 Days)
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