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Abstract
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contribution, measures of dependence of foreign exchange rate returns are
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different subsamples. It is also analyzed how time aggregation affects these
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1 Introduction

In the short run, relevant linear dependence of financial market returns would
clearly contradict the assumption of market efficiency as introduced by Fama
(1970, 1991). However, dependence in higher moments of the return distribu-
tion and long memory are often reported as ‘stylized facts’ of returns on financial
assets (Cont, 2001; Granger, 2005) along with the observations of fat tails in un-
conditional return distributions (Winker and Jeleskovic, 2006). If these features
are characteristic for financial market returns, they provide a benchmark for the
further development of theoretical models of these markets and for the empirical
validation of such models, e.g., agent based models (Gilli and Winker, 2003; Lux
and Schornstein, 2005). This benchmark can equally be used for other kinds of
simulation models of exchange rate returns.1

While Winker and Jeleskovic (2006) concentrate on properties of the uncon-
ditional return distribution of foreign exchange series, the focus of this paper is
on dependence in foreign exchange return series. In particular, dependence of
and long memory in higher order moments of the return series is analyzed. We
identify those measures which can be considered as ‘stylized facts’ in the sense
of providing sense of non-trivial statistics, which are robust over time and across
assets (Cont, 2001). Keeping the purpose of using these statistics as benchmarks
for model evaluation in mind, it is also necessary to provide information on their
distributional properties. To this end, a bootstrap approach is used.

Although measures for the unconditional return distributions are already cov-
ered in Winker and Jeleskovic (2006), the literature provides still a plentitude of
properties with regard to dependence in higher order moments and long range
dependence. In this paper, we try to cover the most popular of these statistics,
but cannot claim to provide an exhaustive analysis. Nevertheless, our analysis
should be broad enough to allow for selecting appropriate statistics which might
serve eventually as a benchmark for validating agent based models along the lines
proposed by Gilli and Winker (2003).

This paper is organized as follows. Section 2 introduces the exchange rate time
series used for the empirical analysis and their empirical moments. Furthermore,
we provide an overview on deviations from the independence assumption which
will be covered in this contribution and present the results of the BDS-test, which
can be considered as a portmanteau test of such deviations. Section 3 is devoted

1E.g., Ding et al. (1993, pp. 94ff) analyze different time series models with regard to their
ability to match sample autocorrelation functions.
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to models and statistics of dependence in moments of the return distribution. The
issue of long memory is covered by Section 4, while stationarity is the subject of
Section 5. The robustness of the all statistics is assessed in Section 6 by analyz-
ing subsamples of the data and application of the bootstrap method. Finally, the
impact of time aggregation is discussed in Section 7. Section 8 summarizes our
main findings and the implications for indirect estimation approaches.

2 Data, Empirical Moments and BDS-Test

2.1 The Data

For the empirical analysis, we use foreign exchange time series at daily frequency
(5-day-week). The sample includes 8088 observations of the German D-Mark
(DEM), British Pound (GBP), French Franc (FRF), Swiss Franc (CHF), and the
Japanese Yen (JPY) against the US Dollar in volume notation for the period 1st
of January 1974 to 4th of January 2005.2 The values for the German D-Mark
and the French Franc are the implicit rates after the introduction of the Euro in
1999. Each time series contains 284 missing values due to bank holidays. We
use the sample 1.1.1975 to 31.12.2004 for the following analysis if not stated
otherwise. For the observations following a missing value, the return is calculated
on the base of the last preceding valid observation. The return time series are
calculated as logarithmic differences of the price series and denoted by ri, i ∈
{DEM,GBP,FRF,CHF,JPY}.

Figure 1 shows the exchange rate time series for the German D-Mark, the
British Pound and the Japanese Yen against the US Dollar in the upper panel, and
the corresponding return time series in the lower panel.

While it might appear difficult to spot autocorrelation of the return series in
figure 1, the volatility clustering is quite obvious, i.e. periods of high volatility in
returns tend to be persistent as are low volatility periods. In contrast to these short
run dependencies in the second moment it is difficult if not impossible to judge
the relevance of long term dependencies in some (higher) moments of the return
series. Therefore, after considering short run dependencies in Section 3, testing
procedures for long range dependence will be presented in Section 4. Finally,
looking at the exchange rate series themselves, the issue of stationarity comes
into play. Section 5 is devoted to tests for stationarity and fractional integration.

2The data were retrieved from http://fx.sauder.ubc.ca/data.html, a site of the Sauder
School of Business, University of British Columbia.
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Figure 1: Exchange Rate Time Series and Returns for DEM, GPB, and JPY
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Before turning to all these potential deviations from the independence assumption
in detail, we first present the unconditional moments of our return series in the
following subsection, and the BDS-test at the end of this section.

2.2 Empirical Moments and Tests for Normality

In Table 1, we provide the empirical skewness, kurtosis and the Komogorov-
Smirnov statistic. While the empirical skewness is close to zero for most series,
the observed kurtosis is clearly above the value of three for a normal distribution.
This finding is supported by the values of the Kolmogorov-Smirnov statistic (KS)
reported in the last column. For the test of the null hypothesis of a normal distribu-
tion, the moments of the normal distribution have to be estimated. Therefore, the
modified statistic and critical values from Lilliefors (1967) are used for the test.
The null hypothesis has to be rejected at any conventional level of significance.

2.3 Deviations from Independence and BDS-test

Brock et al. (1996) introduce the BDS-test to distinguish between a deterministic
white noise chaos and a stochastic white noise process.3 The case of white noise

3The approach is based on earlier work by Brock et al. (1987).

4



Table 1: Test Statistics for Normality Assumption

Series Obs. Mean Std.dev. Skew. Kurt. KS
rDEM 7554 -6.8E-05 0.0065 0.0314 5.987 0.0490
rFRF 7554 1.1E-05 0.0064 0.1000 7.169 0.0544
rGBP 7554 2.6E-05 0.0061 0.1300 6.677 0.0633
rCHF 7554 -0.00011 0.0076 0.0438 13.699 0.0527
rJPY 7554 -0.00014 0.0066 -0.4858 7.377 0.0704

chaos can also be interpreted as linear dependence in higher conditional moments.
Therefore, the BDS-test can also be called a test for non-linear dependence of the
original process (Liu et al., 1992; Kanzler, 1998). We use the BDS-test in this
sense, i.e. as a portmanteau test for any kind of time based dependence in the re-
turn series. In fact, according to Kanzler (1998), theoretically, the BDS-test is sen-
sitive against a huge variety of linear and non-linear, deterministic and stochastic
alternatives and does not depend on the existence of higher moments.4 Therefore,
we apply the BDS-test to the residuals of a linear model, e.g., an ARMA model.
Although we do not expect to find significant short run linear dependence in the
return series, we also apply the BDS-test to such residuals.

The BDS-test is based on the concept of the correlation integral and its gen-
eralization for subsequences of time series (Liu et al., 1992). For a given return
series rt , the correlation integral is defined as

C1(ε) = lim
T→∞

1
T 2 ·NB , (1)

where NB denotes the number of pairs (i, j) such that the corresponding returns ri

and r j have similar values, i.e. such that |ri − r j| < ε. For a local approximation
of C1(ε) by C1(ε) ≈ εν, the exponent ν is called the correlation exponent. In
principle, it might be used to distinguish stochastic white noise from white chaos,
but also low-dimensional chaos from high-dimensional chaos.

4Davidson and Sibbertsen (2005, p. 269) propose to use the McLeod and Li (1983) portman-
teau test as a test for nonlinearity. However, the asymptotic distribution of this test hinges on the
assumption of the existence of finite high order moments. Nevertheless, we also run the McLeod
and Li test and find clear indication for deviations from the independence assumption. The results
are available on request from the authors.
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The generalization of (1) to subsequences of rt of length m is given by

Cm(ε) = lim
T→∞

1
T 2 ·NBm , (2)

where NBm denotes the number of pairs (i, j) such that all corresponding elements
of [ri−m+1, . . . ,ri] and [r j−m+1, . . . ,r j] are close to each other, i.e. satisfy the con-
dition |ri−k − r j−k| < ε for k = 0, . . . ,m−1. Thereby, m is called the embedding
dimension. Again, a local approximation Cm(ε) ≈ ενm , for small ε is considered.
If rt is a stochastic white noise process, the correlation exponent νm is equal to m
for all m.

If the observations rt are independent, the joint probability of satisfying the
ε-condition in (2) should be equal to the product of probabilities of satisfying the
individual conditions, i.e., Cm(ε) = [C1(ε)]m. This motivates the BDS-statistic
Sm(ε) = Cm(ε)− [C1(ε)]m, which is asymptotically normal distributed under the
null hypothesis of i.i.d. distributed rt .

For the application of the BDS-test to sample data, the unobserved probabili-
ties C1(ε) and Cm(ε) have to be replaced by sample estimates, i.e.

Cm,T (ε) =
2

(T −m+1)(T −m)

T−m+1

∑
i=1

T−m+1

∑
j=1

m−1

∏
k=0

Iε(ri+k,r j+k) , (3)

where Iε indicates the indicator function, i.e. Iε(x,y) = 1, if |x− y| < ε and zero
otherwise.

Normalizing the estimateCm,T (ε)−[C1,T−m+1(ε)]m by an estimate of its asymp-
totic standard deviation and multiplication with

√
T −m+1 leads to the BDS-

statistic, which is asymptotically standard normal distributed under the null hy-
pothesis of independence (Brock et al., 1996).

It should be noted that one has to set a priori the relevant dimensional distance
ε and the embedding dimension m for the test. As proposed by Kanzler (1998), we
choose the dimensional distance ε to be equal to 0.7 times the standard deviation
of the return series. The values of the embedding dimension are chosen to be 2,
3, and 4 as appears to be common practice in the literature.5 The results for the
original time series and for the residuals after fitting ARMA(1,1) models to these
time series are summarized in Table 2.

5Increasing the embedding dimension m would result in very small values of Cm,T and a high
variance of its estimator. However, high-dimensional chaos and long range dependence might not
be uncovered using small values of m.
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Table 2: BDS statistics

Residuals of
Return Time Series ARMA(1,1) Models

m = 2 3 4 2 3 4
rDEM 9.611 14.708 19.541 9.793 14.878 19.734
rFRF 11.699 18.082 24.447 11.709 18.084 24.402
rGBP 14.939 20.080 25.167 15.331 20.753 25.975
rCHF 8.996 12.049 15.663 8.997 12.162 15.896
rJPY 13.144 17.322 22.751 13.231 17.501 22.907

As expected, the results for the original series and the residuals of a simple
ARMA(1,1) specification do not differ substantially. Furthermore, the null hy-
pothesis of independence has to be rejected for all exchange rates and all embed-
ding dimensions at any conventional level of significance. Thus, a more detailed
analysis of dependence structures seems indicated. It is conducted in the follow-
ing sections.

3 Conditional Moments of Return Distribution

The returns themselves should not contain a relevant amount of serial correla-
tion. Otherwise the assumption of market efficiency would be clearly contradicted
Fama (1970, 1991). Nevertheless, it is a well known observation that absolut
or squared returns show persistence, i.e. significant positive autocorrelation over
some lags (Ding et al., 1993; Cont, 2001). Consequently, this section is devoted
to measures of sample autocorrelation for different functionals of the return series
and to the classical approach for modelling volatility clustering, the (G)ARCH
model.

3.1 Sample Autocorrelation

The sample autocorrelation functions for rDEM and |rDEM|d for different positive
values of d are shown in Figure 2.6 The dotted horizontal lines indicate the 95%

6The corresponding figures for the other exchange rates are provided in the appendix.
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asymptotic confidence interval under the null hypothesis that rDEM is indepen-
dently and identically distributed.7

Figure 2: Sample autocorrelation for rDEM and |rDEM|d for different values of d.
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The sample autocorrelation function for rDEM shows a few marginally signif-
icant positive values. All other autocorrelation coefficients are not significantly
different from zero, while positive and negative values are of similar frequency.
The picture changes drastically when moving to the second and third plots in the
upper panel corresponding to |rDEM|0.5 and |rDEM|. Here, we find a similar result
as reported by Ding et al. (1993, pp. 86ff) for the S&P 500 stock returns. All
autocorrelation coefficients up to lag 200 are positive. For d = 0.5, all but one
coefficient are significantly positive at the 5% level, while for d = 1 still 189 out
of 200 (94.5%) are significantly positive. These results are strong evidence for a

7For our sample of 7554 observations, the confidence interval is ±1.96/
√

7554 = ±0.0225.
Note that if rDEM is i.i.d., the same applies to any transformation of rDEM , in particular to |rDEM |d .
Thus, the same asymptotic confidence intervals apply under the i.i.d. assumption.
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high persistence in low order moments of absolute returns.
The picture changes gradually as we move to higher order moments in the

lower panel of Figure 2. For d = 1.5 (left most plot), the first 50 autocorrelations
are still significantly positive, while the overall number of significant coefficients
shrinks to 143. While all coefficients are positive for d = 1.5, we observe 4 neg-
ative, though insignificant, values for d = 2 and 58 (all insignificant) for d = 3.
While increasing d, the number of significant coefficients decreases to 85 for d = 2
and 12 for d = 3. Thus, positive autocorrelation and long memory is most pro-
nounced for small powers of absolute returns.

A more detailed picture of sample autocorrelations of |rDEM|d for different
values of d is given in Table 3. At first sight, it becomes obvious that negative au-
tocorrelations appear to be the exception for small powers of |rDEM|. Furthermore,
the maximum coefficient values for different lags are usually found for d = 0.5 or
d = 0.75, i.e. at slightly lower exponents than reported by Ding et al. (1993, p. 87)
in their application to S&P 500 stock returns.

Table 3: Autocorrelations of |rDEM|d

Lag
d 1 2 3 4 5 10 20 30 40 50 100 200

0.125 0.091 0.107 0.124 0.083 0.099 0.118 0.083 0.058 0.050 0.072 0.050 0.030
0.25 0.110 0.123 0.140 0.104 0.129 0.138 0.103 0.070 0.065 0.080 0.056 0.033
0.5 0.118 0.129 0.146 0.117 0.146 0.143 0.114 0.073 0.072 0.080 0.055 0.031
0.75 0.118 0.128 0.144 0.121 0.151 0.139 0.114 0.071 0.071 0.074 0.051 0.025
1 0.118 0.123 0.138 0.120 0.148 0.131 0.109 0.067 0.066 0.066 0.044 0.019
1.25 0.116 0.117 0.128 0.115 0.141 0.119 0.100 0.062 0.059 0.055 0.038 0.013
1.5 0.112 0.110 0.115 0.107 0.130 0.106 0.089 0.057 0.050 0.044 0.031 0.008
1.75 0.105 0.103 0.099 0.097 0.115 0.090 0.077 0.050 0.040 0.033 0.025 0.005
2 0.096 0.094 0.082 0.084 0.099 0.074 0.064 0.044 0.030 0.022 0.020 0.002
3 0.043 0.050 0.023 0.031 0.035 0.022 0.020 0.016 0.005 0.000 0.006 -0.001

A different view on the dependence of the sample autocorrelation at a given
lag for varying exponents d is provided in Figure 3.8 The left most plot in the
upper panel shows the autocorrelation at the first lag for d = 0.05,0.10,0.15, . . .,5.
Obviously, this first order autocorrelation is a smooth function of d, which reaches
as single maximum. A similar shape results for lags 2 and 5 shown in the other

8The corresponding plots for the other exchange rates are provided in the appendix.
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two plots in the upper panel and for lags 20, 50, and 200 provided in the lower
panel. However, the maximum autocorrelation is obtained for different values of
d. It can be observed that with increasing lag length, the exponent d resulting in
the maximum autocorrelation coefficient (dashed lines) tends to decrease.9

Figure 3: Dependence of Autocorrelation of |rDEM|d on d for Different Lags.
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3.2 GARCH-Models

The results of the previous subsection indicate that autocorrelation of r2 might
not be the most important form of dependence in exchange rate returns. Never-
theless, keeping in mind that our aim is not the construction of an optimal time
series model for exchange rate returns, but the selection of robust ‘stylized facts’,
it seems adequate to proceed with an analysis of the traditional approach for mod-

9Granger (2005, p. 38) reports as a stylized fact (Taylor effect) that the slowest decline is
usually found for d = 1.
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eling volatility clustering, i.e. the class of autoregressive conditional heteroskedas-
ticity (ARCH) models.10

ARCH models have been introduced by Engle (1982).11 The standard speci-
fication of an ARCH(p) for a return time series rt is given by

rt = h1/2
t εt , ht = ω+

p

∑
i=1

αir
2
t−i , εt ∼ N(0,1) . (4)

Thus, the current volatility of rt depends on past realizations of squared returns.
Bollerslev (1986) presents the generalized ARCH (GARCH) model by adding
lagged values of the unobserved volatility ht to the variance equation:

rt = h1/2
t εt , ht = ω+

p

∑
i=1

αir
2
t−i +

q

∑
i=1

βiht−i , εt ∼ N(0,1) . (5)

A further modification is the exponential GARCH (EGARCH) model devel-
oped by Nelson (1991), where the conditional variance depends both on the abso-
lute size and the sign of the lagged innovations:

lnht = ω+
p

∑
i=1

αi(φεt−i + γ[|εt−i|−E|εt−i|])+
q

∑
i=1

βi lnht−i (6)

Therefore, this model is able to capture asymmetries in returns, namely that nega-
tive returns have a stronger impact on the dynamic of prices than positive returns
(leverage effect). However, given the functional symmetry in exchange rate re-
turns, it is doubtful whether an EGARCH specification might be adequate for this
market. Nevertheless, we provide estimates of the EGARCH(1,1) specification as
a further potential benchmark.

The estimation results for the ARCH(1), the GARCH(1,1) and also for the
EGARCH(1,1) model are presented in Tables 4, 5, and 6, respectively. We stick
to the GARCH(1,1) framework as it appears to be the standard in applications
to financial market time series. Furthermore, when comparing GARCH-models
with up to three lagged values of r2

t and ht , respectively, the Schwarz information
criterion is minimized for the GARCH(1,1) model in most cases.12

10In fact, Ding et al. (1993, p. 94ff) indicate that simple GARCH models cannot reproduce the
type of autocorrelation pattern described in the previous subsection and, consequently, should be
considered as misspecified.

11For an introduction to ARCH models and modifications thereof see, e.g., Gourieroux (1997).
12The exceptions are rFRF with a minimum for the GARCH(3,3) and rJPY with a minimum for

the GARCH(2,2) specification.
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In all specifications, a constant has been estimated for the mean equation.
However, this constant has never turned out to be significant. Therefore, it is not
reported in the tables. The estimates remain almost unaffected if the constant is
removed from the estimated specification. The numbers in paranthesis provide the
estimated standard errors.

Table 4: Estimation Results for ARCH(1) Model

ARCH(1) rDEM rFRF rGBP rCHF rJPY

ω 0.0000 0.0000 0.0000 0.0000 0.0000
(0.000) (0.000) (0.000) (0.000) (0.000)

α1 0.1392 0.1331 0.2065 0.1266 0.2112
(0.009) (0.010) (0.012) (0.008) (0.011)

The estimates for α1 in the ARCH(1) model are highly significant. Neverthe-
less, the scaled residuals εt = rt/

√
ht are still heavy tailed and exhibit some short

term dependence. Therefore, the ARCH(1) model does not appear to be a relevant
benchmark.

Table 5: Estimation Results for GARCH(1,1) Model

GARCH(1,1) rDEM rFRF rGBP rCHF rJPY

ω 0.0000 0.0000 0.0000 0.0000 0.0000
(0.000) (0.000) (0.000) (0.000) (0.000)

α1 0.0708 0.0895 0.0646 0.0658 0.0578
(0.003) (0.003) (0.003) (0.004) (0.002)

β1 0.9210 0.9103 0.9227 0.9270 0.9398
(0.004) (0.003) (0.004) (0.004) (0.002)

The GARCH(1,1) model appears superior to the ARCH(1) specification: The
relevant parameters α1 and β1 are highly significant. However, the (normalized)
residuals of the GARCH(1,1) are still too fat-tailed – though less pronounced than
for the simple ARCH(1) – to maintain the assumption of normal distributed εt .

Furthermore, we find that the coefficients α1 and β1 sum up to values close
to one corresponding to an almost integrated process. This finding might re-
sult from long memory components in the returns which have to be fitted in the

12



GARCH(1,1) model through its exponentially decreasing autocorrelation func-
tion. Consequently, it seems appropriate to reconsider GARCH-type effects in a
long memory setting, e.g., the FIGARCH model discussed in Section 5.

The parameter estimates for the GARCH(1,1) specification are highly signif-
icant. The model provides a reasonable approximation to our data. Thus, the
estimates for the GARCH(1,1) specification will be used as one possible bench-
mark in indirect estimation approaches despite of the fact that the residuals are
still fat-tailed.13

Table 6: Estimation Results for EGARCH(1,1) Model

EGARCH(1,1) rDEM rFRF rGBP rCHF rJPY

ω -0.3483 -0.4203 -0.5041 -0.2532 -0.4139
(0.024) (0.018) (0.018) (0.015) (0.014)

α1φ -0.0073 0.0125 0.0057 -0.0230 -0.0148
(0.004) (0.004) (0.003) (0.003) (0.004)

α1γ 0.1581 0.2022 0.1723 0.1312 0.1725
(0.007) (0.006) (0.006) (0.004) (0.005)

β1 0.9775 0.9736 0.9634 0.9843 0.9716
(0.002) (0.001) (0.001) (0.001) (0.001)

Finally, we consider the results of the EGARCH(1,1) specification. As pointed
out before, it is difficult to provide a rational for the leverage effect when consider-
ing exchange rate returns. Thus, on the one hand, it is surprising to find significant
estimates,14 but, on the other hand, it is less surprising that the sign of these ef-
fects differs across currencies. For these reasons, the EGARCH(1,1) model does
not represent a useful benchmark for indirect estimation or simulation approaches
when exchange rate return series are considered.

As an alternative to the GARCH class of models, stochastic volatility models
(SV) have been proposed. While in a GARCH model, volatility depends on past
squared returns deterministically, the SV models specify the variance as a latent
stochastic process. An additional stochastic term in the variance equation allows

13The fat-taildness of GARCH(1,1) residuals might be used as a further ‘stylized fact’ of return
time series.

14Pagan (1996) also reports weak evidence for leverage effects using a different modelling ap-
proach and monthly data.
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for a more flexible approximation of volatility. For example, Kim et al. (1998) and
Carnero et al. (2004) point out that a Gaussian AR(1)-SV performs well for mod-
elling real data with high kurtosis and low first-order autocorrelation of squares,
while the GARCH(1,1) model in these cases requires to assume a fat-tailed condi-
tional distribution (e.g., Student-t). On the other side, in the applications consid-
ered by Kim et al. (1998), the Gaussian AR(1)-SV is dominated by the t-GARCH
model. Of course, more sophisticated specifications of the SV model might again
lead to an improvement. Consequently, it has to be considered an open question
which class of models has to be preferred for modelling conditional volatility of
financial market time series. In fact, Carnero et al. (2004) point out that both
the GARCH and the SV models allow for an ARMA-presentation and, thus, the
autocorrelation patterns of squares from both processes might be similar. Fur-
thermore, the estimation of the SV model is complicated by the presence of the
random shocks in the latent variance equation. In fact, estimation requires non
standard procedures like, e.g., the Kalman filter resulting in an even higher com-
putational load than the GARCH model.15 For these reasons, we consider only
the GARCH model as a benchmark statistic for conditional heteroscedasticity in
the following.

4 Long Memory

The autocorrelation patterns for different powers of absolute returns provide a
typical indication of long memory. This finding is supported by the estimated
parameters of the different GARCH specifications. Consequently, in this section,
we consider explicit statistics for long memory taking into account that autocor-
relation structures do not provide a complete characterization of long memory
properties (Davidson and Sibbertsen, 2005, p. 267).

A standard characterization of long memory is by the hyperbolic decline of
the autocorrelation coefficients ρ(k) for higher order lags k. Thereby, ρ(k) refers to
the autocorrelation coefficients of rt , |rt|, and r2

t , respectively, or any other power
of |rt|. For an approximation

ρ(k) ∼ c · (k)2H−2, as k → ∞ , (7)

the rate of decay H is called Hurst exponent. This parameter can be used to
describe a self-similar property of a stochastic process (Taqqu and Teverovsky,

15To our knowledge, none of the standard econometric software packages like EViews, GAUSS,
Matlab, or SAS includes a standard routine for the estimation of SV models.
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1998, p. 177-217). Furthermore, the Hurst exponent H describes the overall shape
of the autocorrelation function of the process. For 1/2 < H < 1, the process
exhibits positive autocorrelation and long-range dependence, i.e. long memory.
Estimates of H can be obtained by different methods. In the sequel, we consider
the two most widely used approaches, namely the R/S-analysis and the GPH-
estimator.

4.1 R/S-Analysis

The range over standard deviation statistic (R/S-statistic), or simply rescaled range
statistic, was originally developed by the English hydrologist Hurst (1951) for the
analysis of river discharges. Mandelbrot (1971) was the first to apply this concept
to financial markets in order to detect long-range dependence. The rescaled range
statistic is defined by the range of partial sums of deviations of a time series from
its mean, rescaled by its standard deviation. Let rt be the return for an asset in
period t (the same analysis is repeated for |rt | and r2

t ). Then, the average return
over a period of length n, i.e. the observations 1, . . . ,n is given by

r̄n =
1
n

n

∑
t=1

rt . (8)

The difference between the maximum and the minimum accumulated deviation
from the mean over a period of length n is called the range (Rn), i.e.:

Rn = max
1≤k≤n

k

∑
t=1

(rt − r̄n)− min
1≤k≤n

k

∑
t=1

(rt − r̄n) . (9)

To rescale this range, it is divided by the usual standard deviation

Sn =

√
1
n

n

∑
t=1

(rt − r̄n)2 . (10)

Finally, the ratio Rn/Sn, or R/S for short, is called the rescaled range statistic.
Mandelbrot and Wallis (1969) suggest estimating the Hurst exponent H by re-

gressing the logarithm of Qn against the logarithm of the sample size n. Thereby,
Qn denotes average of Rn/Sn over all contiguous intervals of length n.16 In Ta-
ble 7, the values of 1/

√
(n)Qn are given in the column labeled Qclassical . Critical

16For the calculation of the Hurst exponent and Q-statistics we use the algorithm provided by
Peters (1994, p. 62).
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values for 1/
√

nQn under the null hypothesis of no long memory are provided by
Lo (1991, Table II).

This estimate of H appears superior to several other methods, in particular for
time series with large skewness and/or kurtosis (Lo, 1991). The column labeled
‘HR/S’ in Table 7 provides the estimates of the Hurst exponent H using this stan-
dard approach. The estimates of H for the return series rt are all close to 0.5. Thus,
they do not provide a clear indication for the existence of long-range dependence
in the return series. In contrast, the estimated Hurst exponents for absolute and
squared returns are clearly above 0.5 indicating some long-range dependence in
absolute and squared returns.

Unfortunately, to our knowledge, no standard asymptotic distribution theory
is available for this estimates of H. A further possible drawback of the classical
R/S analysis is that the estimated Hurst exponent appears to be biased towards
a value close to 0.72 (Mandelbrot and Wallis, 1969). Finally, a potentially more
important shortcoming of the R/S analysis is a bias of the estimate of H resulting
from short term dependence, e.g., in the sense of ARMA-processes (Lo, 1991;
Jacobsen, 1996).

In order to take into account the latter issue, Lo (1991) proposes the modified
rescaled range statistic by replacing Sn in Qn = Rn/Sn through

S(n,q) =

√
S2

n +2
q

∑
k=1

wk(q)γ̂k , (11)

for some window length q < n, where γ̂k denotes the k–th order autocovariance of
rt , |rt |, and r2

t , respectively, and the weights wk(q) are given by

wk(q) = 1− k/(q+1) . (12)

The modified R/S-statistic has the main advantage that it is insensitive to many
types of short term dependence (Jacobsen, 1996). However, a correct choice of
the window length q is crucial. Lo (1991) proposes to select q following a data-
dependent formula similar to the one proposed by Andrews (1991):

q =
(

3n
2

) 1
3

·
(

2ρ̂(1)

1− ρ̂2
(1)

) 2
3

, (13)

where ρ̂(1) is the estimated first order autocorrelation coefficient. The results for
this modified version of the test are provided in the column headed Qmod.(q = opt)
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in Table 7. The asymptotic critical values for the resulting statistic 1/
√

nQ̃n =
1/

√
nRn/S(n,q) are the same as for the standard version (see Lo (1991, Ta-

ble II)).17

Table 7: Estimates of the Hurst Exponent and Q-statistics from the R/S Analysis

Estimates HR/S Qclassical Qmodi f ied(q = opt)
rDEM 0.6200 1.8290 1.7855
|rDEM| 0.8730 5.2393∗ 1.4754
r2
DEM 0.7645 3.6448∗ 1.9671

rFRF 0.6188 1.8971 1.8622
|rFRF | 0.8940 5.7482∗ 1.6177
r2
FRF 0.7860 3.6836∗ 2.1387∗

rGBP 0.5934 1.6196 1.5391
|rGBP| 0.9374 7.0080∗ 1.7975
r2
GBP 0.8506 5.1924∗ 2.6162∗

rCHF 0.6069 1.6202 1.6202
|rCHF | 0.8268 4.4768∗ 1.1942
r2
CHF 0.6937 2.9968∗ 1.2809

rJPY 0.6275 1.7053 1.6545
|rJPY | 0.9192 5.7620∗ 1.5261
r2
JPY 0.8381 4.0958∗ 1.9527

Rejection of the null hypothesis of no long memory at the 1% level is
indicated by ∗.

The results of the test based on the classical estimate of Qn clearly support the
findings from the estimates of H based on the R/S statistic. For the return series
themselves, no long memory is found, while the absolute and squared returns
exhibit significant long memory properties. The results become weaker when
taking into account short run dependence considering the modified Qn statistic.18

17For a more detailed description of the R/S statistic, its modification and its properties, the
reader is referred to Lo (1991) and Taqqu et al. (1999).

18However, Taqqu et al. (1999) indicate that under the null hypothesis of long memory, the
choice of q according to equation (13) might be too large resulting in too small values of the
modified Q-statistic.
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4.2 GPH-Estimator

The notion of long-range dependence is closely linked to the concept of fractional
integration (see also section 9). In fact, the following relations hold between the
Hurst exponent H and the degree of fractional integration d:19

d = H −1/2 (14)

for finite variance processes, and

d = H −1/α (15)

for infinite variance processes, where α is the tail index (Taqqu and Teverovsky,
1998). Given the results of the estimation of the tail index for our data set reported
in Winker and Jeleskovic (2006), we might assume that the return processes ex-
hibit a finite variance.

The most widely used approach for estimating the fractional integration pa-
rameter d has been introduced by Geweke and Porter-Hudak (1983) and is called
the GPH estimator (Andersson, 2002). It is based on the periodogram of the time
series

I(λ j) =
1

2πn

∣∣∣∣∣
n

∑
t=1

rt · eiλ j

∣∣∣∣∣
2

, (16)

where λ j = 2π j/n for j = 1, ...,m denotes the frequency and n the number of ob-
servations. Close to the origin, the spectral density of a long-memory process is
proportional to |λ|1−2H . The regression of the periodogram against the frequency
λ in logarithms provides an estimator of the fractal coefficient. The GPH esti-
mator uses a slightly different version, by regression on ln|2sin(λ/2)| instead of
ln(|λ|). For very small frequencies, both approaches are equivalent (Taqqu and
Teverovsky, 1996). Thus, the GPH estimate is obtained from the following re-
gression (Diebold and Rudebusch, 1991):

ln[I(λ j)] = β̂0 + β̂1ln[4sin2 (λ j/2)]+ ε j (17)

This estimator is consistently and asymptotically normal (Diebold and Rude-
busch, 1991; Jeng, 1999).20 The estimator should include only the frequencies

19Nevertheless, as pointed out by Granger (2005), fraction integration is just one possible source
of long memory besides, e.g., stochastic breaks.

20The asymptotic properties of the GPH-estimator hold for processes with d ∈ (−1/2,1/2).
(Hurvich and Ray, 1995) proposed the data tapering method in order to overcome this stationarity
restriction. We also calculated the estimates based on their modified approach. The qualitative
results do not differ from the ones provided in Table 8.
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near the origin. To this end, Geweke and Porter-Hudak (1983) proposed to choose
the number of frequencies according to m = n0.5. In our application, we consider
also the exponents 0.55, 0.575 and 0.6 as proposed by Jeng (1999). The results
are provided in Table 8.

Table 8: GPH Estimator for different m

m= 0.5 0.55 0.575 0.6
rDEM 0.0642 0.0910 0.1071 0.0715
|rDEM| 0.4506 0.3862 0.3144 0.3435
r2
DEM 0.3570 0.3227 0.2814 0.2788

rFRF 0.0485 0.0223 0.0535 0.0453
|rFRF | 0.4127 0.4065 0.3521 0.3411
r2
FRF 0.3192 0.2839 0.2597 0.2500

rGBP 0.0469 0.0338 0.0935 0.0784
|rGBP| 0.4626 0.4900 0.4354 0.4338
r2
GBP 0.3671 0.4399 0.4183 0.4200

rCHF 0.0786 0.0541 0.0731 0.0511
|rCHF | 0.3721 0.4379 0.3824 0.3714
r2
CHF 0.1239 0.1702 0.1349 0.1487

rJPY 0.0758 0.0581 0.0541 0.0737
|rJPY | 0.5022 0.4216 0.4249 0.3970
r2
JPY 0.3690 0.2918 0.3150 0.3211

The estimates of the degree of fractional integration d are close to zero for all
return series and all choices of m. Consequently, using the naive estimates of the
standard error of the least squares regression, the null hypothesis of d = 0, i.e. no
long memory, cannot be rejected for the return series. However, for the absolute
and squared returns, the estimates of d are much larger and often between 0.3 and
0.5. Furthermore, the null hypothesis of d = 0 has to be rejected at the 1% level for
the absolute and squared returns for all currencies under consideration and for all
choices of m.21 Therefore, the estimates of d for the return series, the absolute and
squared returns might be used as a further benchmark of long memory behaviour.

21These qualitative findings remain unchanged when replacing the least squares standard devia-
tion by the asymptotic standard deviation of the GPH-estimator (Geweke and Porter-Hudak, 1983).
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4.3 Parametric Models of Long-Memory

A further alternative for modelling long-memory consists in parametric models
such as the ARFIMA-model for powers of (absolute) returns (Granger, 1980) and
the FIGARCH-model for volatility (Baillie et al., 1996).

For the ARFIMA-model, we only report results of the application to absolute
return motivated by the findings from section 3.1. In fact, the application to re-
turns does not result in any significant parameter estimate,22 while the results for
squared returns are similar to the ones for absolute returns though with smaller and
for some exchange rates insignificant estimates of the long-memory parameter.

Formally, an ARFIMA(p,d,q) process is given by

Φ(B)(1−B)d|rt| =Ψ(B)εt , (18)

where (1−B)d =
∞

∑
k=0

Γ(k−d)Bk

Γ(−d)Γ(k+1)
, (19)

and B is the backshift operator (B(rt) = rt−1), Φ(B) and Ψ(B) are lag polynomi-
als of order p and q, respectively, with all roots of the characteristic polynomial
outside the unit circle, d stands for the fractional integration parameter and Γ de-
notes the usual gamma function. εt is assumed to be a white noise process. An
ARFIMA(p,d,q) process is stationary and invertible for d ∈ (−0.5,0.5). Table 9
summarized the estimation results for ARFIMA(1,d,1) models fitted to the ab-
solute exchange rate returns. All parameters are significant at the 5% level of
significance. It turns out, that the estimated fractional degree of integration d is
quite similar for the different exchange rates. The results of ARFIMA(1,d,1)
seem to be very stabil over different absolute exchange rate returns. Furthermore,
the order of magnitude of the estimated values of d are similar to those obtained
by the GPH estimator at least for m = 0.6.

We also considered a long memory modification of the GARCH model, the
FIGARCH(1,d,1) model proposed by Baillie et al. (1996). However, the estima-
tion results turned out to be not robust enough to be considered as a stylized fact
for exchange rates. In fact, the estimation results differ substantially among differ-
ent exchange rates and different subsamples of the data. For some subsamples, the
estimates of d are not significantly different from zero. Consequently, we decided
not to include this model for further consideration in the present context.23

22The estimation of the ARFIMA-models is performed using the Arfima package 1.04 for Ox
with default settings.

23A further model which might be of interest in this context is the long-memory stochastic
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Table 9: Estimation results for ARFIMA(1,d,1)-model for absolute exchange rate
returns

Return AR(1) d MA(1) Intercept
|rDEM| 0.2625 0.3565 -0.5782 0.0046
|rFRF | 0.2493 0.3461 -0.5491 0.0044
|rGBP| 0.3305 0.3739 -0.6255 0.0041
|rCHF | 0.4228 0.3767 -0.7022 0.0053
|rJPY | 0.3782 0.3469 -0.6302 0.0044

5 Stationarity

5.1 Unit root tests

According to Fama’s definition of market efficiency (Fama, 1970), “a market in
which prices always fully reflect available information is called efficient”. This
definition leads to the martingale model of asset prices, which includes the random
walk as a special case. A martingale is a stochastic process Pt which satisfies the
following condition:

E[Pt+1−Pt |Pt ,Pt−1, ...] = 0 . (20)

Thus, the martingale hypothesis implies that the forecast of tomorrow’s price min-
imizing the mean-squared forecast error is simply today’s price. Although the
martingale has the disadvantage, that it does not take into account the trade-off
between the risk and the expected return and although it has been shown that the
martingale property is neither a necessary nor a sufficient condition for rationally
determined asset prices, it is used as a benchmark model in modern theories of
asset prices.

The simplest version of a martingale process, the random walk with indepen-
dently and identically distributed increments, is given by

Pt = μ+αPt−1 + εt (21)

where the shocks εt are iid-distributed, α = 1 and μ is a deterministic drift term.
This model produces a non-stationary time series and exhibits the unit root prop-

volatility model. However, Casas and Gao (2005) point out that the estimation of this model
is very involved. Therefore, it might not be useful for an application in the context of indirect
simulated inference and is not considered in the present contribution.
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erty. The model can be easily extended to relax the assumption of identically
and/or independently distributed increments.

Given the linkage to the theory of efficient markets, it appears reasonable to
consider the unit root property as a relevant property of financial market time se-
ries and to test its presence for actual samples.24 A standard test of the hypotheses
α = 1 versus the alternative α < 1 is the Dickey-Fuller (DF) test (Dickey and
Fuller, 1979), which has been generalized to the augmented Dickey-Fuller (ADF)
test in order to take into account possible serial correlation of the εt and to allow
for deterministic trend terms. Although many alternative unit root tests have been
proposed and discussed in the literature,25 we stick to the standard ADF test for
our purposes. Given that the unit root property of asset prices is well documented
in the literature and does not appear to depend on the specific testing methodology
(Lux and Schornstein, 2005), this choice might be justified.

As suggested by Krämer (2002), we apply the ADF unit root test on the log-
arithms of the asset prices. The results are summarized in Table 10, which also
describes the specification of the ADF test with regard to deterministic terms and
lag length. The selection of the test specification is based on the Schwarz infor-
mation criterion with at least a constant included as deterministic term.26 For all
considered asset prices, the null hypothesis of a unit root could not be rejected at
the 5% level of significance.27 Thus, our findings are in line with the theoretical
expectation. However, the values of the test statistic – and also the specification
of the deterministic terms – differ markedly across the exchange rates. Thus, it
will be of interest to analyze the distribution of these values which is considered
in section 6.

24It should be taken into account that tests of the unit root property are not equivalent with tests
of the random walk hypothesis. The null hypothesis of unit root tests includes also non random
walk processes. Thus, these tests are clearly not designed for detecting predictability, but are in
fact insensitive to it by construction (Campbell et al., 1997).

25In particular, modifications of the DF test taking into account possible conditional het-
eroskedasticity of the error terms would be of interest in the present application (Seo, 1999).

26This constraint does not affect the qualitative findings with the exception of the JPY/US–rate
where removing the drift term leads to a borderline rejection of the unit root hypothesis. However,
the robustness of the statistic, e.g., in the bootstrap analysis is increased to a relevant extent.

27The 5% critical values in Table 10 are taken from MacKinnon (1996).
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Table 10: Results of ADF-Tests of Exchange Rates

Exchange Rate Specification Test Statistic 5% Critical Value
log(DEM/US) no drift, no lags -1.2256 -2.565
log(FRF/US) no drift, no lags -0.0255 -2.565
log(GBP/US) with drift, lag 1 -2.5417 -2.862
log(CHR/US) no drift, no lags -1.7850 -2.862
log(JPY/US) with drift, no lags -1.3795 -2.862

6 Robustness

The empirical findings for the exchange rates presented in the previous sections
provide clear evidence for dependence in some moments, in particular, condi-
tional heteroskedasticity, long range dependence and non stationarity. Although
these findings are observed for all exchange rates considered, some additional ro-
bustness results are required before identifying them as ‘stylized facts’ to be used
as benchmark in simulated method of moments approaches, e.g., for estimating
the parameters of agent based models or multifractal processes.

As proposed in Winker and Jeleskovic (2006), we use different approaches in
order to assess the robustness of the statistics. First, the analysis is repeated for
rolling window subsamples of the data. Second, a simple sample split into three
subperiods is used to detect possible regime changes. Finally, the distribution of
the statistics is assessed by means of bootstrap techniques taking into account a
possible time dependence of the data.

6.1 Rolling Windows

When considering a rolling windows analysis, the choice of the window length
becomes crucial when assessing (long range) dependence structures in the data.
In order to obtain reliable estimates of the statistics, a large sample size is required.
However, in order to spot possible structural changes, the window length should
not be too long. Consequently, we consider window lengths of 1 000 and 2 500
days, respectively.

The following discussion is restricted to the window lengths of 2 500 days.
The qualitative findings are similar for a window length of 1 000. These results
are available on request. We do not present results for the unconditional moments
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such as mean or standard deviation. These results do not differ from the ones
presented in Winker and Jeleskovic (2006) obtained from a simple bootstrap.

We start with an analysis of the BDS-statistic. Figure 4 exhibits the values of
this test for a window length of 2 500 days and an embedding dimension of 4 for
rDEM. The plot shows the values of the statistic against the last point included
in the rolling window. Results for the other exchange rates are provided in the
appendix. The results for embedding dimensions of 2 and 3 and for a window
length of 1 000 are qualitatively similar.28

Figure 4: BDS-Statistic for Rolling Windows (2 500 Days)
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Figure 4 exhibits a clear downward trend of the BDS-statistic as the rolling
window moves to the right indicating that the deviation from then null hypothesis
become less pronounced for more recent time periods. Nevertheless, all statistics
remain above the asymptotic critical values at the 5% level. Although the trend is
unwelcome when the test statistic is used as a benchmark, the low volatility of the
test statistic is a positive feature.

Figure 5 shows results of the estimated GARCH(1,1) model for rDEM. The
estimates are quite stable, but exhibit a trend over time resulting in an increased
estimate of the GARCH-effect at the expense of the ARCH-effect, while the sum
of both coefficients (upper line) remains almost unaltered and close to one.29

28These results are available on request.
29This corresponds to the stylized fact “(v)” described by Granger (2005, p. 38).
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Figure 5: Estimates for GARCH(1,1) Model for Rolling Windows (2 500 Days)

1985 1990 1995 2000 2005
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In comparison to the GARCH estimates, the statistics from the R/S-analysis
are more volatile. The left panels of Figure 6 exhibits the estimated degree of
fractional integration according to the HR/S statistic for rDEM and r2

DEM, respec-
tively.30 Although both series show some fluctuation over time, the order of mag-
nitude of the estimate for the whole samples is confirmed. Similar findings are
obtained for the classical and the modified Q-statistics, respectively.31

When considering the GPH estimates of the degree of fractional integration
(right panels of Figure 6), we obtain similar results. For the returns themselves,
the estimates are close to zero for all windows. In contrast, the estimates for the
squared returns appear to be less robust hinting at some increasing trend in the
long memory property. Figure 6 summarizes the findings for m = 0.55.

Figure 7 shows the estimated d parameter from the rolling windows analysis
of the Hurst (left), GPH (middle) and ARFIMA(1,d,1) (right) estimates for the
absolute returns |rDEMR|.

Again, despite of some fluctuations, the long memory properties of the abso-
lute returns appear to be quite robust. Furthermore, we might spot some similarity
of the fluctuations of the estimates provided by the GPH and the ARFIMA(1,d,1)
model.

Finally, we consider the behaviour of the ADF-statistic under rolling win-

30Corresponding results for the other exchange rates are available upon request from the authors.
31Again, the detailed results are available upon request.
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Figure 6: Hurst (left panels) and GPHm=0.55 (right panels) Estimator of Degree of
Fractional Integration for Rolling Windows (2 500 Days) for rDEM (upper panels)
and r2

DEM (lower panels)
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Figure 7: Estimates of d by Hurst (left), GPHm=0.55 (middle) and
ARFIMA(1,d,1) (right) Model for Rolling Windows (2 500 Days)
for |rDEM|
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dows. Figure 8 shows the results for the exchange rate DEM/US−$ and a win-
dow length of 2 500, which is representative for the other results. Obviously, the
stationarity properties of the exchange rate as measured by the ADF-statistic un-
dergo regime shifts over the sample period. This highly unwelcome feature of
the ADF-statistic might be a result of the GARCH-component in the time series.
Consequently, we also implemented the modified test proposed by Elliott et al.
(1996) which is based on a local-to-unity detrending procedure and appears to be
more robust in settings with GARCH-effects. However, for the exchange rates,
the results of the unit root tests are not more robust than those of the ADF-test.

6.2 Subsamples

As a complement to the rolling window analysis, we also considered three non
overlapping subperiods of the sample, namely the periods 1975-1984, 1985-1994,
and 1995-2004. Given that the length of these subsamples is quite similar to
our larger window length of 2 500, we do not expect different results. However,
presenting these results in Tables 11 and 1232 might provide an easier access to
the main results than considering a large number of time series plots as presented
above.

The results for the BDS-test reaffirm the tendency of a decrease over times al-
ready observed in Figure 4. However, even for the last subperiod, all test statistics

32The results for the other exchange rates are provided in Table 16 in the appendix.
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Figure 8: ADF-Statistic for Rolling Windows (2 500 Days)
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are significant at the 5% level with the sole exception of rFRF for a low embed-
ding dimension. For the GARCH-estimates, the increase in the β coefficient is
also manifest, while the sum of α and β remains fairly constant. A striking result,
however, is obtained for the ADF-test.33 While the null hypothesis of non station-
arity could not be rejected at any conventional level of significance for the first
and last subperiod, it has to be rejected for all exchange rate series in the second
subperiod. Obviously, a standard unit root model is not adequate for the exchange
rate time series. Alternatives like stochastic unit roots or stochastic breaks will be
considered in future research.

The results for the different measures of long-memory presented in Table 12
indicate that these properties are rather robust when considering different subsam-
ples, i.e. satisfy a central condition of ‘stylized facts’.

6.3 Bootstrap

A more general approach to analyze the robustness of statistics and to obtain es-
timates of their distribution is the bootstrap method. Given that our focus is on
conditional moments of the data including measures of long memory, a block

33Note that the ADF-test is applied to the exchange rate series themselves.
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Table 11: Test Statistics for Subperiods I

BDS-Test
embedding dim. GARCH(1,1)

Obs. 2 3 4 α β α+β ADF
1975 - 1984

rDEM 2505 6.59 10.19 13.22 0.133 0.863 0.996 0.537
rFRF 2505 8.61 12.45 15.37 0.160 0.840 1.000 2.235
rGBP 2505 8.28 10.63 12.51 0.107 0.879 0.984 1.813
rCHF 2505 9.25 12.19 14.64 0.094 0.906 1.000 -1.101
rJPY 2505 10.69 13.33 15.51 0.082 0.917 0.999 -1.734

1985 - 1994
rDEM 2531 4.62 5.94 6.93 0.071 0.898 0.969 -3.501
rFRF 2531 5.34 7.32 8.51 0.079 0.892 0.971 -3.316
rGBP 2531 7.14 8.55 9.51 0.053 0.936 0.989 -3.126
rCHF 2531 2.71 3.66 4.88 0.054 0.914 0.968 -3.138
rJPY 2531 3.56 4.36 5.39 0.057 0.884 0.941 -3.400

1995 - 2004
rDEM 2516 2.08 2.40 3.28 0.027 0.964 0.991 -0.903
rFRF 2516 1.11 1.57 2.77 0.026 0.967 0.993 -0.847
rGBP 2516 4.49 6.18 6.73 0.039 0.942 0.981 -0.982
rCHF 2516 2.90 2.68 3.10 0.028 0.951 0.979 -0.972
rJPY 2516 7.18 7.37 7.61 0.036 0.953 0.989 -1.977

bootstrap procedure has to be used. All bootstrap samples are drawn from the re-
turn series. For the ADF-statistic, price series are generated by cumulating returns
over time with start values drawn from historical data. Obviously, we face a trade
off between long blocks in order to capture long memory properties on the one
hand, and short blocks in order to justify asymptotic arguments. We experimented
with different block lengths. In the following, we present the results of a block
length of 250 days. For those statistics which appear robust under the bootstrap-
ping procedure, the findings do not change much when using a block length of
100, while the results for the less robust statistics are affected to a larger extent.

In Figure 9, the results of the block bootstrap are plotted for the BDS statistic
and the β-Parameter of the GARCH(1,1)-estimates. The plots provide density
estimates based on a normal kernal for 1 000 bootstrap drawings. In addition to
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Table 12: Test Statistics for Subperiods II: rDEM and rFRF

R/S Statistics GPH for m = ARFIMA
Obs. HR/S Qclass. Qmod. 0.5 0.55 0.575 0.6 d

1975 - 1984
rDEM 2505 0.590 1.687 1.683 -0.015 0.031 0.066 0.077 –
|rDEM| 2505 0.906 2.136 1.634 0.351 0.308 0.264 0.282 0.369
r2
DEM 2505 0.791 2.000 1.809 0.189 0.154 0.145 0.165 –

rFRF 2505 0.580 1.661 1.661 -0.048 0.014 0.039 0.072 –
|rFRF | 2505 0.933 2.166 1.679 0.384 0.348 0.288 0.262 0.356
r2
FRF 2505 0.757 1.950 1.828 0.230 0.178 0.151 0.141 –

1985 - 1994
rDEM 2531 0.600 1.693 1.675 0.089 0.030 0.041 0.051 –
|rDEM| 2531 0.776 2.095 1.610 0.301 0.333 0.384 0.340 0.386
r2
DEM 2531 0.764 2.059 1.813 0.294 0.316 0.384 0.367 –

rFRF 2531 0.594 1.681 1.659 0.116 0.043 0.050 0.051 –
|rFRF | 2531 0.794 2.126 1.635 0.339 0.359 0.422 0.377 0.355
r2
FRF 2531 0.781 2.088 1.843 0.295 0.328 0.393 0.381 –

1995 - 2004
rDEM 2516 0.574 1.625 1.625 0.153 0.2623 0.232 0.153 –
|rDEM| 2516 0.808 1.933 1.521 0.419 0.416 0.404 0.385 0.348
r2
DEM 2516 0.803 1.932 1.709 0.376 0.411 0.366 0.338 –

rFRF 2516 0.572 1.618 1.618 0.154 0.219 0.193 0.124 –
|rFRF | 2516 0.800 1.939 1.569 0.461 0.372 0.348 0.306 0.332
r2
FRF 2516 0.773 1.894 1.723 0.374 0.341 0.296 0.269 –
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the kernal estimates, a normal approximation to the bootstrap distribution is shown
as dotted lines.

Figure 9: Bootstrap Distributions (Block Bootstrap) for BDS and GARCH(1,1)
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These bootstrap distributions look reasonably well, while some of the statis-
tics for measuring long memory appear to be rather unstable as can be observed
from the summary information provided in Table 13 for rDM.34 The bootstrap
distributions for the BDS statistic are well centered around its empirical values
with a 5%–Quantile well above the critical value. Also the parameters of the
GARCH(1,1) model are quite well behaved, it becomes obvious that the sum of
α and β is an even more robust statistic (smaller confidence interval). Regarding
the measures of long memory, only the statistics for the absolute returns appear
to be rather robust. One possible reason for the bad performance of the measures
of long memory might be the relatively low block length. Finally, the missing ro-
bustness of the ADF statistic found in the rolling windows and subsample analysis
is confirmed by the bootstrap estimates.

Figure 10 exhibits the distribution of the d parameter obtained by the block
bootstrap for the Hurst, GPH (m = 0.55) and ARFIMA(1,d,1) models for |rDEMR|.

Table 13 indicated a smaller variance of the estimates obtained from the ARFIMA
model for absolute returns. Thus, it might be considered the best statistics for
modelling the stylized fact of long memory in absolute returns for foreign ex-

34The corresponding results for the other exchange rates are provided in the appendix.
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Table 13: Bootstrap Distribution of rDEM

Statistic DM/US Mean 5% 50% 95% Std.dev.
BDS (dim. 2) 9.611 9.661 5.629 9.596 13.813 2.4600
BDS (dim. 3) 14.708 14.727 9.137 14.604 20.782 3.558
BDS (dim. 4) 19.541 19.555 12.104 19.293 27.628 4.787
GARCH(1,1) α 0.071 0.078 0.059 0.078 0.099 0.012
GARCH(1,1) β 0.921 0.908 0.886 0.909 0.931 0.014
GARCH(1,1) α+β 0.992 0.987 0.972 0.988 0.997 0.008
HR/S rDEM 0.620 0.554 0.475 0.555 0.632 0.048
HR/S |rDEM| 0.873 0.754 0.655 0.754 0.848 0.058
HR/S r2

DEM 0.765 0.699 0.598 0.694 0.793 0.059
Qclass. rDEM 1.829 1.481 1.130 1.487 1.846 0.219
Qclass. |rDEM| 5.239 4.017 2.826 3.980 5.343 0.779
Qclass. r2

DEM 3.644 3.062 2.173 3.012 4.059 0.587
Qmod. rDEM 1.785 1.451 1.110 1.455 1.812 0.214
Qmod. |rDEM| 1.475 1.120 0.825 1.109 1.442 0.196
Qmod. r2

DEM 1.967 1.658 1.216 1.632 2.156 0.290
GPH (m = 0.55) rDEM 0.091 0.044 -0.041 0.044 0.128 0.051
GPH (m = 0.55) |rDEM| 0.386 0.360 0.255 0.361 0.447 0.058
GPH (m = 0.55) r2

DEM 0.323 0.266 0.163 0.269 0.366 0.062
ARFIMA d |rDEM| 0.357 0.364 0.311 0.364 0.416 0.033
ADF (no drift) (DEM) -1.2256 -0.9532 -2.4161 -1.0633 0.7706 0.9858
ADF (with drift) (DEM) -1.2494 -1.2209 -2.6778 -1.3051 0.4996 0.9621

change rate time series. However, given the high computational cost of estimating
the ARFIMA model, it might not be well suited in a framework of simulated indi-
rect inference. In this case, the GPH-estimator might be a more adequate choice.

7 Time aggregation

As a final issue, we consider the effect of temporal aggregation on the statistics
introduced above. Obviously, short run autocorrelation structures of returns or
powers of returns might be affected by temporal aggregation (Ding et al., 1993,
p. 92). The same applies to coefficient estimates of the GARCH-model. For mea-
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Figure 10: Bootstrap Distributions (Block Bootstrap) of d for Hurst, GPH (m =
0.55) and ARFIMA(1,d,1) model
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sures of non linearity, long memory, and non stationarity, the effect of temporal
aggregation is not obvious a priori.

We reevaluate all statistics presented above after aggregating returns for 5, 20
and 60 observations corresponding roughly to weekly, monthly and quarterly data,
respectively. The results are summarized in Tables 14 and 15. According to the
BDS statistic, the deviations from the independence assumption decrease under
time aggregation. With the exception of the British Pound, the statistic becomes
insignificant for the quarterly data, while it is still significant for all exchange
rates at the weekly frequency and for most rates at the monthly frequency. A
similar tendency can be observed for the parameters of the GARCH(1,1) model.
While they still sum up to values close to one at the weekly frequency, their values
shrink when looking at the monthly frequency and are close to zero (again, with
the exception of the British Pound) for the quarterly frequency.

While the HR/S statistic does not change much under time aggregation, the
results for the Qclass. statistic and the GPH estimator show the same tendency.35

The significance of the Qclass. statistic for absolute and squared returns found at
the daily and weekly frequency disappears for lower frequencies. Also, the GPH
estimators decrease and are close to zero for the monthly or lower frequencies.

Finally, ARFIMA estimates exhibit a slightly different behavior comparing to
the HR/S and GPH estimators. While the estimates of the long memory parameter
do not differ substantially for weekly and monthly data, the estimates are not sig-

35This result is also found for the modified Q statistic; not shown.

33



Table 14: Test Statistics under Time Aggregation I

BDS GARCH ADF
Series Obs. dim. 2 dim. 3 dim. 4 α β α+β no drift drift

1-day returns
rDEM 7554 8.58 11.76 14.75 0.071 0.921 0.992 -1.087 -1.297
rFRF 7554 9.53 13.51 17.04 0.090 0.910 0.999 -0.203 -1.546
rGBP 7554 13.69 17.18 19.56 0.065 0.923 0.987 -0.050 -2.381
rCHF 7554 9.17 11.48 14.18 0.066 0.927 0.993 -1.648 -1.841
rJPY 7554 12.31 14.57 16.89 0.058 0.940 0.998 -2.629 -1.859

5-day returns
rDEM 1510 6.18 7.99 8.77 0.132 0.799 0.931 -1.330 -1.206
rFRF 1510 3.57 5.66 6.58 0.068 0.926 0.994 -1.640 -0.032
rGBP 1510 5.51 6.84 7.78 0.077 0.902 0.979 -2.528 -1.007
rCHF 1510 2.76 4.50 5.74 0.085 0.872 0.957 -1.620 -1.784
rJPY 1510 6.46 8.23 9.45 0.089 0.893 0.982 -1.407 -1.875

20-day returns
rDEM 376 2.50 3.08 2.95 0.194 0.102 0.296 -1.567 -1.141
rFRF 376 1.66 1.76 2.15 0.046 0.883 0.929 -1.804 0.005
rGBP 376 3.14 3.53 4.31 0.128 0.728 0.856 -2.629 -1.088
rCHF 376 1.87 3.01 3.30 0.111 0.673 0.784 -1.768 -1.737
rJPY 376 2.70 2.61 2.70 0.118 0.735 0.853 -1.481 -1.691

60-day returns
rDEM 125 0.05 0.12 -0.16 0.002 0.000 0.002 -1.671 -1.099
rFRF 125 -0.99 -1.49 -1.62 0.000 0.110 0.110 -1.871 0.053
rGBP 125 2.61 2.48 2.42 0.501 0.017 0.518 -2.790 -1.072
rCHF 125 0.07 -0.01 0.13 0.031 0.000 0.031 -1.902 -1.699
rJPY 125 0.51 0.83 0.47 0.000 0.095 0.095 -1.524 -1.579
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Table 15: Test Statistics under Time Aggregation II

HR/S Qclass. GPH (m = 0.55) ARFIMA

Obs. r |r| r2 r |r| r2 r |r| r2 d for |r|
1-day returns

rDEM 7554 0.582 0.906 0.786 1.419 6.247 4.576 0.091 0.386 0.323 0.357
rFRF 7554 0.631 0.922 0.800 1.718 6.409 4.469 0.022 0.407 0.284 0.346
rGBP 7554 0.567 0.996 0.896 1.540 9.681 7.166 0.034 0.490 0.440 0.374
rCHF 7554 0.542 0.842 0.646 1.307 5.791 3.304 0.054 0.438 0.170 0.378
rJPY 7554 0.536 0.843 0.736 1.412 5.618 3.894 0.058 0.422 0.292 0.347

5-day returns
rDEM 1510 0.630 0.816 0.693 1.728 2.844 2.087 0.019 0.236 0.165 0.151
rFRF 1510 0.640 0.829 0.759 1.839 2.856 2.360 0.083 0.246 0.184 0.153
rGBP 1510 0.604 0.867 0.778 1.516 3.346 2.540 0.120 0.300 0.244 0.165
rCHF 1510 0.632 0.772 0.696 1.623 2.391 2.138 0.064 0.298 0.208 0.135
rJPY 1510 0.647 0.846 0.739 1.630 2.952 2.138 0.020 0.400 0.259 0.158

20-day returns
rDEM 376 0.665 0.687 0.655 1.526 1.500 1.323 0.135 0.160 0.069 0.137
rFRF 376 0.676 0.673 0.635 1.628 1.405 1.285 0.206 0.307 0.268 0.121
rGBP 376 0.638 0.782 0.701 1.417 1.970 1.720 -0.010 0.256 0.123 0.147
rCHF 376 0.661 0.598 0.556 1.466 1.219 1.183 0.058 0.164 0.067 0.126
rJPY 376 0.672 0.688 0.662 1.419 1.540 1.490 0.097 0.251 0.141 0.121

60-day returns
rDEM 125 0.716 0.671 0.654 1.420 1.152 1.111 0.010 -0.159 -0.095 -0.045
rFRF 125 0.711 0.647 0.601 1.455 1.158 1.069 0.099 -0.179 -0.061 -0.018
rGBP 125 0.593 0.732 0.587 1.220 1.357 1.101 -0.161 0.296 0.141 0.212
rCHF 125 0.702 0.619 0.674 1.270 1.049 1.193 0.013 -0.030 0.023 0.040
rJPY 125 0.673 0.581 0.636 1.267 1.092 1.226 -0.027 0.112 -0.181 0.051
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nificant at the quarterly frequency with the exception of rGBP.36 When interpreting
these findings, it should be taken into account that the number of observations on
lower frequencies is rather small.

Overall the findings of behaviour of several statistics under time aggregation
support the findings in Winker and Jeleskovic (2006) that return distributions for
exchange rate become more similar to white noise processes when longer return
periods are considered. These results represent another stylized facts of return
distributions which might be used for indirect estimation approaches.

8 Conclusion

Several ‘stylized facts’ of the conditional distribution of exchange rate returns are
studied using different statistics and methods for the assessment of their robust-
ness for different (sub)samples and under time aggregation. It is found that several
features of the data are very robust and suited to serve as benchmark for testing
financial market models, e.g. agent based models or multifractal models.

In particular, the BDS statistic, the sum of the two parameters of the GARCH(1,1)
model, and some estimates of long memory appear to be useful for this purpose.
However, final statements on the statistics related to long memory are not possi-
ble given that the bootstrap estimates do not provide reliable information given the
available sample length. In particular, it is not possible to use information from
the bootstrap procedure to estimate the standard deviation of these statistics. By
contrast, the standard unit root test statistic (ADF) appears to be very unstable.
Other test statistics or models of alternative unit root hypothesis (stochastic unit
root, stochastic breaks) will have to be considered in future work.

Combining the findings of this paper with the results presented in Winker and
Jeleskovic (2006), it appears feasible to construct a robust objective function for
means of indirect estimation. This is the next issue on our research agenda.
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A Autocorrelation Plots

Figure 11: Sample autocorrelation for rFRF and |rFRF |d for different values of d.
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Figure 12: Sample autocorrelation for rGBP and |rGBP|d for different values of d.
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Figure 13: Sample autocorrelation for rCHF and |rCHF |d for different values of d.
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Figure 14: Sample autocorrelation for rJPY and |rJPY |d for different values of d.
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Figure 15: Dependence of Autocorrelation of |rFRF |d on d for Different Lags.
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Figure 16: Dependence of Autocorrelation of |rGBP|d on d for Different Lags.
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Figure 17: Dependence of Autocorrelation of |rCHF |d on d for Different Lags.
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Figure 18: Dependence of Autocorrelation of |rJPY |d on d for Different Lags.
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B Further Robustness Results

B.1 Further Results for Subperiods
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Table 16: Test Statistics for Subperiods II: rGBP, rCHF , and rJPY

R/S Statistics GPH for m = ARFIMA

Obs. HR/S Qclass. Qmod. 0.5 0.55 0.575 0.6 d
1975 - 1984

rGBP 2505 0.692 1.788 1.774 0.173 0.140 0.106 0.120 -
|rGBP| 2505 0.830 2.082 1.572 0.395 0.369 0.344 0.330 0.357
r2
GBP 2505 0.734 1.944 1.726 0.292 0.280 0.291 0.258 -

rCHF 2505 0.560 1.662 1.662 0.059 0.094 0.088 0.083 -
|rCHF | 2505 0.926 2.211 1.681 0.548 0.467 0.434 0.428 0.413
r2
CHF 2505 0.775 1.995 1.727 0.164 0.180 0.152 0.141 -

rJPY 2505 0.661 1.818 1.811 0.109 0.181 0.131 0.207 -
|rJPY | 2505 0.913 2.326 1.797 0.398 0.404 0.350 0.356 0.3935
r2
JYP 2505 0.773 2.147 1.881 0.243 0.265 0.241 0.239 -

1985 - 1994
rGBP 2531 0.555 1.697 1.661 0.169 0.114 0.080 0.104 -
|rGBP| 2531 0.836 2.176 1.660 0.418 0.442 0.460 0.432 0.416
r2
GBP 2531 0.824 2.121 1.878 0.390 0.565 0.506 0.463 -

rCHF 2531 0.621 1.708 1.692 0.097 0.087 0.063 0.076 -
|rCHF | 2531 0.926 2.054 1.629 0.346 0.319 0.325 0.311 0.371
r2
CHF 2531 0.714 2.002 1.796 0.370 0.295 0.309 0.328 -

rJPY 2531 0.574 1.711 1.682 0.064 0.040 0.035 0.066 -
|rJPY | 2531 0.713 1.880 1.451 0.174 0.153 0.166 0.206 0.251
r2
JPY 2531 0.685 1.774 1.614 0.058 0.124 0.126 0.154 -

1995 - 2004
rGBP 2516 0.482 1.559 1.559 -0.111 -0.094 -0.130 -0.123 -
|rGBP| 2516 0.776 1.972 1.515 0.386 0.400 0.302 0.295 0.314
r2
GBP 2516 0.728 1.914 1.710 0.360 0.404 0.304 0.325 -

rCHF 2516 0.540 1.557 1.557 0.050 0.090 0.090 0.052 -
|rCHF | 2516 0.748 1.918 1.468 0.390 0.315 0.274 0.261 0.312
r2
CHF 2516 0.745 1.908 1.637 0.386 0.355 0.298 0.268 -

rJPY 2516 0.608 1.758 1.757 0.044 0.037 -0.015 0.003 -
|rJPY | 2516 0.872 2.006 1.484 0.377 0.405 0.438 0.346 0.378
r2
JPY 2516 0.831 1.935 1.617 0.347 0.397 0.380 0.252 -
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C Further Bootstrap Results

Table 17: Bootstrap Distribution of rFRF

Statistic FRF/US Mean 5% 50% 95% Std.dev.
BDS (dim. 2) 11.699 11.771 6.987 11.681 17.069 3.056
BDS (dim. 3) 18.082 18.097 11.147 17.899 25.759 4.524
BDS (dim. 4) 24.447 24.438 14.666 24.103 35.317 6.295
GARCH(1,1) α 0.0895 0.0957 0.0694 0.0952 0.1232 0.0168
GARCH(1,1) β 0.9103 0.8942 0.8633 0.8950 0.9228 0.0179
GARCH(1,1) α+β 0.9998 0.9899 0.9672 0.9943 1.0000 0.0114
HR/S rFRF 0.618 0.5654 0.4868 0.5644 0.6406 0.0477
HR/S |rFRF | 0.894 0.7600 0.6623 0.7595 0.8571 0.0600
HR/S r2

FRF 0.786 0.6794 0.5787 0.6802 0.7753 0.0602
Qclass. rFRF 1.897 1.5353 1.1655 1.5415 1.9012 0.2293
Qclass. |rFRF | 5.748 4.1717 2.8976 4.1040 5.5700 0.8414
Qclass. r2

FRF 3.683 2.8518 2.0010 2.7988 3.7678 0.5570
Qmod. rFRF 1.862 1.5046 1.1362 1.5121 1.8617 0.2252
Qmod. |rFRF | 1.617 1.1613 0.8481 1.1561 1.5149 0.2063
Qmod. r2

FRF 2.1387 1.6731 1.2013 1.6562 2.1698 0.2920
GPH (m = 0.55) rFRF 0.0223 0.0423 -0.0468 0.0457 0.1225 0.0532
GPH (m = 0.55) |rFRF | 0.4065 0.3840 0.2748 0.3893 0.4811 0.0633
GPH (m = 0.55) r2

FRF 0.2839 0.2403 0.1340 0.2452 0.3384 0.0634
ARFIMA d |rFRF | 0.3461 0.3564 0.3042 0.3565 0.4091 0.0326
ADF (no drift) (FRF) -0.0255 -0.0679 -2.1886 -0.0610 2.0042 1.2617
ADF (with drift) (FRF) -1.5816 -1.2862 -2.6863 -1.3326 0.2896 0.8975
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Table 18: Bootstrap Distribution of rGBP

Statistic GBP/US Mean 5% 50% 95% Std.dev.
BDS (dim. 2) 14.939 14.910 10.347 14.879 19.4025 2.630
BDS (dim. 3) 20.080 19.978 13.982 19.914 26.236 3.740
BDS (dim. 4) 25.167 24.988 16.746 24.710 33.715 5.174
GARCH(1,1) α 0.0646 0.0739 0.0547 0.0734 0.0949 0.0124
GARCH(1,1) β 0.9227 0.9098 0.8818 0.9112 0.9327 0.0155
GARCH(1,1) α+β 0.9873 0.9837 0.9686 0.9843 0.9981 0.0087
HR/S rGBP 0.593 0.5568 0.4843 0.5569 0.6307 0.0450
HR/S |rGBP| 0.937 0.7891 0.7000 0.7882 0.873 6 0.0531
HR/S r2

GBP 0.850 0.7515 0.6608 0.7514 0.8382 0.0543
Qclass. rGBP 1.619 1.4839 1.1305 1.4753 1.8572 0.2216
Qclass. |rGBP| 7.008 4.5883 3.3714 4.5506 5.9848 0.8076
Qclass. r2

GBP 5.192 3.6435 2.6515 3.6039 4.7449 0.6328
Qmod. rGBP 1.539 1.4133 1.0796 1.4062 1.7641 0.2097
Qmod. |rGBP| 1.797 1.1899 0.8830 1.1806 1.5294 0.1949
Qmod. r2

GBP 2.616 1.8912 1.3960 1.8733 2.4446 0.3206
GPH (m = 0.55) rGBP 0.0338 0.0470 -0.0435 0.0487 0.1369 0.0529
GPH (m = 0.55) |rGBP| 0.4900 0.4119 0.3037 0.4149 0.5143 0.0649
GPH (m = 0.55) r2

GBP 0.4399 0.3473 0.2372 0.3519 0.4484 0.0655
ARFIMA d |rGBP| 0.3739 0.3803 0.3111 0.3813 0.4449 0.0407
ADF (no drift) (GBP) -1.0103 -0.5352 -2.2755 -0.6193 1.2780 1.1296
ADF (with drift) (GBP) -2.4484 -1.2893 -2.6985 -1.3219 0.2137 0.8753
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Table 19: Bootstrap Distribution of rCHF

Statistic CHF/US Mean 5% 50% 95% Std.dev.
BDS (dim. 2) 8.996 9.059 5.426 8.944 12.833 2.2823
BDS (dim. 3) 12.049 12.103 7.092 11.908 17.570 3.207
BDS (dim. 4) 15.663 15.789 9.323 15.469 23.221 4.277
GARCH(1,1) α 0.0658 0.0711 0.0540 0.0710 0.0885 0.0109
GARCH(1,1) β 0.9270 0.9158 0.8961 0.9161 0.9344 0.0118
GARCH(1,1) α+β 0.9928 0.9869 0.9705 0.9879 0.9996 0.0090
HR/S rCHF 0.5424 0.5418 0.4671 0.5409 0.6212 0.0463
HR/S |rCHF | 0.8423 0.7354 0.6381 0.7342 0.8358 0.0596
HR/S r2

CHF 0.6456 0.6583 0.5346 0.6594 0.7763 0.0726
Qclass. rCHF 1.3073 1.3835 1.0824 1.3683 1.7241 0.1991
Qclass. |rCHF | 5.7912 3.6631 2.5895 3.6172 4.8900 0.7241
Qclass. r2

CHF 3.3043 2.6257 1.7124 2.5812 3.6942 0.6024
Qmod. rCHF 1.3098 1.3734 1.0714 1.3584 1.7095 0.1970
Qmod. |rCHF | 1.5399 0.9835 0.6989 0.9711 1.2943 0.1873
Qmod. r2

CHF 1.6802 1.2853 0.8680 1.2155 1.9039 0.3234
GPH (m = 0.55) rCHF 0.0541 0.0345 -0.0522 0.0354 0.1189 0.0537
GPH (m = 0.55) |rCHF | 0.4379 0.3679 0.2678 0.3684 0.4685 0.0612
GPH (m = 0.55) r2

CHF 0.1761 0.0306 0.1300 0.3718 0.1163
ARFIMA d |rCHF | 0.3767 0.3711 0.3183 0.3694 0.4299 0.0334
ADF (no drift) (CHF) -1.7850 -1.1077 -2.3879 -1.1966 0.4276 0.8620
ADF (with drift) (CHF) -1.6113 -1.1805 -2.7464 -1.2272 0.5524 0.9907
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Table 20: Bootstrap Distribution of rJPY

Statistic JPY/US Mean 5% 50% 95% Std.dev.
BDS (dim. 2) 13.144 13.222 8.326 13.086 18.357 3.088
BDS (dim. 3) 17.322 17.407 10.555 17.297 24.703 4.287
BDS (dim. 4) 22.751 22.757 13.271 22.435 33.092 6.050
GARCH(1,1) α 0.0578 0.0718 0.0531 0.0714 0.0926 0.0121
GARCH(1,1) β 0.9398 0.9192 0.8836 0.9229 0.9414 0.0181
GARCH(1,1) α+β 0.9976 0.9910 0.9624 0.9976 1.0000 0.0130
HR/S rJPY 0.5358 0.5547 0.4760 0.5541 0.6384 0.0482
HR/S |rJPY | 0.8429 0.7810 0.6841 0.7816 0.8815 0.0605
HR/S r2

JPY 0.7360 0.7270 0.6310 0.7288 0.8148 0.0553
Qclass. rJPY 1.4115 1.5117 1.1563 1.4926 1.9378 0.2353
Qclass. |rJPY | 5.6175 4.3563 3.0031 4.2798 5.9126 0.9147
Qclass. r2

JPY 3.8942 3.2358 2.2999 3.2329 4.2145 0.5843
Qmod. rJPY 1.3740 1.4734 1.1220 1.4533 1.8830 0.2289
Qmod. |rJPY | 1.4757 1.1550 0.8321 1.1411 1.5368 0.2152
Qmod. r2

JPY 1.8453 1.5679 1.1911 1.5573 1.9887 0.2521
GPH (m = 0.55) rJPY 0.0581 0.0382 -0.0506 0.0416 0.1157 0.0526
GPH (m = 0.55) |rJPY | 0.4216 0.3792 0.2655 0.3810 0.4766 0.0628
GPH (m = 0.55) r2

JPY 0.2918 0.2612 0.1652 0.2640 0.3493 0.0567
ARFIMA d |rJPY | 0.3469 0.3514 0.2713 0.3519 0.4259 0.0458
ADF (no drift) (JPY ) -1.9648 -1.9167 -3.9373 -1.9626 0.1041 1.2100
ADF (with drift) (JPY ) -1.3795 -0.8963 -2.6937 -0.9919 1.1057 1.1533
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