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Abstract

Threshold Accepting (TA) is a powerful optimization heuristic. Using sev-
eral examples from economics, econometrics and statistics, the issues re-
lated to implementations of TA are discussed and demonstrated.

A problem specific implementation involves the definition of a local
structure on the search space, the analysis of the objective function and
of constraints, if relevant, and the generation of a sequence of threshold
values to be used in the acceptance-rejection-step of the algorithm.

A routine approach towards setting these implementation specific de-
tails for TA is presented, which will be partially data driven. Furthermore,
fine tuning of parameters and the cost and benefit of restart versions of
stochastic optimization heuristics will be discussed.
Keywords: Heuristic optimization; threshold accepting.

1 Introduction

Threshold accepting is an optimization heuristic. Reasonable features of such
optimization heuristics include the following (Barr, Golden, Kelly, Resende, and
Stewart, 1995, p. 12). Firstly, they should aim at good approximations to the
global optimum. Secondly, they should be robust to changes in problem char-
acteristics, tuning parameters and changes in the constraints. Thirdly, they
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1 Introduction 2

should be easy to implement to many problem instances, including new ones.
Finally, a necessary requirement is that the solution approach consists of a pro-
cedure which does not depend on individual subjective elements. We will try to
demonstrate that a suitable implementation of threshold accepting fulfills these
requirements.

Threshold accepting is a modification of the more often used simulated an-
nealing (Kirkpatrick, Gelatt, and Vecchi (1983)) using a deterministic accep-
tance criterion instead of the probabilistic one in simulated annealing. It also
belongs to the class of local search methods (Aarts and Lenstra, 1997, p. 2). A
classification of optimization heuristics can be found in Winker and Gilli (2004),
and a more detailed description of the threshold accepting algorithm is provided
by Winker (2001).

Classical or standard optimization techniques such as Newton’s method are
mostly based on differential calculus and first order conditions. However, this
strategy requires the search spaceΩ to be continuous and to have just one global
optimum. Many of the problems arising in statistics and economics exhibit ob-
jective functions with several local optima or discontinuities. A classification
of optimization problems and some references to such cases are provided by
Winker and Gilli (2004). Applied on these problems, classical optimization tech-
niques might report the local optimum next to the starting point – provided it
was able to converge in the first place. It therefore seems adequate to extend
the portfolio of optimization techniques applied in these fields by optimization
heuristics. There are a large number of problems in economics and statistics,
including Maximum Likelihood Estimations, GMM, numerical models in eco-
nomics, e.g., for computable general equilibrium models or quantitative game
theory (Judd, 1998, pp. 133ff and 187ff, respectively), which are documented,
for which standard optimization approaches may fail to provide solutions at all
or would require tremendous amounts of computing resources. E.g., Brooks,
Burke, and Persand (2001) found that commonly used econometric software
may fail for a rather simple maximum likelihood estimation for the parameters
of a GARCH model whereas threshold accepting is capable of finding signifi-
cantly better results as Maringer (2005) reports. Therefore, the question as to
whether new optimization paradigms could be useful in economics and statis-
tics has to be answered by a clear–cut “yes”.

During the last 15 years, threshold accepting has been successfully applied
to many different problems ranging from classical operations research to eco-
nomics and statistics. In fact, the algorithm has been introduced with an appli-
cation to the famous traveling salesman problem by Dueck and Scheuer (1990).
It appears that simulated annealing is still more widespread in its use, but there
exist also a number of implementations of threshold accepting both in tradi-
tional operational research applications and for more specific problems from
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1 Introduction 3

economics and statistics. The second implementation of threshold accepting,
described by Dueck and Wirsching (1991), covers multi–constraint 0–1 knap-
sack problems and has been included in a comparative study by Hanafi, Fre-
ville, and Abdellaoui (1996). Some further early applications in the area of op-
erational research are cited in the bibliography provided by Osman and Laporte
(1996, p. 547). A more recent survey is provided in Winker (2001).

Although we do not aim at providing a complete overview on applications
of threshold accepting in statistics and economics, some further fields of ap-
plication seem noteworthy. Dueck and Winker (1992) have applied threshold
accepting to portfolio optimization for different risk measures, an approach
taken up by Gilli and Këllezi (2002a, 2002b), recently. Winker (1995, 2000) in-
troduces an application of threshold accepting to lag structure identification
in VAR–models. Finally, threshold accepting has been applied with great suc-
cess in the construction of low discrepancy experimental designs. First, Winker
and Fang (1997a) obtain lower bounds for the star–discrepancy and Winker and
Fang (1997b) use the approach to obtain low discrepancy U –type designs for the
star–discrepancy. Next, Fang, Lin, Winker, and Zhang (2000) extend the analy-
sis to several modifications of the L2–discrepancy, while Fang, Ma, and Winker
(2002), Fang, Lu, and Winker (2003), and Fang, Maringer, Tang, and Winker
(2005) consider the centered and wrap–around L2–discrepancy allowing to ob-
tain lower bounds for the objective function (see subsection 2.3).

We will mention some further applications in the text when they are used
as examples to demonstrate specific settings and approaches for a successful
implementation of threshold accepting.

1.1 Basic features of threshold accepting

Much akin to its ancestor simulated annealing, threshold accepting is a typical
local search heuristic that iteratively suggests slight random modifications to
the current solution and by doing so gradually moves through the search space.
TA is therefore well suited for problems where the solution space has a local
structure and a notion of neighborhood around solutions can be introduced.

The second crucial property TA shares with simulated annealing (and most
other heuristic search strategies) is that not only modifications for the better are
accepted, but also for the worse in order to escape local optima. However, while
simulated annealing uses a probabilistic criterion to decide whether to accept or
reject a suggested “uphill move”, TA has the deterministic criterion of a thresh-
old value for impairments: Whenever the suggested modification improves the
objective function or its degradation does not exceed a given threshold value,
this modification is accepted; if the modification would degrade the objective
function by more than the threshold, it is rejected. This threshold is not kept
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fixed in the course of iterations, but forms a “threshold sequence” which usually
makes the criterion rather tolerant in early iterations and increasingly restrictive
in the later iterations. By this strategy, the algorithm can be shown to converge
asymptotically to the global optimum Althöfer and Koschnik (1991).

1.2 Pseudo Code

Algorithm 1 provides the pseudo–code for a prototype threshold accepting im-
plementation for a minimization problem.

Algorithm 1 Pseudo–code for Threshold Accepting

1: Initialize nR , nSr and the sequence of thresholds τr , r = 1,2, . . . ,nR

2: Choose (randomly) feasible solution xc ∈Ω
3: for r = 1 to nR do
4: for i = 1 to nSr do
5: Choose (randomly) neighbor xn of xc

6: if ∆ f = f (xn)− f (xc ) < τr then
7: xc = xn

8: else
9: leave xc unchanged
10: end if
11: end for
12: end for

Thereby, f represents the objective function, which has to be minimized over
the search space Ω. Of course, by replacing f with − f , the algorithm can also be
applied to maximization problems.

Threshold accepting performs a refined local search on the search space Ω.
It starts with a (randomly) generated feasible solution xc (2:) and continues by
iterating local search steps. For each step, a new candidate solution xn has to
be chosen in the neighborhood of the current solution xc (5:). Then, the value
of the objective function of both candidate solutions is compared (6:). The new
candidate solution is accepted if it is better than xc , but also if it is not much
worse. The extent of an accepted worsening is limited by the current value of the
threshold sequence (τr ), which decreases to zero during the course of iterations.

The performance of the threshold accepting implementation depends on a
number of settings. In particular, the definition of neighborhoods for the choice
of xn , the sequence of threshold values τr and, finally, the total number of itera-
tions are most relevant. We will come back to all of these factors in the following
sections of this contribution.

P. Winker and D. Maringer, The Threshold Accepting Optimization Algorithm in Economics and Statistics



2 Objective Function and Constraints 5

1.3 The basic ingredients

Approaching an optimization problem with TA demands two basic types of in-
gredients: ones that characterize the problem, and those that are needed for the
heuristic search. The former group usually covers a proper problem statement
by giving the decision variables, x, and the search space, Ω, the constraints the
decision variables must meet, and the objective function, f (x). Section 2 will
present several relevant aspects in this respect.

For the TA implementation, the first basic ingredient is a concept of the local
structure or the neighborhood of the current solution, N (xc ), within which
new solutions are generated. What makes a suitable neighborhood depends on
the optimization problem. Nonetheless there are some general requirements
and approaches; section 3 addresses these issues. The second crucial ingredient
is the design of the acceptance criterion. Section 4 describes how to find an
appropriate threshold sequence and related issues. The third crucial ingredient
for a TA is the decision of how to use the available computational time by setting
the number of iterations per run and the total number of runs on the one hand
and detecting when to halt a run and restart the search process on the other
hand; section 5 has more details on this issue.

2 Objective Function and Constraints

2.1 Objective function

Obviously, the objective function f and the search spaceΩ are problem specific.
Given that threshold accepting is an iterative local search procedure, it does not
require the objective function f to be smooth or even differentiable. However,
it has to evaluate f for many different elements x ∈Ω. Therefore, the efficiency
of the algorithm will depend heavily on the fast calculation of f (x) for any given
x ∈ Ω. Furthermore, if f (x) cannot be calculated exactly, the quality of any
approximation has to be taken into account.

This statement appears to be trivial for any optimization problem. However,
in practice it is not. We will discuss two issues related to the objective function.
First, although the objective function might be calculable in principle, the cost
for doing so in terms of computational load can be quite high. Local updating,
considered in more detail in subsection 3.2, often provides a remarkable speed
up. The idea of local updating stems from the observation that if xn ∈N (xc ) is
a neighbor of xc , it is quite similar. Consequently, the objective function value
for xn could be similar to f (xc ) as well. If it is possible to evaluate the difference
directly, a tremendous speed up can result. For example, instead of recalculating
a complete tour for the traveling salesman problem, if xn and xc differ only by
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the ordering of a few cities, it is possible to calculate directly the difference in
tour length resulting from these few differences. We will come back to this idea
in subsection 3.2 as it is closely linked to the definition of local neighborhoods.

Second, there exist applications where the objective function itself cannot be
easily evaluated. For example, in uniform design a given number of points has to
be found in a discrete multi-dimensional space such that these points are as uni-
formly distributed as possible. A classical measure of the quality of such designs,
i.e., the uniformity of these points, is the so called “star–discrepancy” which
is described, e.g., in Winker and Fang (1997a). However, in order to evaluate
this measure, a complex combinatorial problem has to be solved. Consequently,
Winker and Fang (1997a) proposed to use threshold accepting to obtain a lower
bound for this objective function. Now, if one would be interested in obtaining
a low discrepancy design under the star–discrepancy, each evaluation of the ob-
jective function would correspond to a run of the threshold accepting heuristic
itself. Fortunately, for this problem other measures of discrepancy have been
developed which are much easier to compute. A similar problem comes up in
the context of simulation models. If the value of the objective function is ob-
tained by running a simulation model, again the computational complexity of
the algorithm becomes quite substantial. In addition, the value of the objective
function provided by the simulation will include some Monte Carlo variance.
Gilli and Winker (2003) discuss how this Monte Carlo variance can be taken into
account in a threshold accepting implementation.

2.2 Constraints

In most applications, the search space Ω is not a standard space like {0,1}k or
IRk , but only a subset of such a space resulting from some explicit constraints.
If there is a large number of different constraints, this subspace might be not
connected or it might prove difficult to generate elements in Ω. Also, the step
of selecting xn ∈ N (xc ) can become quite time consuming. Furthermore, the
algorithm risks to get stuck in some part of the search space where no good
solution can be found.

In these cases, a superior approach consists in considering the whole space
{0,1}k or IRk as search space and to add a penalty term to the objective function
if xc ∉Ω. If the penalty term is set at a very high level from the very beginning as
sometimes suggested, this approach will just mimic the standard case, i.e., will
face the same difficulties. Thus, it appears to be reasonable to start with a small
penalty in order to enable the algorithm to access different parts of the search
space. While the algorithm proceeds, the penalty term has to increase in order
to make sure that the final solution obtained by the algorithm will be a feasible
one.

P. Winker and D. Maringer, The Threshold Accepting Optimization Algorithm in Economics and Statistics
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2.3 Lower Bounds

Optimization heuristics like threshold accepting often provide high quality ap-
proximations to the global optimum for a given problem instance. However,
given that the procedure is stochastic and convergence to the global optimum
can only be expected asymptotically (see section 4), missing information about
the quality of an actually found solution is often considered to be a major draw-
back of optimization heuristics. Of course, optimization heuristics share this
potential drawback with classical optimization approaches. If, for example, a
numerical procedure detects a solution of a maximum likelihood problem, this
solution is determined by the first order condition. However, this condition does
not guarantee a global optimum unless the function is globally convex which is
rather a rare exception than the rule.

In particular for combinatorial optimization problems, lower bounds might
provide a helpful tool in this context. For some problems it is possible to derive
minimum values of the objective function for each instance without calculating
an optimum solution. Provided that such a lower bound exists, any solution
obtained by threshold accepting can be compared with this value. If the lower
bound is met, the current solution is a global optimum. In this case, a further
analysis of the problem instance is only required if one expects to have multiple
global optima and one is interested in identifying the optimizing set instead of
just a single optimum solution. If the lower bound is not met, the difference of
the objective function to this lower bound provides an indicator of the maxi-
mum improvement which might be obtained by further runs of the algorithm.
However, the existence of a lower bound does not imply that this lower bound
can actually be reached. For the traveling salesman problem, e.g., a trivial lower
bound for the round trip is the sum of the distances to the closest neighboring
point for each point of the problem set. Obviously, no tour can be shorter than
this sum, but in general, it has to be much longer.

Fang, Lu, and Winker (2003) provide theoretical lower bounds for some in-
stances of the uniform design problem. Consequently, it is possible to prove
that some of the designs obtained by threshold accepting represent global op-
tima, while others differ to a small extent from the lower bounds. Again, it is
not guaranteed that the lower bounds can be reached at all. Nevertheless, it has
been shown that the designs obtained by the threshold accepting heuristic are
not farther from a global optimum than a few percentage points in terms of the
objective function.

To sum up this argument, although it is still a rare situation to have access
to theoretical lower bounds for optimization problems arising in economics and
statistics, such results are extremely helpful for evaluating the quality of the re-
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sults obtained by optimization heuristics. Consequently, some effort should be
devoted to the generation of lower bounds.

3 Local Structure and Updating

3.1 Neighborhoods

As the classification as a local search heuristic suggests, threshold accepting re-
quires some notion of closeness or neighborhood for all elements of the search
spaceΩ. For this purpose, for each element x ∈Ω a neighborhood N (x)⊂Ω has
to be defined. Of course, given the typical size ofΩ, this assignment of neighbor-
hoods cannot be done element by element, but has to follow some algorithmic
approach. Furthermore, in each iteration, an element xn in the neighborhood
of the current solution xc has to be generated. Thus, the neighborhoods have to
be constructed in a way which makes the search or construction of such neigh-
boring elements a simple task in terms of computational complexity.

While for some of the classical combinatoric optimization problems like the
traveling salesman problem there exist well–known standard concepts for con-
structing solutions which are neighbors to a current solution, this is not the case
for most of the new optimization problems studied in economics and statistics
during the last decade. However, most of these problems allow for the appli-
cation of a general concept given that the search space Ω is either a subset of
some real valued vector space IRk or of a discrete search space {0,1}k . For these
instances, ε–spheres provide a well–known concept of neighborhood on the vec-
tor space corresponding to a notion of distance provided by the Euclidean and
Hamming metric Hamming (1950), respectively. Given a current solution xc , a
new element is considered a neighbor for a given ε if the distance between both
elements is smaller than ε for the given distance measure. This concept is easily
transferred to the subspace Ω: xn is a neighbor to xc ∈Ω if it satisfies the dis-
tance condition and is an element of Ω itself (Winker, 2001, pp. 117ff). Thus, we
define

N (xc )= {xn |xn ∈Ω,∥ xn −xc ∥< ε} , (1)

where ∥ · ∥ stands for the distance measure.
Although being a quite general approach, the proposed construction of

neighborhoods by projection of ε–spheres onto Ω will not always work. In par-
ticular, one has to check whether the resulting neighborhoods are non–trivial,
i.e., contain more than a single element for reasonable choices of ε. Further-
more, the objective function should exhibit local behavior with regard to the
chosen neighborhoods, i.e., for the elements in N (xn), the mean value of the

P. Winker and D. Maringer, The Threshold Accepting Optimization Algorithm in Economics and Statistics



3 Local Structure and Updating 9

objective function should be closer to f (xc ) than for randomly selected elements
in Ω. Both requirements result in a trade–off between large neighborhoods,
which guarantee non–trivial projections, and small neighborhoods coming to-
gether with a real local behavior of the objective function.

A further argument with regard to the choice of (the size of) neighborhoods
is closely connected to the features of the algorithm itself. While larger neigh-
borhoods allow for fast movements through the search space, they also increase
the peril that a global optimum is simply stepped over. Smaller neighborhoods,
on the other hand, increase the number of iterations required to trespass a cer-
tain distance, e.g., in order to escape a local optimum: To escape a local opti-
mum, a sequence of (interim) impairments of the objective function has to be
accepted; the smaller the neighborhoods are, the longer this sequence is. Con-
sequently, for smaller neighborhoods, the threshold sequence has to be more
tolerant in order to be able to escape local optima.

In order to illustrate the idea of generating local neighborhoods, we con-
sider the example of optimal aggregation of time series discussed by Chipman
and Winker (2005). The authors analyze the aggregation of time series which is
considered to be a central but still mainly unsolved problem in econometrics. In
the specific setting considered in their paper, namely the international transmis-
sion of prices, aggregation boils down to the forming of groups of commodities
and replacing the disaggregate time series by sums or weighted averages of the
variables in each group. If one is interested in choosing the modes of aggrega-
tion, i.e., the composition of the groups, optimally with regard to a measure of
mean–square forecast error, a highly complex integer optimization problem re-
sults. In fact, it has been shown that this problem is NP–complete (Winker, 2001,
Ch. 13.9). Thus, it appears adequate to tackle the problem with an optimization
heuristic like threshold accepting.

For this example, the search space is given by the set of all proper group-
ing matrices, which is a subspace of {0,1}6×42 for the actual application. Thus,
although the search space is finite, an exact solution by means of enumeration
is not possible. The objective function is a measure of the aggregation bias in
forecasting which results from using the model aggregated to only six aggregate
groups as suggested by the official statistics as compared to the disaggregate
data for 42 commodities. Unfortunately, the evaluation of the objective function
requires some matrix inversion. Consequently, the number of iterations for this
application has to be much smaller than for some of the other applications of
threshold accepting mentioned.

Given that the search space is defined as a subspace of some {0,1}k , the neigh-
borhood concept is based on the projection of ε–spheres with regard to the
Hamming distance. In this example, the Hamming distance dH between two
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grouping matrices H = (hi j ) and H̃ = (h̃i j ) is given by the number of differing
entries:

dH (H , H̃)=
m∑

i=1

m∗∑
j=1

| hi j − h̃i j | . (2)

Figure 1 shows the histogram of relative local differences of the objective
function for three different neighborhood definitions, each based on 50 000
pairs of proper grouping matrices (H 1

k , H2
k ). For the trivial neighborhood rep-

resented by the top most panel, H2
k is randomly generated. This corresponds to

setting ε→ ∞. The large dispersion of these relative deviations indicates that
the probability of finding an acceptable new grouping in such a neighborhood is
rather small unless the acceptance criterion becomes very loose, since no really
local structure is imposed.

Figure 1: Local Differences for Different Neighborhood Definitions
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neighborhood

−0.5 0 0.5

0.05

0.1
Hamming
distance 8

−0.5 0 0.5

0.05

0.1
Hamming
distance 4

In contrast, the lower two panels provide histograms for a Hamming dis-
tance of 4 and 8, respectively. In these cases, H 2

k is selected randomly from
N (H 1

k ). Comparing the two lower panels it is worth noting that a shrinking
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of the neighborhoods leads to a concentration of the empirical distribution of
relative deviations around zero per cent, i.e., to a more locally oriented behav-
ior of the algorithm, but at the same time reduces the number of feasible moves
in each iteration. Consequently, the risk of being stuck in a local minimum
increases with shrinking neighborhoods. In the application presented by Chip-
man and Winker (2005), the use of neighborhoods defined as spheres of radius
8 with regard to the Hamming distance proved to be a good choice, although
the quality of the results did not decrease dramatically when choosing spheres
of radii 4 or 12 instead.

3.2 Local Updating

In the standard version of the algorithm described so far, in each iteration, xc

and f (xc ) is given. Then, an element xn ∈N (xn) is generated. Finally, f (xn) is
calculated in order to obtain the difference ∆= f (xn)− f (xc ) required to test the
acceptance criterion. Consequently, the total complexity of a TA implementation
is given by a constant times the total number of iterations times the complexity
of a single evaluation of the objective function f . While the constant might be
influenced by an efficient coding of the algorithm and the choice of appropriate
hardware, the total number of iterations typically will depend on the complexity
of the problem at hand. Of course, a reasonable choice of neighborhoods and the
threshold sequence (see the following section) might help to reduce the number
of iterations required to obtain a predefined quality of the results. Here, we will
concentrate on the last argument in the complexity function of the algorithm,
the evaluation of the objective function (however, see also Ferrall (2004)).

At first glance, the performance of the algorithm with respect to the objec-
tive function depends solely on an efficient calculation of the objective function
for given x. In fact, often considerable performance gains can be obtained by
searching for more efficient code for calculating the objective function. How-
ever, sometimes a different approach is also feasible. During each iteration step,
the algorithm does not require f (xn) and f (xc ), but solely the difference of the
objective function values ∆ = f (xn)− f (xc ). Given xn and xc , in some cases, a
direct calculation of ∆ becomes possible at much lower computational cost than
the complete evaluation of f .

For example, for the traveling salesman problem, each element x ∈Ω repre-
sents a tour through all N cities of the given problem. In order to calculate the
length of such a tour, the sum of N distances of pairs of cities has to be calcu-
lated. If the problem is small enough, all distance pairs (N(N −1)) can be calcu-
lated once and for all before starting the algorithm, for larger problem instances,
they have to be calculated on the fly. A typical definition of neighborhood for
traveling salesman tours consists in assuming that two tours are neighbors if the

P. Winker and D. Maringer, The Threshold Accepting Optimization Algorithm in Economics and Statistics
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second one can be obtained from the first one by exchanging the position of two
cities. Doing so, only the distances for four pairs of cities change. The rest of the
tour remains unchanged. Thus, instead of calculating the sum of N distances,
we have to consider only four in order to obtain ∆. The speed up resulting from
this local updating idea amounts to 4/N , i.e., it becomes the more important the
larger the problem instance grows.

A similar idea is used by Fang, Lu, and Winker (2003) in an application to
uniform design problems. Making use of a new representation of the objec-
tive function, they can avoid to recalculate the whole objective function when
moving from one candidate solution to a neighboring one. When moving from
one solution to a neighboring one, only two elements of the design matrix are
exchanged, the updating requires 2(n − 2) updates, where n denotes the num-
ber of design points, i.e., represents a measure of the problem size. In contrast,
a complete evaluation would require n(n−1)

2 k comparisons, where k denotes the
number of columns of the design matrix. Thus, even if up to four or even slightly
more elements are exchanged in a single iteration, a tremendous speed up re-
sults which is proportional to 1

nk , i.e., the larger the design under consideration,
the higher the efficiency gain. For the implementation presented in Fang, Lu,
and Winker (2003), the actual speed up resulting from the local updating idea
ranges from around 50% for rather small problem instances (n = 8, k = 10), in-
creasing to 80% for n = 18 and k = 30 and reaching more than 90% for n = 100
and k = 8.

4 Threshold Sequence

The final crucial ingredient of any threshold accepting implementation is the
threshold sequence. By considering two extreme cases, a first intuitive idea of
its influence might be gained. First, if all threshold values are set equal to zero,
in each iteration, the algorithm will only accept new solutions which are at least
as good as the current one. Consequently, a threshold accepting implementation
with a zero threshold sequence would perform like a classical greedy local search
algorithm. In general, it would converge much faster than with positive thresh-
old values, but will get stuck in a local minimum with high probability unless
the problem is a globally convex one. Second, if all values of the threshold se-
quence are set to a very large value which happens to be larger than any possible
difference of objective function values, the algorithm will act like a random walk
through the search space as any generated candidate solution will be accepted.
The performance of this degenerated threshold accepting implementation will
be similar to a pure random search heuristic.

P. Winker and D. Maringer, The Threshold Accepting Optimization Algorithm in Economics and Statistics
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Obviously, an intermediate setting is selected for any reasonable threshold
accepting. Unfortunately, not much is known about how to choose this sequence
in a way to improve the performance of the algorithm. The convergence result
for threshold accepting provided by Althöfer and Koschnik (1991) states only
the existence of an appropriate threshold sequence in order to obtain asymptotic
convergence to the global optimum, but it does not provide any insights into the
structure of the sequence. Consequently, the threshold sequence is often chosen
in a rather ad hoc approach. Thereby, a linearly decreasing sequence appears
to be preferred. The advantage of a linear cooling schedule consists in the fact,
that for tuning purposes only the first value of the sequence has to be varied as
it fixes the whole sequence. Existing experience with different functional forms
for the threshold sequence suggests that the performance of the algorithm is
quite robust with regard to the exact shape of the threshold sequence, while the
size of the first threshold values has some impact. In fact, starting with too high
threshold values makes the algorithm wandering around in the search space in
a rather random fashion. In this case, computational resources are wasted. On
the other hand, starting with a too small value for the threshold sequence, one
risks to get stuck in a less favorable part of the search space. This trade–off has
to be considered when conducting some tuning experiments with a threshold
accepting implementation.

For discrete search spaces, a data driven method for the construction of the
threshold sequence has been proposed by Winker and Fang (1997a). It is de-
scribed in more detail in Winker (2001, p. 127f). It is based on the observation
that for a finite (discrete) search space Ω, the set ∆ of possible ∆ f is also finite
(discrete). Obviously, for the algorithm, only the values of this set are relevant
for the threshold sequence, as any value between two elements of the ordered set
of possible∆ f will have the same effect in the acceptance criterion. Although the
size of Ω and, consequently, of ∆ will exclude a complete evaluation even in the
case of a finite search space, an empirical approximation to ∆ can be obtained as
follows. First, a large number of candidate solutions xc

r is generated at random.
Then, for each of these random designs a neighbor xn

r is selected using the same
neighborhood definition as for the optimization procedure. For each resulting
pair of designs, the difference of the objective function values between the larger
and the smaller value is calculated ∆r =

∣∣ f (xc
r )− f (xn

r )
∣∣. Ordering these values

provides an approximation to the distribution of local relative changes of the
objective function. Finally, taking into account the trade–off between too large
or too small values of the threshold sequence at the beginning of the optimiza-
tion run, only a lower quantile of these sequence is actually employed as the
threshold sequence. Typically, this lower quantile falls in the range of 10% to
50% for the applications considered in this contribution. Algorithm 2 provides
the pseudo–code for this data driven generation of the threshold sequence.
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Algorithm 2 Pseudo–code for data driven generation of threshold sequence

1: Initialize nR , lower quantile α, nD [nR /α]
2: for r = 1 to nD do
3: Choose (randomly) feasible solution xc

r

4: Choose (randomly) neighbor solution xn
r ∈N (xc

r )
5: Calculate ∆r = | f (xc

r )− f (xn
r )|

6: end for
7: Sort ∆1 É∆2 É . . . É∆nD

8: Use ∆nR , . . . ,∆1 as threshold sequence

Before describing the construction of the threshold sequence for the exam-
ple of the optimal aggregation of time series, a last possible modification is
introduced. Instead of using an absolute definition of the thresholds, a rela-
tive version can be employed. Consequently, the decision criterion becomes
f (xn) < f (xc )(1 + τr ) instead of ∆ f = f (xn) − f (xc ) < τr . The data driven
construction of a threshold sequence can be performed as before by replacing
∆r = | f (xc

r )− f (xn
r )|, e.g., by ∆r =| f (xc

r )/ f (xn
r )−1 |. The first advantage of this

relative version of the threshold criterion is its independence from units of mea-
surement. However, when employing the data driven method for constructing
the threshold sequence, this advantage appears rather trivial. The second ar-
gument for employing the relative version comes into play, when the objective
function takes values of widely differing orders of magnitude. Then, the thresh-
old criterion exhibits some automatic scaling property. However, so far, there is
no clear evidence for a superior performance of one or the other version of the
criterion. This has to be left to future research.

As an example for the data driven generation of the threshold sequence, we
refer again to the example of optimal aggregation introduced in subsection 3.1
Chipman and Winker (2005). The neighborhood definition uses the concept of
the Hamming distance introduced before. As a final ingredient, a data generated
threshold sequence is used which is obtained along the lines described in this
section making use of the relative definition of the threshold criterion and a
lower quantile α ∈ [0.3,0.4].

Figure 2 shows a threshold sequence obtained by the data driven method for
this application. The final values of the threshold sequence are equal to 1 since
some of the simulated pairs of grouping matrices happen to belong to the same
equivalence class of grouping matrices. Consequently, the threshold accepting
algorithm degenerates to a classical greedy local search heuristic during the last
iterations of the algorithm. This feature of the automatically generated threshold
sequence increases the probability to finish with a local optimum. Given the
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convergence result, this local optimum should be close to the global optimum
and converge to it as the number of iterations of the algorithm tends to infinity.

Figure 2: A threshold sequence
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5 Restart

Although it is not reported in many publications, most applications of optimiza-
tion heuristics use a restarting framework, i.e., the algorithm is rerun with dif-
ferent seeds for the random number generator or with different tuning param-
eters. Then, the presented results stem from the run with best performance.
Some theoretical arguments on restart implementations can be found in Fox
(1994). A heuristic argument in the context of genetic algorithms is provided by
Farley and Jones (1994).

In this section, we will present some rational for this approach in the con-
text of TA. However, it will turn out that it is essential that publications report
the restarting framework and provide additional information besides the “best”
result. In fact, stochastic search heuristics like threshold accepting can be inter-
preted as a stochastic mapping

TA :Ω→ fmi n , fmi n ∼ DTA(µ,σ) , (3)

where Ω is the search space and fmi n the random realization of the minimum
found by the algorithm for the given random number sequence. DTA(µ,σ) de-
notes the distribution of fmi n given the parameters used in the algorithm. Of
course, this distribution is truncated from the left at the value of the global min-
imum f g l ob

mi n = inf{ f (x)|x ∈Ω}. Consequently, DTA will not be a normal distri-
bution. It might be an interesting subject for future studies to analyze the prop-
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erties of this distribution for different applications and different optimization
heuristics.

However, for practical purposes it might suffice to know about the existence
of such a distribution. Furthermore, it might be obvious that an increase in
the total number of iterations of a local search heuristic like threshold accept-
ing should reduce the expected value µ of the distribution and – due to the left
truncation – probably the standard deviation σ, too. Instead of using a para-
metric distributional assumption, we might use the empirical distribution ob-
tained from a simulation study. For this purpose, the threshold accepting im-
plementation is run several times with differing initializations (seeds) of the
random number generator. For each run i , i = 1, . . . , N , the minimum f i

mi n is
stored. Using the set { f i

mi n |i = 1, . . . , N }, it is possible to calculate the empiri-
cal mean and standard deviation for the best solution found by the algorithm
or to provide empirical quantiles. It is also possible to report the minimum
min{ f i

mi n |i = 1, . . . , N } of all runs. In fact, this is the typical value provided in
publications – sometimes accompanied by the number of runs N . However,
from the interpretation of TA as a stochastic mapping, it becomes evident that
this value is not a robust statistic. Thus, it should not be the only information
provided.

We recommend to provide at least the following information: The number of
restarts N , the empirical mean and standard deviation or – alternatively – some
quantiles of the empirical distribution. Furthermore, it should be reported for
which parameter settings of the algorithm restarting has been considered.

Given these arguments about restarting, a further question has to be consid-
ered. Obviously, performing N restarts uses valuable computational resources.
Instead, a smaller number of restarts – or a single run – with more iterations
could be performed. Using more restarts provides a better approximation to the
underlying distribution DTA(µ1,σ1) for the given number of iterations. On the
other hand, using less restarts and more iterations results in an approximation
of lower quality to a different distribution DTA(µ2,σ2) with a smaller expecta-
tion µ2 < µ1. In fact, given the convergence property of threshold accepting,
DTA will degenerate to a one point distribution in the global minimum with the
number of iterations going to infinity. Unfortunately, not much is known about
the rate of this convergence. Thus, it remains an empirical issue to decide about
this trade–off.

To conclude this section, we present empirical findings for an implementa-
tion of threshold accepting to the well known traveling salesman problem. The
problem instance with 442 points is described in more detail in Winker (2001,
Ch. 8). For the analysis of a restarting situation, the following experimental set-
ting is chosen. The threshold sequence is fixed for all runs to the same linear

P. Winker and D. Maringer, The Threshold Accepting Optimization Algorithm in Economics and Statistics



5 Restart 17

Table 1: Restart threshold accepting
Iterations per try

100 000 1 000 000 10 000 000
Restarts 10 000 1000 100
Mean 5317.07 5170.52 5138.22
SD 52.83 28.69 21.81
10% 5251.11 5135.45 5112.22
5% 5234.50 5124.83 5107.41
1% 5204.20 5109.90 5098.23

sequence. Then, the threshold accepting implementation is run with 100 000,
1 000 000 and 10 000 000 iterations. Obviously, in terms of computational re-
sources, one run with 10 000 000 iterations corresponds to 10 runs with 1 000 000
or 100 runs with 100 000 iterations. In order to obtain good estimates of the
lower percentiles, 100 runs were performed with the largest number of itera-
tions. Consequently, the number of restarts with different random starting con-
figurations was 1000 and 10 000 for 1 000 000 and 100 000 iterations, respectively.
Table 1 summarizes the results obtained for a fixed threshold sequence, which is
identical for all runs and numbers of iterations.

When considering these results, it turns out that the trade–off between more
restarts with different seeds and a higher number of iterations per restart is in
favour of the latter. As expected, both the mean and the lower percentiles be-
come smaller as the number of iterations per run increases while holding the
total use of computer resources (number of restart times number of iterations)
constant. Given that users are typically interested in the very low percentiles of
the distribution, it should be taken into account that the 1%–quantile for the
runs with 10 000 000 iterations is estimated based on solely 100 observations.
Consequently, this entry has to be interpreted with some care as it is estimated
with less precision than other entries of the table.

The above analysis gives valuable information on the dependence of mean
and percentiles on the number of iterations and restarts. However, it has not
yet answered the practitioner’s question whether it is preferable to perform a
single run with a very high number of iterations, a few restarts with a mod-
erate number of iterations, or many restarts with a low number of iterations.
The outcomes of the experiment can also be used for this purpose. To this end,
the results are grouped to 100 artificial sub–experiments each consisting of 100
tries with 100 000 iterations, 10 tries with 1 000 000 iterations and one try with
10 000 000 iterations. Now, only the overall best results obtained for each num-
ber of iterations are compared. Of course, considering this non–robust statistic
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Table 2: Restart threshold accepting (comparison)
Iterations per try 100 000 1 000 000 10 000 000
Restarts 100 10 1
Times best in 100 0 65 35
Mean deviation from best 73.56 5.16 14.48

is not a valid approach from a pure statistical perspective. However, it corre-
sponds closely to the typical proceeding in real applications. Table 2 shows the
number of times, the respective combinations of iterations per restart and num-
ber of restarts gave the best result. In the lower part the mean deviation from the
best results for the three categories from the best results of these three categories
are depicted.

If one has only computer resources for a total of 10 000 000 iterations, these
results clearly indicate that one should neither perform many restarts with a
very low number of iterations, nor only one huge run. Instead, the best ex-
pected performance is given by a choice which falls between the two extremes,
i.e., restarting the threshold accepting a few times with a moderate number of it-
erations. For recent results for a uniform design problem see also Winker (2005).

Summarizing the arguments of this section, two aspects seems noteworthy.
Firstly, the common practice to report only the best outcome of several restarts
is not adequate. A minimum requirement is to report also the number of restarts
and some information on the empirical distribution DTA, e.g., mean and stan-
dard deviations or quantiles. Secondly, the results indicate that mean value,
standard deviation and low quantiles decrease, other things being equal, with an
increasing number of iterations. Nevertheless, the combination of some restarts
with a moderate number of iterations seems to be preferable in order to obtain
high–quality results.

6 Conclusions

The concept of threshold accepting appears quite simple and yet powerful in its
applications. By replacing a stochastic acceptance criterion by a deterministic
one, it even reduces the complexity as compared to simulated annealing. Never-
theless, a more detailed presentation and discussion of the central ingredients of
the algorithm highlights some aspects relevant for a successful implementation.

TA can be used to tackle highly complex optimization problems which are
not accessible by classical optimization algorithms. The cost of implementation
are small compared to more refined optimization heuristics, e.g., population
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based approaches, or to tailor–made problem specific heuristics. The guidelines
provided in this contribution might be helpful for the choice of settings and
parameters resulting in a high quality outcome. Then, even if the TA implemen-
tation might not provide the global optimum, the best results obtained by this
heuristic represent a benchmark which has to be beaten first by any potential
challenger.
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