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Abstract

Traditionally, portfolio optimization is associated with finding the ideal
trade-off between return and risk by maximizing the expected utility. In-
vestor’s preferences are commonly assumed to follow a quadratic or power
utility function, and asset returns are often assumed to follow a Gaussian
distribution. Investment analysis has therefore long been focusing on the
first two moments of the distribution, mean and variance. However, em-
pirical asset returns are not normally distributed, and neither utility func-
tion captures investors’ true attitudes towards losses. This contribution in-
vestigates the impact of these specification errors under realistic assump-
tions. As traditional optimization techniques cannot deal reliably with the
extended problem, we suggest the use of a heuristic approach. We find
that loss aversion has a substantial impact on what investors consider to
be an efficient portfolio and that mean-variance analysis alone can be ut-
terly misguiding.

Keywords. Loss aversion, risk aversion, portfolio optimization, heuris-
tics, differential evolution.
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1 Assets and Asset Selection

1.1 Properties of Asset Returns

Portfolio optimization and understanding of investment decisions have come a
long way over the last decades. Following the seminal work of Markowitz (1952),
the standard paradigm in financial modeling has long been that the first two
moments, mean and variance, are sufficient to describe asset returns and cap-
ture the preferences of a rational risk averse investor. In this framework the
investment decision is based on the trade-off between higher mean and higher
variance of the returns. The underlying assumption for this approach is that
either the returns are normally distributed, or that investors have a quadratic
utility function. Unfortunately, neither seems to hold for the real world.

One of the salient properties of normal distribution is that any observation
from minus to plus infinity is assigned a positive probability. Negative log re-
turns up to minus infinity require that losses up to the amount of initial invest-
ment can occur, but not more so. Hence it does apply, e.g., to bonds, stocks, or
options when held in a long position, but not to futures or stocks and options
when held in a short position. Arbitrarily large positive returns can be achieved
for long positions when prices can increase without any limit. This is true (at
least in principle) for assets such as stocks, futures or call options. Put options
already have a theoretical upper limit on their value (though this bound is un-
likely to be reached anyway unless the underlying defaults). For assets such as
bonds, however, there is a much clearer upper bound on potential profits: a long
position in a simple bond will earn the yield to maturity if it does not default
or less if it does; additional deviations due to changes in the general interest
rate structure might cause slight, but no dramatic deviations from this. Hence,
the assumption of symmetric deviations from the expected value which make
positive and negative deviations of the same magnitude equally likely, will by
definition apply only to a small set of assets such as stocks. And even for those
assets, skewed empirical returns are not uncommon.

The even bigger problem with the normality assumption is that is does not
capture extreme events appropriately. Looking at the Dow Jones Industrial Av-
erage’s daily log returns, there were two days with losses bigger than 5% within
the 1684 days considered for the computational study in this chapter; for the ob-
served mean and variance, the normal distribution predicts that it ought to take
about 1.5 million days for these two extreme events to happen. For individual
stocks, excess kurtosis and the gaps between predicted and actually observed
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frequencies are typically even larger. Hence, looking only at the first two mo-
ments of return distributions leaves out crucial information. As a consequence,
other approaches have become more popular, such as including student’s t-
distribution (which, in particular with low degrees of freedom, does exhibit
some excess kurtosis) or, more recently, extreme value theory (Gilli and Këllezi
(2006)); alternatively, empirical distributions and historical sampling methods
are widely used and sanctioned by regulatory authorities as are alternative risk
measures (Basel Committee on Banking Supervision (2003), Gilli, Këllezi and
Hysi (2006)).

1.2 Investor Preferences

At the same time, the usual assumptions about risk preferences imply that in-
vestors actually might prefer deviations from a normal distribution. A common
assumption in modeling an investor’s preferences is diminishing marginal util-
ity of wealth; this implies that larger deviations on the positive side are required
to offset her for losses. In other words, investors are assumed to prefer pos-
itively skewed returns. For the same reason, variance and excess kurtosis are
not desirable: both measure deviations from the mean but ignore the sign; with
marginally diminishing utility, losses lower the utility more than profits of the
same magnitude would increase it. As a consequence, higher variance and kur-
tosis, respectively, are accepted only if they are rewarded with an increase in
the mean payoff. All things considered, the representative risk averse rational
investor should find an investment that optimizes the trade-off between its ex-
pected return and expected deviations from it.

More recent work in behavioral finance suggests that utility functions should
also capture a more human property: investors do not only dislike losses, some-
times they also put more emphasis on it than pure statistics or a traditional
framework of rational investors would suggest. In their seminal studies, Kahne-
man and Tversky (1979) found that losses play a more prominent part in mak-
ing decisions than traditional utility analysis would predict. Hence, decisions
are merely driven by loss aversion and the prospect of ending up with a lower
than the current wealth, and not just by risk aversion which captures any devi-
ation – positive and negative alike – from the expected wealth. Prospect theory,
which arose from these findings, assumes that investors put additional weight on
losses, meaning that they either overestimate the likelihood or the magnitude of
losses. Empirical work found these effects not only for ex ante decision problems
(Thaler, Tversky, Kahneman and Schwartz (1997)), but also for dynamic port-
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folio revisions where investors tend to sell winners and to keep losers (Odean
(1998)). These findings have also coincided with (and, arguably, supported) the
advent of new risk measures that measure only losses, such as Value at Risk and
conditional Value at Risk, or take the asymmetries between profits and losses
into account, such as the Omega risk measure (Gilli et al. (2006)).

1.3 Consequences for Asset Selection

If neither the asset returns nor the decision maker’s preferences agree with the
assumptions of traditional optimization problems, disagreement on what is an
optimal solution can be expected. Behavioral finance has made progress in iden-
tifying more realistic models of preference and choice, there exists little evi-
dence of how this would (or should) affect the actual investment selection pro-
cess in a realistic market. This contribution aims to answer to this question by
analyzing the consequences from deviating preferences and properties. Based
on an empirical computational study for Dow Jones stock data, it is investigated
how the choice of utility function, level of risk aversion and, in addition, level of
loss aversion affects the investment process. The results show that these differ-
ences in preferences not only lead to different ideas of “efficient” portfolios, but
also that investors’ portfolios will differ substantially in their stylized facts and
properties.

The remainder of this chapter is organized as follows. Section 2 presents
the financial background in more and formalizes the optimization problems,
Section 3 offers a method that can solve them. Section 4 presents an empirical
study, and Section 5 concludes.

2 Portfolio Optimization under Loss Aversion

2.1 Loss aversion, Risk Aversion and Utility Analysis

In myopic portfolio optimization, a popular choice for modeling investors’ pref-
erences is the quadratic utility function,

Uq (w)= w − b

2
w2, 0 < b < 1/w (1)

where w is the wealth and b is the level of risk aversion. With this function,
higher moments are either ignored or assumed to not exist – as is the case under
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a normal distribution. One peculiarity of this function is that it is not defined for
wealth levels w < 1/b: the function’s first derivative, i.e., the marginal utility of
wealth, would become negative which clearly contradicts the usual assumption
of non-satiation and investors preferring more wealth to less. A simple remedy
is to assume zero marginal utility for wealth beyond this bliss point and set the
utility to Uq (w)= 1/(2b) ∀w ≥ 1/b.

Alternatively, utility functions such as the power utility

Up(w)= (
w1−γ) · (1−γ)−1, γ> 0 (2)

implicitly do take higher moments into account. (1−γ) measures the risk aver-
sion, with γ also being the constant coefficient of relative risk aversion, −w ·
U ′′

p (w)/U ′(w). For γ = 1, the function turns into the log utility function (or
Kelly criterion) where the log of the wealth, Ul (w)= ln(w), is considered.

However, individuals tend to be more sensitive to falling below a certain level
of wealth than exceeding it (Samuelson (1963)). Typically, this reference point
is the current level of wealth, w0, which makes the decision maker loss averse.
A simple way to account for this phenomenon is to use modified future levels of
wealth, m, that enhance the losses:

m = w0 + (w −w0)ℑw≥w0︸ ︷︷ ︸
profit

+λ(w −w0)ℑw<w0︸ ︷︷ ︸
loss

= w + (λ−1)(w −w0)ℑw<w0

where λ≥ 1 is the degree of loss aversion; the indicator function ℑw<w0 (ℑw≥w0)
is 1 (0) if a loss is occurred and w < w0, and 0 (1) otherwise. When using the
quadratic or power utility function, the utility curves remain concave, but have
a kink at w0 and are steeper left of it than their “traditional” counterpart. Al-
ternatively, the levels of wealth can be left unchanged but the probabilities for
incurring losses and profits are altered. In either way, the left-hand part of the
curve is over-emphasized when the expected utility is computed.

In their seminal experiments, Kahneman and Tversky (1979) (KT) find that
individuals are not only loss averse, but that the preference actually form an
S-shaped value curve of changes in wealth, x = w −w0,

v(x)=
{

xα x ≥ 0

−λ(−x)β x < 0
(3)
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Furthermore, they assume decision makers use decision weights, πi , which are
nonlinear transforms of the probabilities of outcome i , pi . According to their
prospect theory, the prospective utility of a gamble G can then be modeled as

V (G)=
∑

i
πi v(xi ). (4)

They find for their experiments that the parameters for the value function are
α=β= 0.88 and λ= 2.25.

2.2 Operational Aspects of Portfolio Optimization

Investors are assumed to maximize their expected utility. In perfect markets
with well behaved return distributions, investors prefer a combination of a (uni-
versal) risky portfolio with a risk free asset. Depending on their level of risk
aversion, they choose different fractions of wealth to invest in either of these
(Tobin (1958)). In the absence of a risk free asset, however, and with distribu-
tions that do not follow the usual parametric distributions, solutions become
less straightforward. The problem becomes even more demanding when prac-
tical constraints are considered. While aspects such as transaction costs, taxes,
liquidity risk, etc. can be approximated by modifying the (distribution of) re-
turns, constraints on the asset weights (i.e., the assets’ fractions within the risky
portfolio) can cause severe challenges to numerical approaches. Not uncom-
monly, weights for individual assets can have upper limits, xi ≤ xu in order
to encourage diversification and reduce excessive exposure to a single asset’s
risk. At the same time, there can also be minimum weights for included assets,
xi = 0∨xi ≥ x`, to avoid over-fragmentation and keep costs to a reasonable level.

In the presence of such weight constraints, the portfolio optimization prob-
lem for a maximizer of expected utility can be stated as follows:

max
x

E(U (w,λ)) (5)
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subject to

wi =
N∑

a=1
w0 exp(ra,i )xa

m = w + (λ−1)(w −w0)ℑw<w0 (6)

E(U (w,λ))=
I∑

i=1
pi U (wi ,λ)

U (w,λ)=





quadratic utility: Uq (m)=
{

m − b
2 m2 b < m/2

m/2 otherwise

power utility: Up(m)=
{

m1−γ
1−γ γ 6= 1

ln(m) otherwise

prospect theory: UPT (w)= (w −w0)αℑw≥w0 −λ(w0 −w)βℑw<w0∑
i

xi = 1

xi :

{
xi = 0

x` É xi É xu ∀i

ℑw<w0 =
{

1 w < w0

0 otherwise
, ℑw≥w0 = 1−ℑw<w0

As with many financial optimization problems, this problem, too, is non-
convex, and standard non-linear optimization methods cannot be guaranteed
to find the global optimum. Hence, alternative methods such as heuristics or
non-deterministic approaches have gained popularity since they can deal with
non-convexity and discontinuities.

3 Heuristic Methods for Portfolio Optimization

3.1 A Brief History of Heuristics in Finance

Heuristic methods have become an increasingly popular alternative to tradi-
tional optimization methods. One salient feature of these methods is the inclu-
sion of non-deterministic elements, another the occasional acceptance of im-
pairments (despite the obvious preference for improvements). Because of these
two principles, the search process is no longer deterministic – which can be very
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beneficial: local optima can be overcome more easily. Also, restarts do not nec-
essarily produce the same reported result; if the search converges to an inferior
solution once, another run can identify another optimum – ideally the global
one. Restarts will therefore increase the likelihood of identifying the true opti-
mum, which is not the case for traditional deterministic search methods. Fur-
thermore, heuristics are often designed as general principles (meta-heuristics),
that can easily be adapted to all sorts of problems and constraints. An in-
troduction to the use of heuristics in finance can be found in Gilli, Maringer
and Winker (forthcoming). For applications of deterministic methods, see, e.g.,
Konno (2005).

A common traditional approach is to find a suitable trajectory through the
search space that leads to the optimum. Gradient search, e.g., takes its steps
from first order conditions and, in the case of a maximization problem, moves
the current solution towards the steepest ascend. This simple deterministic rule,
however, has difficulties coping with rough search spaces that have several op-
tima; often, the search ends in the local optimum closest to the starting point
which is not necessarily the global optimum. A simple yet effective remedy is
the inclusion of noise: adding noise with expected value zero to the gradient
will lead to diversions in the trajectory, and local optima can be circumvent and
left. Parpas and Rustem (2006) and Maringer and Parpas (forthcoming) apply
this approach to a portfolio selection problem, where updates of the current
solutions contain deterministic (i.e., the gradient) and non-deterministic (i.e.,
noise) elements and where the magnitude of noise is gradually reduced and re-
placement decisions are based on improvements only.

Introduced by Kirkpatrick, Gelatt and Vecchi (1983), simulated annealing
(SA) is a heuristic that abandons the deterministic ingredient all together. Sug-
gested changes are randomly picked based on a neighborhood definition (i.e.,
adding noise to the current solution), and acceptance is based on a stochastic
rule. This rule takes into account the magnitude of the change in the objective
function and how progressed the search is: Other things being equal, larger im-
pairments are less likely to be accepted than smaller ones or improvements. The
more iterations have passed, the algorithm should have moved to a favorable
region of the search space (due to its preference for improvements over impair-
ments), and it becomes less tolerant in accepting impairments. Hence, in the
course of multiple iterations the search process becomes more and more like a
greedy uphill search.

Dueck and Scheuer (1990) suggest threshold acceptance (TA) where SA’s ran-
dom generation of new solutions is kept, but the stochastic acceptance principle
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is replaced with a deterministic rule and any improvement is accepted as well
as any impairment that does not exceed a given threshold. This threshold is
lowered in the course of iterations which, again, makes it more intolerant to im-
pairments. More on TA and applications to economics and econometrics can
be found in Winker (2001) and Winker and Maringer (2007); applications of SA
and TA in finance are presented in Maringer (2005).

TA has been successfully applied to different portfolio optimization prob-
lems. For example, Gilli and Këllezi (2002) show how to use it for index tracking
problems with demanding constraints, and Gilli et al. (2006) offer a significant
and helpful extension to the usability and practical application of TA by sug-
gesting a data driven approach for tuning one of the ingredients, the thresh-
old sequence, and showing how to tackle investment decisions under different
downside risk measures. In these contributions, Gilli and colleagues managed
not only successfully answer challenging and demanding problems that would
be unsolvable with traditional methods; they also helped to establish the use of
heuristics in finance as well as econometrics.

An alternative class of (meta-) heuristics is based on evolutionary principle
and natural evolvement. Evolutionary strategies (Rechenberg (1965, 1973)) and
the more popular genetic algorithms (Holland (1975)) are typical and widely
used examples. The main principles are mimicking natural processes: New so-
lutions are produced by slightly modifying existing ones (“mutation”) and, in
the case of “populations” of candidate solutions, combining them into new ones
(“cross-over”). For both approaches, randomness is the key element: which part
of the solution is altered to which extent is decided non-deterministically, and so
is which “parent” solutions contributes what to their offspring’s. Following the
“survival of the fittest principles,” new solutions will replace current ones if they
outperform them – yet this decision, too, can be subject to a tournament which
adds another stochastic element to the process. Fogel (2001) offers a detailed
account of evolutionary methods and general applications, while financial ap-
plications of evolutionary methods can be found, e.g., in Brabazon and O’Neill
(2006) or Maringer (2005).

3.2 Differential Evolution

A recent addition to the class of evolutionary heuristics is a method called dif-
ferential evolution (DE). Suggested by Storn and Price (1995, 1997), DE uses a
population of P vectors, vp , p = 1 . . .P , where the N real valued elements of the
vectors represent the objective variables. The basic idea is to produce a new so-
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lution for each current vector vp0 , where the new solution is a combination of
four distinct current solutions. This involves the following steps: First, three
different vectors are randomly chosen from the current population. One vector,
vp1 , is used as the base vector to which the weighted difference of two other vec-
tors vp2 and vp3 is added. The combined solution is then vk = vp1 +F ·(vp2 −vp3).
Finally, this combined solution is crossed-over with a fourth solution, vp0 . This
procedure of producing a new solution is repeated for each member p0 of the
current population. Once all the crossed-over solutions have been generated,
they replace their respective parent, vp0 , if the objective value is better.

As long as different vectors do not “agree” on the values of the elements,
the difference vector (vp2 −vp3) will have non-zero elements, and genuinely new
solutions will be produced. If, however, one or more of the elements of the dif-
ference vector are small or even zero, the new solution will inherit the (more or
less) unchanged corresponding values of the base vector. The new solutions will
then move towards what they consider the best values for the elements; these
reference points can change in the course of multiple iterations as the solutions
are steadily improved. Eventually, they will agree, however, and (graphically
speaking) flock at or around a point in the solution space which they consider
the global optimum.

Diversity within the population is salient to avoid premature convergence.
For example, additional perturbation can be achieved by adding some noise to
the difference vector, by adding a second difference vector, etc. Alternatively, to
reinforce good solutions, the best solution found so far, the so-called elitist, can
be chosen as the base vector or as the vector vn is crossed over with. A detailed
presentation of variants and how to apply these and further extension can be
found in Price, Storn and Lampinen (2005). In Maringer and Parpas (forthcom-
ing), DE is applied to a portfolio optimization problem and compared against
an alternative method, Stochastic Differential Equations, while Maringer and
Meyer (forthcoming) compare it against Threshold Accepting in an application
to model selection. Both studies find that DE is a competitive method capable
of solving demanding optimization problems.

One of the advantages of DE is that the number of technical parameters is
rather low. In its typical version with the difference vector consisting of two
current elements and a cross-over with a fourth current solution, only the pop-
ulation size, the scaling factor F and the cross-over probability need to be pre-
specified. If noise is used to add diversity, it is common to add normally dis-
tributed random values with expected value zero and small standard deviation.
Also it is claimed to be easy to use as it needs little or no parameter tuning.
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These favorable property was also experienced in this application; a more de-
tailed discussion of calibrating DE can be found in Maringer (forthcoming).

DE’s way of generating new solutions has been designed for search in a con-
tinuous space. In order to deal with the discontinuities of the search space due
to the constraints on the weights, a repair function is introduced that maps the
candidate solutions v into a feasible solution of weights, x. Following the ap-
proach suggested in Maringer and Oyewumi (2007), this repair function first
assigns the minimum positive weight, x`, to all assets where the values of the
corresponding elements of v exceed this value. If this would leave fewer than
nmin = 1/xu assets, then the nmin assets with the highest values in v are picked.
Next, the weights of the included assets are increased in proportion to the val-
ues in v until the weights add up to one and no asset weights violates the upper
limit. In preliminary experiments, this repair function was tested against sev-
eral alternatives. It was found that the function itself is computationally cheap
as in most of the cases the mechanism simply picks the largest positive elements
and scales them such that the consumption constraint is met. Furthermore, it
does not encourage premature convergence: while the values for the included
elements tend to be similar to their repaired counterparts, those of the other
elements tend to converge either to zero or to some arbitrary negative value.
Given the production algorithm for new candidate solutions, the latter case can
cause that these elements become positive again in the candidate solution and
the corresponding assets are included in the portfolio, and local optima can be
escaped. In addition to upper and lower limits, Maringer and Oyewumi (2007)
also consider a cardinality constraint which limits the number of different assets
in a portfolio with, say, k. Other things equal, the repair mechanism then picks
only the k elements with the biggest values if there are more than k positive
ones.

For the generation of new solution, the inclusion of noise was found helpful.
More specifically, the i -th element of the new vector was computed according to
vn,i = vp1,i + (F + z1) · (vp2,i − vp3,i + z2) where z1 and z2 are either zero (with a
probabilities of 1 and 2 percent, respectively) or normally distributed random
variables with expected values of zero and standard deviations of 0.02. Typi-
cally, the population size was set to 50, and the number of iterations to 2500.
Preliminary experiments suggest that the results did not differ substantially for
other values of the technical parameters. For all problems, up to 50 restarts were
performed and the best of the reported results were used for the analysis in the
following section. Algorithm 1 summarizes the pseudocode.
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Algorithm 1: Pseudocode for utility maximization with Differential Evolu-
tion

randomly initialize population of vectors vp , p = 1 . . .P ;1

repeat2

%% generate new solutions ṽp ;3

for current solutions vp , p = 1 . . .P do4

randomly pick c1 6= c2 6= c3 6= p;5

for all elements i in the solution vector do6

with probability π1 : z1[i ]← N(0,σ1) else z1[i ]← 0 ;7

with probability π2 : z2[i ]← N(0,σ2) else z2[i ]← 0 ;8

randomly pick u[i ]∼U(0,1);9

if u[i ]<π then10

ṽp[i ]← vp[i ];11

else12

ṽp[i ]← vc1[i ]+ (F + z1[i ]) · (vc2[i ]− vc3[i ]+ z2[i ]);13

%% select new population: replace if improvement;14

for current solutions vp , p = 1 . . .P do15

map solutions into asset weights, vp → xp , ṽp → x̃p ;16

if E(U (w(x̃p),λ)) > E(U (w(xp),λ)) then17

vp ← ṽp ;18

until halting criterion met ;19

4 Empirical Study

4.1 Data

The empirical study is based on the stocks included in the Dow Jones Industrial
Average (DJIA). Using adjusted daily prices downloaded from finance.yahoo.com
for 2 March 2000 to 17 November 2006, 1684 log returns where computed. Fig-
ure 1 contains scatter plots of the moments of the asset returns; points on the
same vertical level refer to the same asset. Some of the assets were not included
in any of the optimized portfolios and are represented by dots; circles depict as-
sets that are included in at least one of the optimized portfolios. It is noteworthy
that it is not the assets with the highest volatility or kurtosis or most negative
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Figure 1: Assets in the mean-volatility, mean-skewness and mean-kurtosis
space. Dots: assets included in at least on portfolio; circles: assets never in-
cluded

skewness that are avoided; also, in some cases assets that are dominated in the
mean-volatility space are included. The main reason for this is the structure of
the (higher) co-moments.

4.2 Portfolios under Risk Aversion and Loss Aversion

In traditional utility analysis, an investor’s utility of a (future) level of wealth,
w is irrespective of his initial wealth w0. In this case, the investor is concerned
with the expected value of future wealth and its expected distribution, but there
is no explicit distinction whether or not a certain level of wealth is a loss or a
gain. Hence, the investor is risk averse, but there is no additional loss aversion.
In terms of optimization problem (5), this implies a parameter of loss aversion
of λ= 1, and no correction is required to estimated the expected utility.

Figure 2 depicts the moments of the arithmetic returns of optimized port-
folios for a quadratic utility (Figure 2(a), line) and a power utility (Figure 2(b),
dots) maximizer with different parameters of risk aversion. As expected, de-
creasing risk aversion (i.e., decreasing parameters b and γ, respectively) leads to
portfolios with higher expected return, yet also higher volatility. In this region,
fewer, but more profitable and riskier assets are included, as can be seen from
the cumulated weights. For both utility functions, the efficient sets are the usual
curves in mean-volatility space with slight kinks due to the weight constraints.

Quadratic utility is oblivious to skewness and kurtosis; power utility, on the
other hand, is affected by higher moments. Not surprisingly, the power utility
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maximizer therefore prefers portfolios with higher skewness and/or lower kur-
tosis. The graphs in Figure 2(c) show that for cases with a rather low level of risk
aversion (high return portfolios), the two investors hardly differ in their invest-
ment choice. The higher the risk aversion (low return portfolios), however, the
more pronounced the deviations become. Though hardly noticeable, when the
level of risk aversion is very high, the power utility maximizer (PUM) is even
prepared to accept a slightly higher volatility than the quadratic utility maxi-
mizer (QUM), if this comes with more favorable values for the higher moments.
When returns are perfectly normally distributed, these deviations will not man-
ifest themselves. However, in the presence of higher order moments PUM and
QUM might consider each other’s optimized portfolios as inefficient; a look be-
yond the usual mean-volatility framework, however, shows that neither of them
behaves irrationally – the differences are due to different, yet perfectly rational,
preferences and, consequently, they have different notions of what an efficiency
means.

These differences become even more apparent when investors are not only
risk averse, but also loss averse. When the initial wealth, w0 influences the utility
of a future level of wealth, then the same future level of wealth w will give the
investor a higher utility if it comes with a gain than if it actually comes with
a loss: U (w |w0) > U (w |w ′

0) ∀w0 < w < w ′
0. With concave utility functions,

decision makers will then be even more keen on avoiding losses. Primarily, this
means a reduction of risk in terms of volatility. If, however, the utility function
can look beyond the second moment, than investors will try to avoid not just
any, but specifically negative deviations from the expected value; i.e., they will
try to increase the (positive) skewness. Also, they want to avoid extreme events
and will therefore aim to reduce the kurtosis of their portfolios.

Figure 3 depicts the moments of optimized portfolios for different utility
functions, levels of risk aversion and levels of loss aversion. As can be seen im-
mediately from the graphs for the mean-volatility space (left), the high return
/ high volatility regions of the previous graph are missing, and both QUM and
PUM are now in regions which, in the absence of loss aversion, would have been
chosen only with a substantially higher level of risk aversion. This effect is the
stronger, the higher the loss aversion. Since the modified wealth levels (equation
(6)) include the level of loss aversion and emphasize the losses accordingly, the
efficient lines for quadratic utility maximizers now deviate from the one with-
out loss aversion. Again, the constraints on minimum and maximum weights
for included assets cause kinks in the efficient lines (here: in a mean-volatility
space); the actual effects of these constraints, however, are not too big. Looking
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(a) Quadratic utility maximizer (QUM)
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(b) Power utility maximizer (PUM)
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Figure 2: Portfolios optimized under quadratic utility (line) and power utility
(dots) without loss aversion (λ = 1), projected into the mean-volatility, mean-
skewness and mean-kurtosis space
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(a) loss aversion: λ= 1.25
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(b) loss aversion: λ= 1.5
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(c) loss aversion: λ= 2

Figure 3: Moments of portfolios optimized under quadratic utility (line) and
power utility (dots) and different levels of loss aversion, λ, projected into the
mean-volatility, mean-skewness and mean-kurtosis space
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at the higher moments, however, shows QUM’s lack of concern with deviations
from the expected value that are not captured by volatility: By definition, higher
risk aversion demands lower volatility, but not necessarily higher skewness or
lower kurtosis.

For power utility maximizers, the picture looks different. PUM with higher
risk aversion and higher loss aversion, too, prefer lower volatility. However,
they care more about higher moments than QUM. Notably, for any given mean
return, their portfolios never have lower skewness and higher kurtosis than
the respective portfolios of QUM. However, they are prepared to accept higher
volatility than QUM because the benefits of the higher skewness and the reduced
kurtosis offsets.

Eventually, this concern with higher moments leads to the effect that PUM
with increasing risk aversion start increasing their portfolio’s volatility. Looking
at the mean-volatility diagram alone might suggest irrationality or inefficiency.
Looking at the higher moments, however, shows that this is perfectly rational.
With higher risk aversion, PUM are inclined to avoid (extreme) losses. Loss
aversion emphasizes the losses, and the way the modified (or perceived) wealth
levels, m, are computed (equation (6)) adds negative skewness. In the opti-
mization process, these distortions are to be counterbalanced, and a potential
increase in skewness and reduction of kurtosis outweighs a mere volatility re-
duction. To a small degree, this can be observed already in the results for the
case without loss aversion but a very high level of risk aversion; when there is
loss aversion in addition, this effect can become prevailing.

As can be seen from the results, the effects of loss aversion are different for
different risk preferences. Obviously, when some of the investors look at dif-
ferent (higher) moments of return distributions, they will have different views
about efficient and optimal solutions. When only looking at the mean and
volatility, power utility maximizers with loss aversion might look as if they be-
come risk lovers, while in actual facts they become even more risk averse but are
increasingly concerned with the higher moments of their portfolios. Volatility
is no longer sufficient to describe all aspects of risk, and basing the definition of
“effectiveness” on this risk measure alone might lead to flawed conclusions.

It must be emphasized that all the empirical cases considered so far are for
investors with strictly convex utility functions who are always risk averse and
rational. What the consequences for optimal portfolios and their higher mo-
ments are when, as suggested by prospect theory, decision makers become risk
seeking when occurring losses, is discussed in the next subsection.

17



4.3 Portfolios under Prospect Theory

When investors no longer have a decreasing marginal utility for any level of
wealth, then their utility curve becomes convex in certain regions – which char-
acterizes risk lovers. In Kahneman and Tversky (1979), this is found for losses:
investors dislike bigger losses, yet the additional disutility is decreasing. In ad-
dition, however, investors are more sensitive to losses than they are to profits
of the same magnitude; their utility of losses is therefore weighted with a loss
aversion coefficient λ. The resulting utility curve is S-shaped with a kink at the
origin, and, assuming the convexity for losses is equal to the concavity is profits
(α=β), it can be modeled by

UPT (w)= (w −w0)αℑw≥w0 −λ(w0 −w)βℑw<w0

= (|w −w0|)β
(
1− (1+λ)ℑw<w0

)

Furthermore, it is assumed that the decision weights are equal to the probabili-
ties of the different states, i.e., πi = pi .

If λ= 1 then the investor is not loss averse. When the parameter β is equal to
one, the utility function is a straight line, and the investor will simply maximize
the expected wealth. However, when β is lowered the curvature on either side
increases. This has two effects: on the right hand side, bigger profits earn less
and less additional utility and the investor will accept lower expected returns if
the distribution is more favorable. On the left hand side, however, bigger losses
cause less and less additional concern, and, other things equal, investors with
low β are less concerned with lower or even negative skewness. Also, kurtosis
is now less important: extreme events provide virtually the same (dis-)utility as
events that are not quite so extreme, hence increasing the kurtosis does has no
substantial effect if none of the other moments is affected. Figure 4(a) illustrates
these effects. Note that the lower and upper limits on the weights of included
assets cause discontinuities.

When loss aversion is introduced, however, the situation changes; this can be
seen from Figures 4(b) and 4(c). When they are loss averse, investors concen-
trate on low risk portfolios, and the actual value of the parameter β, governing
the curvature of the utility function, looses importance: with the same level of
loss aversion, an investor with high risk aversion (low β) will choose a portfolio
quite similar to that of an investor who is risk neutral. While in the absence of
loss aversion, the risk neutral aims for the highest returns (and accepts higher
volatility), it is now investors with stronger curvature who are prepared to accept

18



0.0160.018 0.02
0

0.5

1

volatility

cu
m

. w
ei

gh
ts

0.01 0.02 0.03
1.2

1.4

1.6
x 10

−3

volatility

ex
p.

 r
et

ur
n

−1 0 1
1.2

1.4

1.6
x 10

−3

skewness

ex
p.

 r
et

ur
n

0 10 20
1.2

1.4

1.6
x 10

−3

kurtosis

ex
p.

 r
et

ur
n

0.60.81
1.2

1.4

1.6
x 10

−3

β

ex
p.

 r
et

ur
n

(a) No loss aversion: λ= 1
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(b) loss aversion: λ= 2
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(c) loss aversion: λ= 3

Figure 4: Moments of portfolios optimized under prospect theory without and
with λ, projected into the mean-volatility, mean-skewness and mean-kurtosis
space
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higher risk. Hence, even though parts of their utility curve is concave indicat-
ing they are risk seeking, their loss aversion prevents them from choosing more
risky portfolios, and they select better diversified portfolios than they would in
the absence of loss aversion.

5 Conclusion

Over the last decades, the importance of behavioral aspects in finance have
widely been recognized. One of the insights of this stream of research is that
simple utility functions are not sufficient to capture the actual preferences of in-
vestors. In particular, they do not capture that investors take their current level
of wealth into account when evaluating the utility of future levels of wealth; that
moving from profits to losses triggers a higher level of sensitivity; and that even-
tually they cease to care about even bigger losses as much as they cease to care
about even bigger profits. The latter property is addressed in prospect theory
where the profits are evaluated with the concave utility function of a risk averse,
while losses are subject to a convex utility function of a risk loving investor. The
former property can be considered by not only looking at the risk aversion, but
also at the loss aversion of a decision maker.

In this chapter, the consequences of different attitudes towards risk and losses
are investigated for portfolio optimization where additional practical constraints
on the asset weights where introduced. Based on an empirical study, different
utility functions and levels of loss aversions are tested and the properties of the
resulting portfolios are investigated. It is found that higher order moments are
needed to explain the choices: Even when investors are strictly risk averse, a
higher level of risk aversion might lead to an investment with more, not less
volatility. What seems irrational at first sight, is actually perfectly rational as
under loss aversion, investors are more sensitive towards skewness and kurtosis,
and increasing the desirable positive skewness and decreasing kurtosis might
prevail a mere volatility reduction strategy once the level of risk aversion is big
enough. Loss aversion even outbalances some of the preferences of investors
who become risk seeking when they face losses.

The results found in this chapter help to understand seemingly irrational
behavior and underline the inadequacy of the mean-volatility framework for
many real life investment problems. Furthermore, it is shown that demanding
optimization problems can be solved with heuristic optimization techniques.
However, the results also open some new questions. A broader computational
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study for different markets, data sets shall help to generalize the findings, while
additional constraints on asset selection can analyze the practical implications.
Furthermore, the inclusion of other types of assets such as bonds and derivatives
can provide additional insights on the consequences for financial engineering.
Also, the workings and convergence behavior of the heuristic search method
should be investigated in more detail. All this, however, has to be left to future
research.
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