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Abstract

This paper focuses on the liquidity of electronic stock markets applying a
sequential estimation approach of models for volume durations with increas-
ing threshold values. A modi�ed ACD model with a Box-Tukey transfor-
mation and a �exible generalized Beta distribution is proposed to capture
the changing cluster structure of duration processes. The estimation results
with the German XETRA data reveal the market’s absorption limit for high
volumes of shares, expanding the time costs of illiquidity when trading these
quantities.

Key Words: Ultra high frequency transaction data, limit order book,
volume duration, autoregressive conditional duration, Box-Tukey transfor-
mation, temporal aggregation.
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1 Introduction

The literature on �nancial econometrics and quantitative �nance has been
used to focus on the stochastic process of daily prices or returns on assets and
their volatility. Generally, most studies only pays little attention to other
essential variables in �nancial markets and, thus, lose sight of the transac-
tion volume — the second relevant factor when trading assets. It is often
overlooked that the investigation of the trading quantity is also important,
because it is one of the key factors responsible for market e�ciency.

For decades, the volume was studied only in relationship with returns
and volatility, serving as a explanatory variable for the analysis of the sto-
chastic process. The literature goes back to Clark (1973), who introduced
the use of subordinators in �nance. In his model the daily price change
represents a sum of within-day price changes. Since the trading volume is
positively related to number of transactions, it helps explaining the vari-
ability of the price change. In another model proposed by Epps and Epps
(1976) the change of the transaction price in the market is the mean of the
changes of all trader’s reservation price, and they found a positive relation-
ship between the absolute of the change in the market price and the trading
volume. A generalization of these models are derived in Tauchen and Pitts
(1983). Likewise, Gallant, Rossi, and Tauchen (1992) also found a positive
correlation between volatility and volume, applying a semi-nonparametric
method to estimate the joint density of price change and volume. A survey
can be found in Karpo� (1987) and Jones, Kaul, and L. (1994). With the
results of Anè and Geman (2000), the volume variable has become less im-
portant again (as in Jones, Kaul, and L. (1994)), because in their study with
the substitution of subordinators with stochastic time changes, the number
of trades represents a better stochastic clock than the volume for inducing
normal returns.

In contrast to this wide stream of literature, this paper analyzes the
time-varying liquidity of electronic markets by focusing on the relationship
between time and volume. Liquidity has been approved as an important
factor characterizing the market e�ciency. The concept of liquidity has
various de�nitions. Usually, it has three dimensions and is understood as
the capability to trade (�) a large amount of shares (�) in a short time (�)
at low cost. For example, Engle and Lange (2001) introduced the VNET
measure that captures the net directional one-sided volume over the price
duration, that is, the amount of excess volume that can be sustained before
prices are adjusted. However, only regarding the absolute one-sided excess
quantity, this approach does not take the total traded volume into account,
which is essential when investigating the “entire” absorptive ability of the
market. Hence, in this paper, a market is considered as liquid if unlimited
volumes can be traded immediately, to exploit the overall absorption limits
independent of the price impact. An adequate measurement is based on vol-
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ume durations that considers the time and volume dimension of the trading
process. It is de�ned as the time elapsed until a certain quantity of shares
is absorbed by the market (Bauwens and Giot (2001)) and, thus, provide a
good indicator for the time costs of (il)liquidity (Hautsch (2004)).

The analysis of volume durations is important especially for liquidity
traders. Short volume durations imply that threshold amount of stocks can
be traded very quickly, whereas long ones signalize a (temporarily) illiquid
market. Since the empirical cluster structures of volume durations indicate
di�erent degrees of market liquidity, they become important decision fac-
tors in�uencing traders’ order-placement strategies. Thus, modeling volume
durations can help �nding the absorption limits of the market, saving the
(time) costs of liquidity for traders.

Therefore, the main objective of this paper is to study the dynamics of
volume durations by applying the ACD framework, an appropriate econo-
metric tool for analyzing �nancial duration data (for a survey, see Bauwens,
Giot, Grammig, and Veredas (2004) or Engle and Russell (2004)). With the
increased availability of ultra-high-frequency transaction data in the last
few years, many researchers have pushed the further development of the
ACD model in order to describe limit order book activities more accurately.
Recently, Fernandes and Grammig (2006) have introduced an augmented
version that encompasses all speci�cations discussed in the literature by
adopting the results of Hentschel (1995) into the ACD methodology. How-
ever, since the asymmetry e�ects of volume durations are assumed to be
marginal, this paper concentrates on a Box-Tukey speci�cation that is par-
simonious and �exible as well (Box and Cox (1964)). Similar to Fernandes
and Grammig (2006), the modi�ed ACD model with this transformation is
also able to induce various non-monotonic shapes of the news-impact curve
to tailor the data more precisely. Interestingly, since the issue addressed
here concerns the market’s liquidity given an predetermined cumulated vol-
ume, the shifting parameters in the Box-Tukey speci�cation can be used to
identify the absorption limit.

Furthermore, a generalized Beta distribution is proposed that nests more
than 30 distributions as limiting or special cases, including those already dis-
cussed in the ACD literature. It can be shown that the generalized Beta
distribution allows for hazard functions with diverse slopes implying di�er-
ent duration dependence of the data. As extension to several studies in this
research �eld (see, for example, Hautsch (2002) and Hautsch (2003)), in-
vestigates the entire evolution of volume duration processes by successively
increasing the threshold value, resulting in a sequential estimation approach
considering “temporal” aggregation e�ects.

The paper is structured as follows: In Section 2, the Box-Tukey-ACD
model and concept of volume durations will be introduced. Section 3 de-
scribes the smoothing technique for deseasonalization and deals with the
ML estimation. In Section 4, the data and results are presented. Section 5
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concludes.

2 Methodology

Since ultra-high-frequency transaction data arrive at irregular time inter-
vals, researchers must not only consider the key variables themselves (price,
return, volume, etc.), but also their stochastic arrival times (Hafner (2005)).
Hence, a duration analysis is the common approach to describe these time
stamped data. Let 	� = 
� � 
��1 (with 
0 = 0)� where 	� is the ���

trade duration between the ��� and (�� 1)�� transaction. Further, de�ne
�� � � (	�|F��1), that is, the conditional expectation of the duration, given
F��1 i.e. the information available at 
��1. The common ACD framework,
a popular tool in recent �nancial econometrics, models a dynamic point
process in which the conditional expectation is written as a linear function
of past durations

�� = 
 +

�X
�=1

��	��� +

�X
�=1

������ (1)

(see Engle and Russell (1998) and Engle (2000)). It is assumed that

	� = �� · �� (2)

with (i.i.d.-)innovations ��. The �� � 	�
��

are also called standardized dura-
tions. Their density function � (��) is parametrized with (�) normalization
� (��) = 1 by construction, and (�) a non-negative support to avoid nega-
tive durations. Since the assumption of linearity is often too restrictive to
capture the duration process, several models have been developed and mod-
i�ed with other dependence structures of the conditional mean in order to
account for nonlinear impacts. Generally, new and di�erent types of ACD
models can be created by varying the functional form of �� in the model’s
mean equation.

Based on the Box-Cox-ACD, �rst introduced by Dufour and Engle (2000),
modi�ed and extended by Hautsch (2002), a Box-Tukey transformation of
the durations is proposed in this study

(�� + �1)

1 � 1

�1| {z }
���

�

=

�X
�=1

��

μ
(���� + �2)


2 � 1

�2

¶
| {z }

���
���

+

�X
�=1

��

μ
(���� + �1)


1 � 1

�1

¶
| {z }

���
���

�

(3)
Here, ��


� and ��

� are the Box-Tukey-transformed durations. Instead of the

common intercept 
, two new shifting parameters �1 and �2 are introduced
to tailor the data and to allow a more �exible adjustment of the news-
impact curve which measures the in�uence of innovations on the conditional
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Figure 1: Generating volume durations with �� = 1000�

mean. This extended Box-Cox version also provides a accurate description
of the conditional mean, although the parametrization is very parsimonious.
In contrast to the basic ACD model, it allows additive innovation shocks
with �1 = �2 = 1� as well as nonlinear ones for �1� �2 6= 1. In the case
of nonlinearity, i.e. �1� �2 6= 1, stationarity in both cases is ensured forP�

�=1 �� � 1 (see Dufour and Engle (2000) and Hautsch (2002)). Due to
the double-shifting of durations in the conditional mean equation, it has
similar statistical properties to more sophisticated ACD models focusing on
the kink in the innovations’ news-impact curves, such as the augmented
ACD model of Fernandes and Grammig (2006).

Volume durations are de�ned as the period elapsed until a given amount
�� of shares is traded on the market (Bauwens and Giot (2001)). In contrast
to trade durations that stand for the time elapsed between two consecutive
transactions, volume durations correspond to the time interval required to
observe a certain cumulation of traded shares. In order to model the stochas-
tic process of volume durations, the ACD framework can be simply adapted
to the new thinned point process (
��� )��N, where 
��� now denotes the points
each time the market has absorbed (at least) the pre-determined volume ���
As discernible in Figure 1, the resulting volume duration process (	��

� )��N
with 	��

� = 
��� �
����1 is generated by cumulating single trade durations until
the sum of single transaction volumes ���� has been achieved or exceeded ��,
i.e.

P
����� � ��� �
� � (
����1; 
��� ] . Subsequently, the model’s new �ltration

is the modi�ed �-�eld F��
� = �

³

��� � 


��
��1� ���� 


��
1 � 


��
0

´
�

Note that the single transaction volume ���� does not represent the rel-
evant random variable, but the duration required to absorb the predeter-
mined cumulated volume ��. In contrast to the literature, where the du-
ration process is analyzed for only one or a few “suitable” threshold values
(see, for example, Bauwens and Giot (2001), Hautsch (2002) or Fernandes
and Grammig (2006)), this paper focuses on the development of the models’
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parameters by successively increasing ��� representing � · 500 units. In the
following, a sequence of 100 model estimations of successively aggregated
sub-datasets is run with � = 1� 2� ���100� The �rst model concentrates on the
points signaling that the market has absorbed ��1, i.e. 1 · 500 shares, the
second one analyzes the duration of trading ��2=̂2 · 500 shares, etc. To keep
the computational burdens of the 100 estimation procedures within manage-
able limits and in order to achieve a more reliable comparison of the di�erent
model’s parameters, this paper concentrates only on a Box-Tukey-ACD(1,1)
speci�cation.

Taking temporal aggregation e�ects into account, the formulas of Drost
and Nijman (1993) for computing low-frequency GARCH models were ap-
plied to get better start values for the estimation (see also Drost and Werker
(1996) and Ghysels and Jasiak (1998)). Due to the irregular spacing in time
and the existence of extreme long durations for high �� values, the “fre-
quency parameter” � (originally for equidistant data) in their model was
replaced by

�� =
1
��

P��
�=1	

���
�

1
�1

P�1
�=1	

��1
�

to consider the non-constant temporal aggregation of the duration models.
�� stands for the number of observations in the �-th sub-dataset. Having
the estimated parameters for the �rst aggregation level, all following start
values for the � and � parameter of the remaining 99 models are obtained
by

�(��) = (�+ �)�� � �(��)

and

�(��) =
1

2����

±
r

1

4����
2
� 1

with

����
 =
� (�+ �)���1

1 + �2 1�(�+�)2���2

1�(�+�)2
+ �2 (� + �)2���2

and �(��) � (0; 1). The start values for the Box-Cox and the Box-Tukey
parameters are reset to � = 0�99999 and � = 0�00001 for each estimation,
beginning from a quasi-linear speci�cation of the mean equation.

3 Estimation and Diagnostics

It is well-known that intraday data have a consistent diurnal pattern of trad-
ing activities over the course of a trading day, due to certain institutional
characteristics of organized �nancial markets, such as opening and closing
hours or intraday auctions. Since it is necessary to take the daily deter-
ministic seasonality into account, smoothing techniques are required to get
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Figure 2: Distribution tree of McDonald and Xu (1995)

deseasonalized observations (Veredas, Rodriguez-Poo, and Espasa (2002)).
Let 	̃� denote the observed duration. Instead of applying cubic splines,
where the positions of the nodes have to be carefully set, a kernel regression
with an cross-validated bandwidth �� was performed. Using the Gaussian
density as kernel function � (�), the diurnal periodic component (dependent
on daytime �) can be computed by the Nadaraya-Watson estimator

� (��) =

P�
�=1 	̃� ·�

³
����
��

´
P�

�=1�
³

����
��

´ � (4)

Thus, 	� � 	̃�
��(��)

is the deseasonalized duration and should have no diurnal
pattern and a unit mean.

The ACD model is estimated by maximum-likelihood. Originally, Engle
and Russell (1997) used an Exponential (�	! ) and a Weibull (" ) distrib-
ution for the residuals (see Figure 2), whereas other authors favoured more
�exible alternatives (see, for example Bauwens, Giot, Grammig, and Veredas
(2004)). In this study, the density of the innovations � (�) is modelled by the
generalized Beta (�#) distribution proposed by McDonald and Xu (1995)

� (��; �� �� �� $� %) =

μ |�| · � ($+ %)

� ($) � (%)

¶
����1
�

���

¡
1� (1� �) ¡��

�

¢�¢��1
¡
1 + �

¡
��
�

¢�¢�+�

with the parameter � controlling the peakedness of the density, the scale pa-
rameter �, the smoothing parameter � (with 0 � � � 1) and the parameters
$ and % in�uencing the shape and the skewness (for statistical properties,
estimation and the calculation of the moments of ��, see also Kleiber and
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Kotz (2003)). Due to its �exibility the generalized Beta distribution nests
all distributions already discussed in the ACD-literature as limiting or spe-
cial cases, such as the Burr-distributions type &&& and type 	&& (#'12, see
Fernandes and Grammig (2006)), the generalized Gamma (��, see Lunde
(2000)) or the generalized Beta of the second kind (�#2). A variation of this
distribution is also called “generalized F-distribution” (see Hautsch (2004)
and Kalb�eisch and Prentice (2002)). The moments of �� can be obtained
by

� (��� ) = ��
#
¡
$+ �

� � %
¢

# ($� %)
·
μ
2(1

�
$+ �

� �
�
�

$+ �
� + %

; �

¸¶

with Beta function # (�) and the Gaussian hypergeometric function

2(1

�
)1 )2
�1

; *

¸
=

�X
�=0

()1)� ()2)�
(�1)�

*�

�!
�

Hence, the log-likelihood function of the model with a generalized Beta
distribution for the innovations is

L (+1� ���� +�) = � ln

μ |�| · � ($+ %)

� ($) � (%)

¶
� �$� ln (�)

� (�$� 1)
�X

�=1

ln (+�)� �$
�X

�=1

ln (��)

+ (% � 1)
�X

�=1

ln

μ
1� (1� �)

μ
+�

���

¶�¶

� ($+ %)
�X

�=1

ln

μ
1 + �

μ
+�

���

¶�¶

with

� =
�
¡
$+ 1

� + %
¢
� ($)

�
¡
$+ 1

�

¢
� ($+ %)

·
μ
2(1

�
$+ 1

� �
1
�

$+ 1
� + %

; �

¸¶�1
�

yielding a unit expectation as required.
To check all 100 ACD model’s diagnostics, three tests are applied: First,

one can examine the properties of the residuals such as their autocorrelation
structure which is i.i.d. under correct model speci�cation. Hence, a Ljung-
Box-test with modi�ed Portmanteau statistic proposed by Li and Li (2005)
is performed for the lag orders 5 and 10. Second, another general test is
based on the integration of intensity � (�) over duration (
� � 
��1)

�� =

Z ��

�=���1
� (�|F�) �� (5)

that follows a standard exponential distribution under the correct model
speci�cation, as illustrated in Russell (1999). Thus, Engle and Russell (2004)
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Figure 3: Description of volume durations (in sec.) of all 100 aggregated
sub-datasets.

suggested testing the overdispersion of �̂� (henceforth ER-Test). Finally, the
theoretical distribution of the residuals implied by the estimated parameters
�(�� �̂) can be compared with the empirical one �̂ (�̂). For this purpose, Fer-
nandes and Grammig (2006) developed the D-test to quantify the di�erence
between them, which should be zero under correct model speci�cation.

4 Dataset and Empirical Results

The transaction data of the Deutsche Telekom stock was extracted from
the open order book of the German XETRA system, which is an order-
driven market. The sample includes 225905 single transactions from 3��

July until 6�� October 2000, observed for 69 trading days over 14 weeks.
The continuous trading phase starts after the opening auction at 9 a.m.
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Figure 4: Estimated parameters of the ACD models for all 100 sub-datasets.
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Figure 5: News-impact curve for di�erent threshold values

and ends before the closing auction at 8 p.m. Further, it is interrupted by
(at least) two intraday auctions at 1 p.m. and 5 p.m., each lasting at most
120 seconds. The electronic trading is based on an automatic matching
algorithm, generally following a strict price-time priority of orders.

Figure 3 describes the volume durations data and shows how the mean
and the standard deviation vary according to the threshold values. As ex-
pected, these measures increase, whereas the number of observations de-
creases in respect to a rising aggregation level. In contrast to the �ndings
of Bauwens and Giot (2001) and Hautsch (2004), the dispersion declines
as well, but still indicate overdispersion of the volume durations for high
threshold values. Since the standard deviation exceeds the mean, it implies
a negative duration dependence, that is, the waiting time to absorb �� is
less likely to end the longer it lasts (Winkelmann (1998)).

In this study, the ACD models detect a strong cluster structure of vol-
ume durations, signaling a certain behavioral pattern of traders (see Figure
4). Generally, long volume durations tend to be followed by long ones and
short durations by short ones, �̂1� �̂1 , 0� revealing strong serial dependence.
These �ndings are in line the common hypothesis of information-based mar-
ket microstructure theory, where the trading and ordering process represents
a source of information (for overview, see O’Hara (1997)). According to the
theory, long durations suggests that uninformed traders (still) believe that
the underlying value of the asset has not changed and only trade because
of their own portfolio optimization. Contrary, short durations and, hence,
intensive trading signalize the presence of informed traders who are assumed
to make money by capitalizing on their informational advantage. The more
information that is available in the market, the faster they have to react.

As evident in the upper panel of Figure 4, stationarity is always ensured
(�̂1 � 1), but the persistence of the process diminishes slightly, whereas
�̂1 increases for a growing ��� Economically speaking, there is no (more)
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Parameters �� = 1 �� = 20 �� = 40 �� = 80

Box-Tukey-ACD model

�1 last standardized duration 0�1181
(0�0015)

0�2083
(0�0063)

0�2811
(0�0096)

0�3094
(0�0165)

�1 last conditional duration 0�9740
(0�0009)

0�9557
(0�0028)

0�9382
(0�0045)

0�9196
(0�0058)

�1 Box-Tukey1 0�0000
(�)

0�0000
(�)

0�0000
(�)

0�0793
(0�0105)

�2 Box-Tukey2 0�2093
(0�0044)

0�0737
(0�0104)

0�0573
(0�0106)

0�0879
(0�0009)

�1 Box-Cox1 0�3884
(0�0210)

0�1720
(0�0364)

0�1893
(0�0513)

0�0000
(�)

�2 Box-Cox2 0�4588
(0�0099)

0�6436
(0�0355)

0�6041
(0�0476)

0�4871
(0�0200)

Gen. Beta distribution

� peakedness of GBeta distr. 0�5972
(0�0055)

1�6981
(0�0912)

2�0549
(0�1280)

1�9258
(0�1365)

$ shape of GBeta distr. 2�0795
(0�0380)

0�8189
(0�0567)

0�8761
(0�0716)

1�2975
(0�1258)

% shape of GBeta distr. 65�7257
(2�3774)

3�4026
(0�4695)

2�8113
(0�4024)

3�8918
(0�6904)

� smooth of GBeta distr. 0�8537
(0�0282)

0�8651
(0�0419)

0�9562
(0�0825)

0�8602
(0�0913)

Table 1: The Box-Tukey-ACD Model

need for a rapid speed of updating the information in the market when
regarding orders with high volumes, which necessarily take a long time to
be absorbed by the market. According to the methodology of Easley and
O’Hara (1992), the information e�ciency of the market moves from a semi-
strong to a strong level. Interestingly, the predicted � and � parameters
by the Drost and Nijman formula that were used as start values for the
estimation seem to serve as a lower bound.

Since both Box-Cox parameters �̂1� �̂2 � 1 (see lower panel of Figure 4),
the dependence structure is nonlinear, implying concave news-impact curves,
similar to the results of Fernandes and Grammig (2006). This means that
the conditional duration must be adjusted more extensively during hectic
periods (short durations) than in calm ones (long durations). The parameter
�̂2 is between 0�35 and 0�65� whereas �̂1 is slightly decreasing, going to zero
and, thus, converging to the so-called Log-ACD model for a few high ��
values. Furthermore, both Box-Tukey parameters �̂1� �̂2 � 0 (see middle
panel of Figure 4), which indicates that the durations must be shifted in
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Figure 6: Estimated parameters of the generalized Beta distribution of all
100 ACD models and the implied hazard functions for di�erent threshold
values.

the overall adjustment process. As expected, the standardized duration �
always has to be enlarged with �̂2, whereas the conditional mean duration
� only needs to be shifted with �̂1 when regarding a high ��. In these cases,
the model requires an additional intercept in order to capture the dynamics
adequately. The Box-Tukey parameter �̂1 implies that the market is not
liquid enough to absorb large amounts of shares (�� � 50) in a relatively
short time, thus inducing additional time costs of liquidity.

In respect of reducing these costs, the results suggest that traders should
either stop submitting new orders when observing these large amounts of
traded shares or not exceed these thresholds values in case of fast (liquid-
ity) block trading. A comparison of di�erent news-impact curves for di�er-
ent threshold values is shown in Figure 5, displaying the market’s reaction
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Figure 7: P-values of the Ljung-Box test, the D-test and the ER-test for all
100 ACD models

time. The in�uence of a high (low) duration shock ���1 will be the greater
(smaller), the higher ��. The estimates and their standard errors (in paren-
thesis) of four duration models are reported in Table 1.

The errors �̂� = +�-�̂� are generalized Beta distributed. The development
of the distribution parameters �̂� $̂� %̂ and �̂ are depicted in the upper panel
of Figure 6, di�erent implied hazard functions at the respective threshold
levels are shown in the lower panel. As discernible, all hazard functions have
a similar form and follow a non-monotonous concave slope, where the posi-
tion of the maximum of the curve — determining the switch of the duration
dependence — is closer to zero the smaller the threshold value. For exam-
ple, the hazard function of the residuals for �� = 1 immediately decreases
after a short jump, whereas other curves �rst show a moderate rise and
then decline. This indicates that small quantities are most probably to be
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absorbed “immediately”, while large amounts are more likely to be traded,
the longer the time that has elapsed. In general, the hazard functions only
di�er in the time, where the positive duration ends and the negative begins,
signalling that the spell to absorb �� is less likely to end the longer it lasts.

Figure 7 shows the $-values of the D-Test, the ER-Test and the Ljung-
Box test (with the modi�ed portmanteau statistic of Li and Li (2005)) of
all estimated ACD models. Except the test of overdispersion by Engle and
Russell (2004), all other tests reject a correct speci�cation of the models
for small aggregation levels. The D-test rejects the null for �� � 15 and
the Ljung-Box test rejects for �� � 33, indicating that the model of lag
orders (1� 1) with the Box-Tukey transformation is not able to capture the
dynamics of volume durations in the lower threshold levels. In contrast, the
same model speci�cation seem to show a good performance for all higher ��
values, similar to the �ndings of Hautsch (2004).

5 Conclusion

This paper investigates the time varying liquidity of limit order books by an-
alyzing the dynamics of volume durations with increasing threshold values.
The main objective was to study the development of the models’ parameters
in order to reveal the market’s absorption speed at di�erent aggregation lev-
els. Applying a �exible generalized Beta distribution to capture the extreme
durations, and a Box-Tukey-transformation to account for a nonlinear news-
impact curve, a sequence of ACD models was estimated to examine how the
time series properties change as the threshold number of shares traded rises.
Using detailed transaction data from the German XETRA system, the em-
pirical results show that the cluster structure of the process and the market’s
absorption speed decreases continuously for highly cumulated volumes.
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