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Constant Proportion Portfolio Insurance:
Statistical Properties and Practical Implications

Anil Khuman∗ Dietmar Maringer∗† Nick Constantinou∗‡

Abstract

Constant Proportion Portfolio Insurance (CPPI) is a dynamic portfolio man-

agement strategy that is currently of popular interest in both industry and aca-

demic research. The CPPI methodology is designed to guarantee, to the buyer, a

minimum payoff at maturity using a portfolio comprised only of one risky asset

and one riskless asset. The goal is to allow an amount of participation in capi-

tal markets while removing downside risk. However, in the presence of realistic

market assumptions risk to the seller exists in the form of gap risk. This gap risk

accounts for the inability to meet the guarantee at maturity. There are many factors

which contribute to the gap risk, including asset price behaviour and trading fre-

quency. The effect of these factors are investigated in this paper within a discrete

time framework.

The results show that when considering realistic levels of volatility the CPPI

does not perform well in comparison to a riskless investment and a gapless (buy-

and-hold) portfolio, respectively. CPPI returns are highly skewed and, in certain

cases, fat-tailed. From the perspective of the buyer, the CCPI’s higher expected re-

turn is based solely on the small chance of extremely large returns. In the majority

of the cases, however, the CPPI yields a lower return than gapless and even riskless

portfolios. Choosing an underlying with high volatility is even more hazardous

since even the expected values are lower than that of the gapless alternative. These

results are even more pronounced with the introduction of management fees where

investors almost always can expect a lower return than from a corresponding buy-

and-hold portfolio and typically fall substantially short of a riskfree investment.

From the perspective of the issuer, a monthly rebalancing frequency is shown to

be adequate to reduce the majority of the risk, while retaining a good payoff even

when considering transaction costs.
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crete trading, non-normal distributions, gap risk, return guarantees, capital

guarantees.
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1 Introduction

Portfolio insurance strategies have been widely adopted as a risk management tool
across the industry. They function to limit downside risk while at the same time of-
fering an attractive upside potential. The interest and deployment of Constant Pro-
portion Portfolio Insurance (CPPI) strategies, a particular implementation of portfolio
insurance, has seen a resurgence recently with investor and client sentiment reflecting a
more risk averse nature. CPPI based products offer security to the client through a pre-
determined guaranteed minimum payoff at maturity, while also giving the possibility
of higher returns through limited exposure to a risky asset.

The CPPI method continuously rebalances capital between one riskless and one
risky asset according to a clearly defined relationship. Devised by Perold (1986) and
Black and Jones (1987) the strategy aims to guarantee at maturity at least the initial
investment, plus any additional gains that the portfolio makes from its holding in the
risky asset. The allocation of capital to riskless and risky assets is determined in the fol-
lowing way. A floor which grows at the risk-free rate to equal the guarantee at maturity
is used to determine the cushion, which is equal to the difference between the current
portfolio value and the current floor level. The exposure to the risky asset is calculated
as the product of the cushion and the multiplier, with the remainder of the capital being
allocated to the risk-free asset. The multiplier is a value (typically between 2 and 4) that
can be considered as representative of the investor’s risk aversion – the higher the mul-
tiplier the greater the investment in the risky asset. It is specified exogenously by the
investor at the beginning of the investment and remains constant throughout the life of
the product. Rebalancing of the portfolio occurs in reaction to movements in the risky
asset with exposure being increased after a rise and decreased after a drop.

Originally portfolio insurance was achieved through the implementation of Option
Based Portfolio Insurance (OBPI), which uses a listed put with the same maturity as the
portfolio to cover an investment in a risky underlying, as introduced by Leland and Ru-
binstein (1976). However, the existence and availability of such options with the desired
characteristics in the market is not guaranteed. This is particularly true when the risky
assets are not equities or equity indices, but hedge funds and fund of hedge funds. The
payoffs of such put options are typically synthesized by taking a position in the under-
lying and some riskless asset. This leads to the OBPI being implemented as a dynamic
management strategy, which Bertrand and Prigent (2002) prove can be considered as
a generalised form of the CPPI method where the multiplier is stochastic and variable
over time. Nevertheless, the CPPI provides a more concise approach to portfolio insur-
ance and explicitly caters for investor risk aversion through the multiplier.

Implementing CPPI as a viable dynamic portfolio strategy in practice presents many
issues, relating to the risk of shortfall below the guarantee. This risk can be quantified
as the probability that the floor will be violated during the portfolio’s lifetime and the
expected value of such a violation. In such a situation, it becomes impossible for the
guaranteed payoff to be met, resulting in the issuer (or guarantor) having to make up
the shortfall at maturity. This is known as the gap risk and its accurate quantification
and subsequent pricing is key in the valuation and implementation of a CPPI product.

Under the continuous time CPPI model where the risky asset follows a continuous
price process, there is no gap risk. However, in reality factors contributing to gap risk
are liquidity, trading frequency and risky asset behaviour (i.e. various price process as-Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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sumptions and their parameters), with the multiplier magnifying this risk. This paper
considers discrete trading using a range of different rebalancing frequencies and multi-
plier values to ascertain their effect on the performance of the CPPI in conjunction with
volatility, kurtosis, price jumps, leverage, management fees and transaction costs.

Bertrand and Prigent (2002) compare CPPI to OBPI over a number of different sta-
tistical criteria. On the moments of the two strategies, OBPI dominates in the mean-
variance space. However, CPPI displays less downside risk and much stronger positive
skewness. The dominance of OPBI over CPPI is shown to be more likely when it is an
in-the-money call. At-the-money there is no clear dominance and out-of-the money
the CPPI performs better. The delta and the gamma of the CPPI are always convex, and
increasingly so for higher values of the multiplier, with the leveraged CPPI achieving
values of delta above 1. The delta and gamma of the OBPI on the other hand follow
that of a standard call. Since part of the attractiveness of a CPPI strategy is that it only
requires the allocation of capital between a risky and riskless asset, comparing it to the
synthetic put strategy is beneficial. Do (2002) does this for a number of consecutive 3
month periods (between 1992 and 2000) taken from an Australian index (AAOI: Aus-
tralian All Ordinaries Index) and finds that the CPPI outperformed the synthetic put
under daily rebalancing.

Perold and Sharpe (1988) explore the performance of a variety of dynamic invest-
ment strategies under different market conditions. They show that the CPPI favours
strong bull markets, since this results in an increasing amount of capital being allocated
to the growing risky asset. Alternatively, the CPPI protects in strong bear markets also,
with capital being increasingly invested in the floor. It is markets that experience re-
versing trends that significantly impact the performance of the CPPI. Here, depending
on the timing of rebalances, it is possible that the strategy sells on a drop which then re-
bounds or buys on a rise which subsequently presents a fall. Under such conditions they
find a constant-mix strategy will have an advantage, while a buy-and-hold approach will
be best when there is a large move in one direction. Clearly market behaviour can only
really be known in hindsight, however Cesari and Cremonini (2003) find that the CPPI
(and OBPI with a synthetic put) performs better than the other two strategies when
market conditions are ignored. Annaert, Osselaer, and Verstraete (2006) find that that
the CPPI offers a better downside protection and risk/return tradeoff than the buy-and-
hold, but that this comes at the cost of lower excess return.

Balder, Brandl, and Mahayni (2005) investigate the effects of discrete time trading
restrictions on the CPPI. They find that the discrete time performance of the CPPI is
extremely sensitive to increases in the volatility of the underlying. Their result shows
that a doubling of the volatility of the underlying causes the shortfall probability of the
portfolio to increase by a factor of more than 50 with a multiplier of 12 and 12 rebal-
ancing stages. Although they demonstrate that the performance of the discrete CPPI
converges to that of the continuous time model as the rebalancing frequency increases,
it is also made clear that the shortfall probability is not always a decreasing function of
more frequent rebalances. In fact they show that as the number of rebalancing stages in-
creases above 1, the shortfall probability increases until a critical number of rebalances
is made.

With respect to discontinuities in the price process, Cont and Tankov (2007) inves-
tigate the effect of downward jumps in the risky asset price on the CPPI. They find that
indeed downward jumps have a significant impact on the CPPI. However, for the jumpKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.



2 CPPI Models 4

parameters they estimate from two stocks (General Motors and Microsoft) the jump
risk is not particularly high.

This paper is organised as follows: Section 2 discusses the models of the CPPI; Sec-
tion 3 describes extensions to the standard model and outlines various processes used to
model the dynamics of the underlying; Section 4 presents the results obtained; Section
5 concludes.

2 CPPI Models

2.1 Outline of CPPI Strategy

The CPPI is a guaranteed investment product which pays the buyer a predetermined
minimum amount at maturity regardless of whether or not the value of the portfolio
meets this minimum. In this sense the buyer has downside protection up to the guaran-
teed amount G , which is the minimum payoff they will receive at maturity T . Typically,
the guarantee G is equal to the initial investment in the CPPI portfolio V0, meaning that
the buyer will at worst get back their original investment. At any time t ∈ [0,T ], the
CPPI makes use of a reference to a floor value Ft which grows at the constant risk-free
rate r , to equal the guarantee at maturity (see Equations (3) and (2)). Therefore the ini-
tial floor value F0 is the guarantee discounted back at the risk-free rate from maturity.
The value of the floor is used to calculate the cushion Ct , which is the difference between
the value of the portfolio at any time Vt and the floor Ft as shown in Equation (1). Recall
that within the CPPI portfolio, investment of the capital is split between two assets: one
risk-free asset Bt which follows the same dynamics as the floor (see Equation (6)) and
one risky asset St (the properties of which are discussed later). The CPPI first deter-
mines the amount of risky asset to invest in and then allocates the remaining capital to
the riskless asset. The exposure Et to the risky asset is the product of the cushion and
a constant multiplier value m, as described in Equation (4), leaving Bt to be invested
in the riskfree asset (see Equation (5)). The basic relationship can be summarised as
follows:

Vt = Ft +Ct (1)

Ft =Ge−r (T−t) (2)

dFt = r Ft d t (3)

Et = mCt (4)

Bt =Vt −Et (5)

dBt = r Bt d t (6)

To illustrate the workings, consider an example, where m = 3 for a unit investment
in a CPPI with a 5 year maturity, constant risk-free rate of 5% and guarantee equal to
the initial capital. At time t = 0, the initial value is (by assumption) V0 = 100% which is
also the guaranteed amount G the investor will receive at maturity. The initial floor is
F0 = 100%·e−0.05·5 = 77.88%, leaving an initial cushion of C0 = 100%−77.88% = 22.12%.
With a multiplier of m = 3, the initial exposure is E0 = 3 ·22.12% = 66.36%. Therefore at
the start of the investment, B0 = 100%−66.36% = 33.64% of the initial capital is allocated
to the risk-free asset and the remaining E0 = 66.36% is invested into the risky asset. InKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.



2 CPPI Models 5

the course of time, price changes of the risky underlying will affect Vt , and allocated
amounts need to be rebalanced so that the basic relationship holds again.

It is clear that increasing m shifts more capital from the risk-free asset to the risky
asset subject to restrictions on the amount of leverage allowed. Leverage constraints
are often imposed on the CPPI to prevent additional capital being borrowed outside
of the initial investment. When leverage in not permitted then the portfolio is said to
be unlevered or self-funding. In this case, revisiting the previous example and setting
m = 5, the exposure becomes equal to 110.6% which exceeds the initial capital and so
this would be capped at 100%. The value of this multiplier is stated from the outset
of the CPPI strategy and remains constant throughout the life of the investment. The
higher the multiplier value the greater the exposure to the risky asset and the greater
the potential for larger gains and losses to be realised.

A description of how the CPPI strategy alters the portfolio composition over time
is now presented. If the return on the risky underlying is greater than the risk-free
rate r , then the cushion will increase in value and more capital will be allocated to
the risky asset. This increase in investment in the risky asset is funded by a reduction
in the amount of risk-free asset held. Similarly the cushion shrinks when the risky
asset experiences a loss or grows by less than the risk-free rate in any period of time.
This causes some of the risky asset to be sold with the proceeds being invested into
the riskless asset. Since the risk-free rate is constant, the progression of the CPPI is
entirely dependent on the stochastic nature of the risky asset. With respect to different
multiplier values the behaviour of the CPPI is as follows. In the case that m = 1, the
CPPI can be considered gapless in that there no rebalancing is required; hence, there
is a 100% certainty that the portfolio will not gap. Essentially, with m = 1 the portfolio
becomes a buy-and-hold investment since the exposure is equal to the cushion and risk-
free investment is equal to the floor which grows to meet the guarantee at maturity. The
performance of the gapless portfolio is determined entirely by the terminal asset price
ST and is not path dependent. However, it is for m > 1 that the CPPI is an interesting
strategy and this is also when the risk of gapping is introduced.

2.2 CPPI under Continuous Time and Lognormal Price Process

The continuous time model for CPPI was derived by Black and Jones (1987) under
the assumption that the risky asset follows a geometric Brownian motion (GBM). The
model assumes that no market frictions are present and that there is no limit on the
amount of leverage that may be applied (i.e. extra capital may be borrowed at the risk-
free rate). The value of the CPPI portfolio Vt can be separated into a stochastic and
non-stochastic component as already shown in Equation (1), comprising of the cush-
ion and floor respectively. Equation (7) gives the value of the CPPI portfolio at time t

as a function of the floor and cushion process. It is clear that the current stock price
St is the only stochastic factor driving the CPPI once the other parameters have been
determined initially,

Vt = Ft + (V0−F0)

(

St

S0

)m

exp

{(

r −m

(

r −
σ2

2

)

−
1

2
m2σ2

)

t

}

(7)

The volatility of the risky asset per year is denoted by σ. Note, since the cushion pro-
cess cannot become negative, the value of the portfolio never falls below the floor andKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 1: Continuous time lognormal CPPI: µ= 0.1, r = 0.05, T = 5

the portfolio never gaps. Additionally, the process is path independent. Appendix A
provides a complete derivation of Equation (7). The terminal payoff of the portfolio
becomes steeper with increasing m as seen in Figure 1(a). Although, for example, the
m = 8 portfolio payoff does not dominate the m = 2 portfolio for all values of ST , for
larger values of ST (3 to 3.5) the growth is substantially higher. Figure 1(b) shows the
payoffs increasing with ST for decreasing values of σ. It should be noted that although
the graph demonstrates that a lower volatility will result in a higher terminal portfolio
payoff for the same value of ST , the expected value of VT is the same for any value of σ
(see Equation (8)) i.e. σ does not effect the expected payoff.

The expected value and variance of the CPPI under a continuous time lognormal
price process are (see Appendix A for derivation)

E[Vt ]= Ft + (V0−F0)exp{(r +m(µ− r ))t } (8)

V ar [Vt ]= (V0−F0)
2 exp{2(r +m(µ− r ))t }

(

exp{m2σ2t }−1
)

(9)

which gives the expected payoff of the CPPI as an increasing function of m and inde-
pendent of volatility.

2.3 Unconstrained Generic Discrete Time CPPI

Under discrete time it is assumed that the price of the risky asset is observed at discrete
intervals and that rebalancing of the portfolio only occurs at these times. At time t the
change in the CPPI portfolio value satisfies the following (see Prigent (2005)):

dVt = (Vt −Et )

(

dBt

Bt

)

+Et

(

dSt

St

)

.

With discrete changes this can written as

∆Vt = (Vt −Et )

(

∆Bt

Bt

)

+Et

(

∆St

St

)

.Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Borrowing notation from Balder et al. (2005) the discrete time scale for an investment
with a horizon of T is defined across the interval [0,T ] with n equidistant points as
belonging to τ such that

τ= {0= t0 < t1 . . . < tn−1 < tn = T }

where

∆t = tk − tk−1 =
T

n
k = 1, . . . ,n.

Since the CPPI portfolio is rebalanced every period, n − 1 represents the number of
rebalances made during the life of the investment after the initial setup. A generic CPPI,
with no assumption on the process driving the risky asset can be described in discrete
time as

Vtk
= (Vtk−1

−Etk−1
)er T

n +Etk−1

(

Stk

Stk−1

)

(10)

Ftk
= F0er T

n k (11)

with

er T
n =

Btk

Btk−1

and as before

F0 =Ge−r T
.

The growth of the portfolio can be seen to be dependent on the growth of the exposure

and risk-free investment, given by the risky asset’s return and the risk-free rate (er T
n )

respectively. Equation (10) demonstrates the path dependence of the model, whereby
the current value of the portfolio is dependent on the previous period’s level of exposure
and the risky asset’s return. Substituting the discretized version of Equations (1) and
(4) into (10) gives

Vtk
=







Ftk
+ (Vtk−1

−Ftk−1
)
(

m
Stk

Stk−1
− (m −1)er T

n

)

if Vtk−1
Ê Ftk−1

Vtk−1
er T

n if Vtk−1
< Ftk−1

(12)

showing that, regardless of the underlying price process governing S, when the multi-
plier value m = 1 it is not possible for the floor to be violated under any circumstance.
For values of m > 1 however, there is a risk that the floor will be violated, dependent on
the movement of S. Given that the floor has not previously been breached, Vtk

will drop
below the floor if1

Stk
−Stk−1

Stk−1

>
(

1−
(

1−
1

m

)

er T
n

)

. (13)

If the floor is breached then the value of the portfolio grows at the risk-free rate.

1Note that this is only true when there is no constraint on the amount of leverage that may be used;
see Section 2.5.Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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2.4 Alternative Price Processes

As discussed previously the progression of the CPPI depends on the stochastic be-
haviour of the risky asset. Therefore by considering different processes driving the risky
asset’s price, the effects of these processes and their attributes can be studied. The as-
sumption of the classic CPPI analytical model is that the risky asset follows a lognormal
price process as follows:

St = S0 exp

{(

µ−
σ2

2

)

t +σWt

}

(14)

where µ is the expected rate of return, σ is the volatility of the price and Wt is a Wiener
process. As discussed previously, under a continuous time assumption an asset follow-
ing a lognormal price process does not generate any gap risk for the CPPI. However, in
the presence of discrete rebalancing stages this does not hold true.

Well documented in financial literature is the failure of the geometric Brownian mo-
tion model to capture the fat tails that are evident in returns distributions. The Normal
distribution, used to model returns, does not exhibit a high enough kurtosis to realisti-
cally represent stock returns. The Student t distribution, however, does allow a varying
level of kurtosis to be captured through the manipulation of its degrees of freedom pa-
rameter. By replacing the Normal distribution with Student t within a GBM, a geometric
random walk is achieved producing log-t distributed prices. The price process is there-
fore defined as

St = S0 exp

{(

µ−
σ2

2

)

t +σ

(

ν−2

ν

)

D t

}

(15)

where ν represents the number of degrees of freedom and (ν−2)/ν scales the effect that
the Student t process in D t has on the standard deviation.

The existence of random jumps in the movement of prices, often attributed to arrival
of significant new information, produces heavy tails when included in a model. Discon-
tinuities in the asset price are of concern to investors and particularly so for CPPI type
products since jumps in price movements could lead to portfolios suddenly falling be-
low the floor. The jump diffusion model of Merton (1973) can be viewed as an asset
following a GBM with the addition of a jump component J :

dSt

St−
=µd t +σdWt +d Jt ,

where St− is the price at t immediately before a jump is realised. The solution to this
equation can be stated as

St = S0 exp

{

(

µ−
σ2

2

)

t +σWt +
Pt
∑

i=1

ji

}

(16)

where Pt represents a Poisson process that generates integers at a rate of λ, which is the
expected number of jumps per year. It follows that up to time t , E[Pt ]=λt . ji is an i.i.d
random variable that models the size of the jumps. When ji is normally distributed
( ji ∼ N(a,b)), St is distributed as follows (compare (Glasserman, 2003, p.136)):

lnSt ∼ N

(

ln(S0)+
(

µ−
σ2

2

)

t +aλt ,σ j

p
t

)

.Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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where the volatility of the jump diffusion process is

σ j =
√

σ2+b2λ. (17)

If ji ∼ N(0,b) then the model produces symmetrical jumps about 0 and the jumps do
not effect the mean of the price.

2.5 Constraints on Shorting and Leverage

Constraints to the CPPI model are now considered to bring it in line with what is re-
alistically possible in an operational setting. From the basic relationship of the CPPI
in Equation (1), it is evident that in the event of the portfolio value dropping below the
floor the cushion becomes negative. This is not a desirable effect since it leads to a nega-
tive exposure, implying shorting of the risky asset which is often prohibited in practice.
To prevent this the cushion is restated as

Ctk
=max[(Vtk

−Ftk
),0]. (18)

Regulations governing the operation of funds impose limits on the amount of leverage
that may be used. If the product is deemed to be self-funding then no additional capital
may be borrowed externally and the maximum exposure is limited to the value of the
fund. A constrained exposure whereby the maximum possible exposure is a percentage
h of the current portfolio value is

Etk
=min[mCtk

,hVtk
]. (19)

For example, for a self-funding product the leverage is zero and h = 1, allowing a max-
imum of 100% of the portfolio capital to invested in the risky asset. A value of h = 2
implies that a maximum exposure of 200% of the portfolio value is allowed and the
portfolio is said to have a maximum leverage of h −1= 100%.

2.6 Transaction Costs and Management Fees

Transaction costs are considered as a proportional cost levied on the amount of the
risky asset traded whenever the portfolio is rebalanced:

T Ctk
= |Et+

k
−Etk

| ·η (20)

0< η< 1 (21)

where Etk
is the amount invested in the risky asset after observing the risky asset’s

growth for the period t+
k−1

to tk and Et+
k

is the new amount allocated for the next period

according to Equation (4). The difference gives the quantity of risky asset traded. In
Equation (20) η is the percentage transaction cost applied to the trade.

In an operational setting institutions charge management fees which are quoted as
an annualized percentage of the CPPI portfolio value. This fee is calculated and typically
deducted from the portfolio value on a daily basis. For computational simplicity it is
assumed that the fee is taken at each rebalancing point as follows:

Feetk
=

{φ

p
·Vtk

if Vtk
Ê Ftk

/(1− φ

p
)

0 if Vtk
< Ftk

/(1− φ

p
)

(22)Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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where φ≥ 0 is the annualized percentage fee and p is the number of periods in a year.
The fee per period is simply the annualized fee divided by the number of periods p in
a year. If a deduction of the fee would result in the floor being violated at tk then no
fee is charged at this time. It is assumed that it would not be beneficial to the decision
maker to take a fee causing a shortfall at time tk only to repay this amount at maturity
to provide the guarantee.

3 Computational Study

3.1 Experiment Design

To test the effects of different distributions and market frictions, simulations of the
CPPI are undertaken with the following assumptions. The risky asset is liquid and can
be traded on the rebalancing date at the current price provided by the simulation. For
underlyings such as prominent stock indices (e.g. FTSE 100), liquidity can be assumed
to be daily since these are actively traded products. For less liquid underlyings (e.g.
hedge funds), reduced frequency in portfolio rebalances can be argued to be reflective
of the fact that the underlying can be only rebalanced at that frequency. Both the risky
and riskless asset can be traded in infinitely divisible amounts. This is not unrealistic
considering that most CPPI funds have capital in excess of $100 million and the impact
of having to buy or sell individual units of risky asset or bonds becomes insignificant.
The riskless asset can be considered analogous to a bank account with negligible trans-
action costs, so they are ignored here. However, they are considered for the risky asset.
Shorting of the risky asset is not permitted. A unit investment is considered, giving a
terminal log-payoff ln(VT ) equal to the accumlated log-return.

Unless otherwise stated the model assumes a GBM for the underling risky asset,
5 year maturity (T = 5), monthly rebalancing (i.e. 12 periods per year p = 12 or 60
rebalances during investment’s life of 5 years: n = 60), no leverage (i.e. h = 1 in Equa-
tion (19)), no transaction costs, no management fees and a volatility of 20% (σ = 0.2).
The risk-free rate and the expected rate of return are always fixed at 5% and and 10%
respectively. These parameter values can be considered typical for a CPPI with a rea-
sonably liquid underlying. Note that the discrete CPPI rule in Equation (12) has not
been updated to reflect the constraints outlined in the two previous subsection, but the
constraints have been implemented.

Results published in this paper are the outcome of 106 simulations for each respec-
tive price process and parameter set. This number of simulations has been deemed
a suitable number when considering the tradeoff between convergence of results and
computational execution time.

3.2 Statistical Tests

To capture the statistical properties of the CPPI from the perspective of the issuer, the
following measures have been used:

• Moments of the log terminal portfolio value VT of all portfolios and the log ter-
minal portfolio value V L

T of those portfolios that experienced a loss. V L
T is definedKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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as:

V L
T = [VT |VT <G]. (23)

• Distribution of the losses LT , where a loss is taken as the amount the portfolio
value is below the guarantee at maturity, given that it is below the guarantee:

LT = [G −VT |VT <G]. (24)

• Percentage of times a loss occurs, which when measured over a large number of
simulations can also be interpreted as the probability that the CPPI will experi-
ence a loss:

Pr [LT ]=
1

I

I
∑

i=1

B(VT,i<G) (25)

where I is the number of simulations performed and B is a binary indicator func-
tion returning 1 if the subscript term is satisfied and 0 otherwise. Note that Pr[LT ]
can be interpreted from the buyer’s perspective as the probability that they will
receive only the guarantee at maturity.

• Expected value (expected shortfall) of the loss below the guarantee;

E[LT ]= E[G −VT |VT <G]. (26)

The expected values and medians of V c
T

/V
r f

T
and V c

T
/V m=1

T
are taken to capture the

value of the CPPI at maturity in relation to the risky underlying and riskfree/gapless
portfolios from the perspective of the buyer (client). The terminal value of a 100%
risk-free investment is given by Equation (27) and Equation (28) gives the value of the
gapless portfolio (V m=1

T
) which is the same as a CPPI when m = 1. V c

T
is the value of

the portfolio from the buyer’s perspective, meaning its value at maturity is at least the
guaranteed amount and is defined in Equation (29).

V
r f

T
=V0er T (27)

V m=1
T =G + (V0−F0)

ST

S0
(28)

V c
T =max(VT ,G). (29)

3.3 Impact of Trading Frequencies

The frequency at which the CPPI portfolio is rebalanced is important since it is not
desirable to trade more often than necessary, especially when costs are present. Con-
versely, not rebalancing the portfolio often enough increases the risk. To determine a
reasonable rebalancing frequency, the CPPI has been simulated with the following num-
ber of rebalancing points n in the 5 year investment: n ∈ {1,2,5,10,20,60,120,260,1260},
where n = 1 corresponds to a buy-and-hold investment, n = 5 is yearly rebalancing,
n = 20 is quarterly, n = 60 is monthly, n = 260 is weekly and n = 1260 is daily.Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 2 shows that the E[VT ] for lower m (m É 2.5) quickly converge to a maximum
as the trading frequency increases, with n > 20 causing little additional change in the
payoff. For m Ê 4.5 the best payoff is achieved for very low trading frequencies. This
is because for m Ê 4.5, the exposure is at 100% initially causing the expected portfolio
value to grow in line with the expected value of the risky asset up until the first rebal-
ancing point. Therefore with low rebalancing frequencies, the relatively long time until
the first rebalancing point (for n > 1) means the portfolio benefits from the positive ex-
pected growth, which can add substantial value to the portfolio in this time. When n = 1
the growth of the portfolio mimics that of a 100% buy-and-hold investment in the risky
asset, meaning that all portfolios with m Ê 4.5 produce the exact same result. Low trad-
ing frequencies also expose the CPPI to increased risk as indicated by the Pr[LT ] and
E[LT ] surfaces. The Pr[LT ] surface in Figure 2(b) has a hump around the yearly (n = 5)
rebalancing mark, the shape of which is not reflected in the E[LT ] surface of Figure 2(c).
This shows that yearly rebalancing results in a higher probability of loss than the buy-
and-hold (n = 1), but the expected value of this loss is significantly lower. The reason
for the humped effect is as follows. For a buy-and-hold investment of n = 1 the value
of the portfolio is only observed at maturity where it can be ascertained whether or not
it has met the guarantee. Since the portfolio is not rebalanced during the investment a
substantial number of losses are realised. However, moving to yearly rebalancing, more
losses are realised because the portfolio is rebalanced and therefore checked more often.
As an example, consider if the portfolio has violated the floor just before the end of year
2 then all the capital will be invested in the risk-free asset ensuring the CPPI will never
meet the guarantee. Had the same situation occurred with the buy-and-hold invest-
ment, there existed a chance for the portfolio to recover in the remaining 3 years until
maturity. As n increases beyond yearly trading, Pr[LT ] is decreasing because now the
portfolio is monitored sufficiently frequently to prevent large movements in the risky
asset from occurring before the portfolio can be rebalanced. From Figures (2(b)) and
(2(c)) it can be demonstrated that monthly rebalancing (n = 60) is frequent enough to
eliminate the majority of the risk.

Figure 3 compares the terminal portfolio value against the terminal risky asset value
for daily and quarterly rebalancing. The continuous time portfolio is also plotted for
reference. Under daily rebalancing the discrete time CPPI payoffs lie close to the analyt-
ical solution. With quarterly rebalancing however, there is a large deviation either side
of the continuous time plot. For quarterly rebalancing the root mean square deviation
(RMSD) of the discrete terminal portfolios from the continuous time analytical solution
is calculated as 0.2867, while for daily rebalancing it is 0.0354. Thus quarterly rebalanc-
ing produces a very high dispersion around the analytical solution compared to daily
trading. However, note that some of the simulations under quarterly rebalancing pro-
duce very high payoffs that are not matched by daily rebalancing. This occurs because
when rebalancing less frequently the risky asset price is observed less frequently, and it
is more likely that a monotonically increasing S will be observed at quarterly intervals
(n = 20) than daily intervals (n = 1260). Couple this with no constraint on leverage, the
opportunity for very high payoffs to be achieved is possible, although very rare.

Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 2: Effect of varying trading frequencies and multiplier values
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Figure 3: Comparison of terminal payoffs VT against ST , unconstrained leverageKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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3.4 Leverage Effects

With no limit on the amount of leverage and assuming that capital may be borrowed at
the same rate as the risk-free investment, Figure 4 shows that the unconstrained discrete
time CPPI closely follows the analytical solution for various values of m. Both these
models show the E[VT ] is growing exponentially with m. In contrast and as would be
expected, the CPPI with no leverage approaches a limit as a result of being constrained
by its initial capital.

Figures 5(a), 5(c) and 5(e) demonstrate the outcome of leverage and varying m on
the CPPI. Values of m = 1 . . .15 have been used to ensure that the extra potential leverage
is utilised by the CPPI. The E[VT ] increases with leverage and multiplier value as shown
in Figure 5(a). For all values of the leverage, the surface increases steeper at first and
then less so as m increases. The higher the leverage, the higher the m value at which this
change occurs. This effect is the result of the higher ms exploiting the higher leverages.
However, the limit on the maximum leverage means that the exposure to the risky asset
is also limited and instances where the risky asset’s return is very high are not fully
benefited from. This is why E[VT ] increases linearly for all leverages once a certain
value of m is reached. Compare this to the unconstrained CPPI in Figure 4, where the
expected payoff is always convex. Figure 5(c) shows that the probability of loss quickly
increases with both m and leverage. For a maximum leverage of 200% and m = 12
there is approximately an 80% chance of shortfall occurring, which is particularly high.
However, looking at Figure 5(e) it can be seen that the expected value of this loss will
only be around 3.5% of the initial portfolio value and these frequent losses do not appear
to impact the E[VT ] which is always increasing with m and leverage. Additionally, it is
reasonable to consider that the impact of large outliers in VT that arise from the use of
leverage, skew the distribution which in turn prevents the mean being reduced by the
losses.

The graphs in Figures 5(b), 5(d) and 5(f) show that leverage against rebalancing
frequency produces a concave surface for E[VT ]. When there is no leverage, increas-
ing trading frequency has little impact on E[VT ] which is relatively flat apart from a
peak at n = 2. This effect is present in Figure 2(a), but not easily seen given the scale.
The effect is seen because when n = 1, the portfolio is a buy-and-hold investment andKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 5: Effect of leverage in conjunction with varying multiplier values m (left; n = 60)
and rebalancing frequencies n (right; m = 3)

Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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with m = 3 approximately 66% of the capital is allocated to the risky asset. This is not
enough to benefit greatly from the growth in the risky asset. When n = 2, the portfolio
is rebalanced half-way through the life of the investment, at which point exposure to
the risky asset is increased for those portfolios where the risky asset performed well.
Here, strongly performing portfolios cause the mean payoff to be increased. The same
behaviour is not seen for n > 2 because as the number of rebalancing points increases
the probability of successive points seeing strong growth drops. Therefore exposure to
the risky asset is not consistently increased, leading to many more lower payoffs which
reduce the mean. When no leverage is allowed the growth of strongly performing port-
folios is limited and their values are not high enough to lift the mean. However for
maximum leverages of 50% and above, the increase in the number of rebalances has a
clearly positive impact on the expected payoff. With the extra capital available, those
portfolios with a 100% investment in a strongly performing risky asset will have very
high payoffs which cause an increase in the mean.

Figures 5(c) and 5(e) show that the leverage has very little effect on the risk of the
CPPI when the multiplier is fixed at m = 3. Even though leverages up to 200% are inves-
tigated this size multiplier is unlikely to exploit this leverage in the majority of simula-
tions and it is only the outliers which cause an increase in the mean.

3.5 Volatility Effects

This section explores the effect of differing volatilities on the CPPI. In the continuous
time analytical model, it was noted in Equation (8) that the expected value of the CPPI
was independent of volatility. However, as Figure 6(a) clearly demonstrates, increases in
volatility have a detrimental effect on expected value of VT , which is further amplified by
large values of m. For higher values of volatility, increases in m produce little additional
payoff. The number of losses can also be seen to be increasing with volatility to over
90% for m = 6 and σ = 0.6 (Figure 6(c)), but the expected value in comparison is still
relatively small at about 5% of V0 (see Figure 6(e)).

Figures 6(b), 6(d) and 6(f) show the changes observed when both volatility and trad-
ing frequency are varied. For the expected value of VT it can be seen that as the volatility
of the underlying increases, E[VT ] decreases. However, although the payoff improves
with increased trading frequency for low volatilities, it is clear that for higher volatili-
ties an increase in trading is detrimental to the performance of the CPPI. This can be
explained by the fact that with a low number of rebalances the investment behaves more
like a buy-and-hold strategy and the CPPI is less effected by large up and down move-
ments. Looking at the graphs for the probability and expected value of losses reveals
that more frequent trading does greatly reduce both the number and size of losses, in-
dicating that more frequent trading would still be preferred. Indeed it should be noted
that the E[LT ] for low rebalancing frequencies is particularly high.

Monthly trading (n = 60) can be said to be a reasonable trading frequency to largely
eliminate risk for volatilities up to 30%, but weekly rabalancing (n = 260) is better when
dealing with volatilities up to 60%. Examining both Figures 6(e) and 6(f) shows that
rebalancing frequency has a greater effect on risk when coupled with volatility than
multiplier value is (the E[LT ] of Figure 6(f) has a range approximately 4 times greater
than that of Figure 6(e)). This suggests that it is more effective to trade more frequentlyKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 6: Effect of volatility in conjunction with varying multiplier values m (left; n =
60) and rebalancing frequencies n (right; m = 3)
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than to lower m to reduce risk during volatile periods, but this comes at the expense of
a lower E[VT ].

3.6 Kurtosis Effects

The significance of kurtosis on the CPPI is investigated through the simulation of the
risky asset using a Student t geometric random walk with varying degrees of freedom
(ν). The effects of the following degrees of freedom are investigated: ν= 15, ν= 10 and
ν= 7, which approximately correspond to a kurtosis of 3.5, 4 and 5 respectively.

Figures 7(a), 7(c) and 7(e) show the effect of the different degrees of freedom in
comparison to the GBM process for varying multiplier values. The expected payoffs are
indistinguishable from one another indicating that kurtosis has no effect on this aspect
of the CPPI. However, the results for the Pr[LT ] and E[LT ] show that as kurtosis in-
creases, the probability and size of losses also increases. Unusually the E[LT ] decreases
as m increases for the Student t processes. This effect is the result of the higher values of
m increasing exposure to the risky asset, and coupled with the symmetry of the Student
t process, larger losses are offset by large profits causing the size of losses to be reduced.
For values of 2É m É 4, E[LT ] is at its highest because the exposure to the risky asset is
high enough for losses in the risky asset to cause a shortfall, but not high enough to fully
benefit from any larger profits. The symmetry of the Student t process also explains why
the E[VT ] plots are very close for varying levels of kurtosis.

Figures 7(b), 7(d) and 7(f) illustrate how rebalancing frequency effects the CPPI
with increasing levels of kurtosis. The payoffs achieved by Student t process CPPI fol-
low closely that of the GBM, with a trend showing higher levels of kurtosis resulting in
marginally higher payoffs. Figure 7(d) also shows that higher kurtosis produces higher
probability of loss, which reduces as rebalancing frequency increases. The E[VT ] in
Figure 7(f) continues this pattern with the GBM producing the smallest losses and the
Student t with ν= 7 the largest.

Overall these results indicate that kurtosis is not too crucial a factor for CPPI. How-
ever, from the results it can be suggested that m = 3 and monthly rebalancing are good
parameters to minimise risk and achieve a satisfactory payoff. Although m = 3 shows
larger losses in Figure 7(e), it has a very low probability of loss as shown in Figure 7(c).

3.7 Impact of Jump Size and Jump Frequency

In order for the performance of the jump diffusion to be fairly compared to that of the
GBM, the volatility of the process must be simulated with a volatility of 20% as used for
the GBM. Two approaches have been taken when keeping the variance of the process in
mind. Simulations have been performed with both σ = 0.2 and the standard deviation
of the process (σ j ) equal to 0.2. In the latter, the σwas scaled (lowered) to accommodate
the changes to the b and λ parameters according to Equation (17). The values used for
the magnitude and frequency of jumps, b and λ, are based on empirical estimates for
the FTSE 100 determined by Honore (1998). The σ and s superscripts on the b and
λ in Figures 8 and 9 are explained as follows: the σ superscript indicates that σ in
Equation (17) is fixed at 0.2 and the s superscript denotes that the standard deviation of
the process (σ j ) is fixed at 0.2. Therefore σ denoted processes have a higher volatilityKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 7: Comparison of GBM with log-t for different ν in conjunction with varying
multiplier values m (left; n = 60) and rebalancing frequencies n (right; m = 3)
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than their s counterparts. The jump process has been assigned a zero mean (a = 0) for
all simulations.

Figures 8(a), 8(c) and 8(e) compare the performance of the CPPI for the GBM
against the jump diffusion for b = 0.015 and b = 0.03 with a range of m values. With
reference to the E[VT ] plots in Figure 8(a), the jump processes produce slightly higher
payoffs than the GBM, with bs = 0.03 producing the highest payoff. Since bs = 0.03 dom-
inates bσ = 0.03 (and bs = 0.015 dominates bσ = 0.015) and bs has the same volatility as
the GBM it can be inferred that this positive effect on the payoff is the result of jumps.
Figure 8(c) shows the probability of loss to be greatest for bσ = 0.03, with bσ = 0.015
producing a higher Pr[LT ] than bs = 0.015. This indicates that the volatility of the pro-
cess has more of a detrimental effect on the payoff than the jump size. In Figure 8(e)
the processes with large jump sizes have larger losses. There is little to separate the bσ

and bs processes other than discrepancies caused by Monte Carlo artifacts.
Figures 8(b), 8(d) and 8(f) show how different rebalancing frequencies effect the

CPPI for b = 0.015 and b = 0.03. Although there appears to be a considerable difference
between the plots for E[VT ], the scale on the y-axis reveals that these are in fact relatively
small, although bs = 0.03 clearly produces the best payoff. The E[LT ] also shows little
difference between the processes, but the Pr[LT ] indicates that the bs = 0.03 process has
a lower probability of loss than the others. As the bs = 0.03 process has a noticeably
higher payoff and lower risk, it can be said that for m = 3 jumps have a positive impact.
The jump processes appear to be effected by the change in rebalancing frequencies in
the same way as GBM and the presence of jumps does not produce any significant new
behaviour. Similar results for varying multiplier values are found for λ = 1 and λ = 5
as b = 0.015 and b = 0.03, with increases in λ producing higher payoffs and risk in
comparison with GBM. For varying rebalancing frequencies there is also a similarity
between the λ and b results, with the λσ processes (with the higher volatility) producing
greater risk than the GBM. The plots for λ can be seen in Figure 9.

Overall the results from this section suggest that the impact of jumps for the param-
eters considered does not introduce any significant benefits or risk to the CPPI beyond
that already analysed for the GBM. Certainly, the effect of volatility poses a much more
substantial risk to the CPPI. Intuitively, jumps should be a key risk factor to the CPPI
by their very nature of causing instantaneous movements in the risky asset which the
CPPI cannot protect against. However, the size of the jumps is a key consideration in
how the jumps will affect the risk of the CPPI. Equation (13) gives the amount by which
the risky asset must drop by between rebalancing points before the floor is breached
and a loss is realised. For monthly rebalancing and m = 3, this amount is approximately
33%. With jumps having a maximum volatility of 3% (b = 0.03) and zero mean, the
likelihood of them adding significantly to the risk of shortfall is low. The volatility of
the random walk part of the process (σ), is therefore the biggest contributor to the risk.
Additionally, only symmetrical jumps are considered and it would be expected that if
downward jumps were more likely than upwards jumps, then the risk and payoff would
be more substantially affected.

3.8 Management Fees and Transaction Costs

This section analyses the effects that management fees and transaction costs have on the
performance of the CPPI. Figures 10(a) and 10(b) shows the effect that management feesKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 8: Comparison of GBM with jump diffusion forλ= 5 in conjunction with varying
multiplier values m (left; n = 60) and rebalancing frequencies n (right; m = 3)
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Figure 9: Comparison of GBM with jump diffusion for b = 0.03 in conjunction with
varying multiplier values m (top; n = 60) and rebalancing frequencies n (bottom; m =
3)
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Figure 10: Effect of management fees in conjunction with varying multiplier values m

(top; n = 60) and rebalancing frequencies n (bottom; m = 3)

(in the range of 0 to 6%) have on the CPPI in relation to varying multiplier values. As the
fee increases E[VT ] falls by a considerable amount, which is more profound for lower m

values. The loss graphs indicate the incidence and size of losses is not greatly affected
by the fees. In particular the expected value of losses are small and not very significant
e.g. the highest loss incurred is approximately 0.5% of the notional (see Figure 11(b)).
Figure 10(b) shows the expected value of the capital taken in fees over the investment
horizon. It can be seen that more than 10% of the notional is taken as a fee on average
for m = 3 when the management fee is 2% per annum. Although it may be expected
that higher values of m would generate higher value portfolios and therefore greater
fees, this does not appear to be the case. The implementation of the fee charging rule
(see Equation (22)) is likely to be the cause of this. Since no fee is charged if it will result
in a shortfall, then the amount in fees taken balances out for low values of m with few
likely shortfalls and high values of m with many potential shortfalls.

Figures 10(c) and 10(d) illustrate the impact of management fees for different re-
balancing frequencies. The payoff declines as more frequent trading occurs and this is
more pronounced for higher fees. This can be explained because more frequent trading
results in fees being taken more often (calculated pro rata using the annualised fee) andKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 11: Effect of management fees in conjunction with varying multiplier values m

(top; n = 60) and rebalancing frequencies n (bottom; m = 3)

this inhibits the growth of the portfolio while not affecting the risk (see Figures 11(c)
and 11(d)). The portfolio does not get a chance to grow substantially in a shorter period
and taking the fee reduces the free capital available for further investment in the risky
asset. Since this effect does not occur for lower trading frequencies and does not affect
the amount in fees taken, it would be more beneficial to deduct fees annually regardless
of the portfolio rebalancing frequency. The result should be the same amount taken in
fees, but without reducing the payoff for higher trading frequencies.

Finally, it should be noted that the expected value of the amount taken in fees greatly
out-weighs the expected value of the amount lost due to shortfall. From the seller’s per-
spective this is a good thing, but the buyer may question whether the fees are excessive.

Figures 12(a) and 12(b) show how varying rates of transaction costs affect the CPPI
in conjunction with different m values. For m Ê 1 the payoff can be seen to be decreas-
ing as the rate of transaction costs increases. For higher costs, around 4 to 5%, there is
a clear dip in E[VT ] between m = 2 and m = 5. The reason for this is that these values of
m are more likely to result in larger changes in the portfolio when rebalancing occurs
and so incur greater costs. Figure 12(b) supports this, showing a peak in the amount of
transaction costs paid around theses same values of m for higher transaction costs.Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 12: Effect of transaction costs in conjunction with varying multiplier values m

(top; n = 60) and rebalancing frequencies n (bottom; m = 3)

Looking at transaction costs with varying rebalancing frequencies, Figure 12(c)
shows the E[VT ] drops considerably as n and the rate of transaction costs increases.
This is expected since the more frequently the portfolio is rebalanced, the greater the
amount of trading and hence the higher the costs (see Figure 12(d)).

Transaction costs do not appear to affect the risk of CPPI when m = 3, but do in-
crease the probability of loss for m Ê 4 (see Figures 13(a) and 13(b)). In these cases
the high amount of costs paid severely inhibit the CPPI’s ability to stay above the floor.
Clearly the less frequently the portfolio is rebalanced the less the transaction costs and
the higher the E[VT ]. However, when considering the performance overall, monthly
rebalancing again offers a good tradeoff between risk, costs and payoff.

3.9 CPPI versus Riskless and Gapless Portfolios

To a buyer seeking an investment that is guaranteed to protect at least their initial capi-
tal, there exist a couple of investments other than the standard CPPI (m > 1), which can
be considered for comparison. The riskless portfolio, comprising of a 100% investment
in the risk-free asset will always pay more than the initial investment at maturity. TheKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Figure 13: Effect of transaction costs in conjunction with varying multiplier values m

(top; n = 60) and rebalancing frequencies n (bottom; m = 3)
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Table 1: Mean and median ratios under GBM, m = 3. V c
T

, V
r f

T
and V m=1

T
denote the

terminal value of the Standard CPPI, the riskless and the gapless portfolio, respectively.

No Fee 1.5% Fee 100% Max. Leverage

σ V c
T

/V
r f

T
V c

T
/V m=1

T
V c

T
/V

r f

T
V c

T
/V m=1

T
V c

T
/V

r f

T
V c

T
/V m=1

T

m
ea

n

0.1 1.2193 1.1373 1.1138 1.0393 1.2453 1.1582
0.2 1.1918 1.0878 1.0904 0.9978 1.2390 1.1123
0.3 1.1670 1.0365 1.0749 0.9619 1.2265 1.0415
0.4 1.1467 0.9916 1.0672 0.9365 1.2086 0.9653
0.5 1.1314 0.9588 1.0648 0.9215 1.1991 0.9065
0.6 1.1218 0.9399 1.0658 0.9151 1.1931 0.8736

m
ed

ia
n

0.1 1.1630 1.1015 1.0515 0.9960 1.1533 1.0923
0.2 0.9850 0.9505 0.9009 0.8798 0.9688 0.9356
0.3 0.8459 0.8837 0.7945 0.8539 0.8358 0.8694
0.4 0.7900 0.8743 0.7790 0.8583 0.7873 0.8463
0.5 0.7793 0.8833 0.7788 0.8751 0.7791 0.8531
0.6 0.7788 0.9015 0.7788 0.8972 0.7788 0.8777

gapless portfolio, which is the same as a CPPI with m = 1 is essentially a buy-and-hold
strategy that guarantees at least the initial capital.

Table 1 shows the average CPPI payoff ratios for an m = 3 portfolio in comparison to

riskless (V
r f

T
) and gapless (V m=1

T ) portfolios taking the mean and median respectively.
Payoffs are observed from the client’s (buyer’s) perspective, with at least the guaranteed
amount being paid at maturity (see Equation (29)). The median value of the ratios has
been considered in addition to the mean because it ignores the magnitude of outliers
that skew the distribution and increase the mean. The median therefore gives a better
indication of what the payoff will be for a one shot investment rather than the asymptotic
payoff.

In the upper part of Table 1 it can be seen that as the volatility increases the ratios
drop showing that the CPPI becomes a poorer investment in relation to the other two
portfolios for higher volatility. Of particular concern is that with a volatility of 40% (and
higher) the m = 3 CPPI fails to outperform the m = 1 CPPI even in the absence of fees.
When a realistic fee of 1.5% is considered the m = 3 CPPI fares even worse. In terms
of median values (lower part of Table 1), without fees the CPPI performs significantly
worse than the gapless portfolio at a volatility of just 20% and even fails to beat the
riskless portfolio. When the CPPI has a maximum leverage of 100% the CPPI gains a
significant payoff increase over the riskless and gapless portfolios forσ= 0.1. Increasing
the to σ = 0.2, as with the unlevered CPPI, Table 1 shows that the levered portfolio
compares poorly. The results suggest that in periods of high volatility the investor would
be best suited to consider an investment in the risk-free or gapless portfolios.

Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Table 2: Statistics for cumulated returns and conditional losses

(a) Standard CPPI

ln(VT ) ln(V L
T )

m Mean Std Skew Kurt Mean Std Pr[LT ](%) E[ET /VT ](%)

1 0.3036 0.1179 0.9808 4.5313 − − − 25.69
2 0.3437 0.2553 1.4844 5.5514 − − − 52.08
3 0.3605 0.3372 1.2029 3.9112 − − − 61.36
4 0.3644 0.3718 1.0373 3.3226 −0.0082 0.0010 0.00 62.18
5 0.3644 0.3876 0.9542 3.0724 −0.0054 0.0081 0.14 61.15
6 0.3633 0.3959 0.9073 2.9410 −0.0051 0.0084 1.69 59.73

(b) Standard CPPI with 100% maximum leverage

ln(VT ) ln(V L
T

)
m Mean Std Skew Kurt Mean Std Pr[LT ](%) E[ET /VT ](%)

1 0.3037 0.1179 0.9797 4.5000 − − − 25.70
2 0.3438 0.2602 1.7170 7.2525 − − − 53.95
3 0.3584 0.3942 2.1168 8.4687 − − − 75.40
4 0.3543 0.4830 2.0478 7.2716 −0.0042 0.0021 0.00 80.67
5 0.3442 0.5323 1.9746 6.6087 −0.0096 0.0149 0.23 77.28
6 0.3330 0.5601 1.9470 6.3262 −0.0104 0.0184 3.10 71.31

3.10 Distribution of Returns and Losses

Table 2(a) shows the log-moments of both the terminal values of all portfolios and the
terminal values of only those portfolios that experienced losses, denoted V L

T (where
V L

T = VT |VT < G). The expected value of the log-payoff of VT can be seen to be peaked
at m = 4, m = 5 with a value of 0.3644. These values of m can be considered to perform
well for the chosen parameters of the simulation (GBM price process, monthly trading,
r = 0.05, µ= 0.1, σ= 0.2). Lower ms do not allow enough exposure to the risky asset to
benefit more from its growth, while higher ms are too greatly affected by the increase in
the number of losses. The reader may be aware that multiplier values of 4 and 5 are quite
high for a 5 year CPPI product. Indeed they result in 88% and 100% of the initial capital
being allocated to the risky asset.2 However, looking at the final column of Table 2(a) it
is known that on average for m = 4 and m = 5 respectively the terminal risky allocations
will be about 62% and 61%. This suggests, at least for a maturity of 5 years, that it is
better to invest a large amount of the capital in the risky asset initially and rely on the
CPPI strategy to reduce exposure over time. However starting with an exposure much
more than the leverage limit (i.e. for m > 5) is detrimental to the CPPI’s performance.

Table 2(a) shows the distribution of CPPI payoffs exhibiting positive skewness de-
spite the underlying risky asset following a GBM. This proves that the CPPI is effective
in reducing losses, while preserving much of the upside.

2(1−exp(−0.05·5))·4·100% = 88.48%,(1−exp(−0.05·5))·5·100% = 110.60% but the leverage constraint
caps this at 100%. See Equations (1), (2), (4) and (19).Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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Table 2(b) gives the moments of a 100% levered CPPI and provides evidence of large
outliers shifting the mean. When compared to the unlevered CPPI in Table 2(a), it can
be seen that the levered CPPI is heavily skewed and exhibits significant extra kurtosis.
Additionally, E[ln(VT )] is lower for the levered portfolio than the unlevered, which is
not what is seen for E[VT ] in Figure 5(a). Thus the impact of large outliers on the mean
is apparent.

4 Conclusion

This paper investigates the statistical properties and main issues in the implementation
of the CPPI strategy. In particular, the results show that increased volatility is detrimen-
tal to the CPPI’s performance. When volatility is high, the implementor can limit risk
by reducing m and increasing the trading frequency. In fact increasing the number of
rebalances would be the preferred approach (in the absence of transaction costs), as it
would reduce risk without having as big a negative effect on the payoff as reducing m.
Overall the results indicate that for a CPPI under discrete trading with typical market
assumptions, a good multiplier value lies between 3 and 5 and a suitable rebalancing
frequency is monthly. These values give a good tradeoff between risk, payoff and costs.

Excess kurtosis in the risky asset (i.e. beyond that of the GBM) does little to affect
the CPPI. This is at least true for a symmetrical distribution, but unlikely to be the case
for skewed distributions. Jumps in the price of the risky asset do have a noticeable
affect on the CPPI, with increased jump size and frequency having a positive impact on
the payoff. However, for normally distributed jumps and the values of the parameters
considered the impact is not substantial. In particular, volatility is a bigger contributor
to the risk of the CPPI than the size and frequency of the jumps themselves.

The gapless portfolio (m = 1) is a good option for investors looking to have some
risky exposure while retaining the majority of the capital in the risk-free asset. This is
even more true when the underlying is particularly volatile. Additionally, the gapless
portfolio has the benefit of little or no management fees or transaction costs. However,
if the investor wishes to utilise increased leverage, which has been shown to produce
increased payoffs, then the gapless portfolio will be unable to accommodate this. Al-
though the results show the CPPI performing poorly compared to the gapless portfolio
for volatilities of the underlying greater than 10%, it should be noted that the traits of
the underlying are determined by its type. Hedge funds typically have a volatility of less
than 10% and so their use in the CPPI could provide an attractive investment.

Management fees have a significant impact on the payoff of the CPPI. Even with rel-
atively low volatilities, the payoff is substantially eroded. It has been shown that taking
management fees from the CPPI at more frequent intervals impedes its growth. By tak-
ing fees less frequently the expected payoff of the CPPI is increased, while the amount
taken in fees remains the same. Considering also that is has been shown that in many
cases it is better for a buyer of the CPPI to invest in a gapless portfolio, the addition
of fees to an already poorly performing portfolio further reduces its attractiveness as
an investment. It is therefore important for an investor to consider whether they be-
lieve that the fees justify the returns they expect to receive. Furthermore, the buyer
of the product must consider their risk aversion and whether the potential increased
performance of the CPPI makes it more favourable than a purely risk-free or gap-freeKhuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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investment. From the buyer’s perspective, the charging of management fees should be
a reflection of seller’s skills to manage the portfolio in such a way as to produce excess
returns.

The CPPI essentially allows the implementor to choose only two components: the
multiplier value and the rebalancing frequency. The results demonstrate that these two
parameters have a significant impact on the performance of the CPPI and being able to
optimize their values would be very beneficial to the CPPI. However, the values for these
parameters are often fixed for the entire life of the investment. Suggested further work
includes dynamically optimizing the value of m as well as deciding when to rebalance
in reaction to market conditions.
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A Derivation of Continuous Time CPPI under a Lognor-

mal Price Process

This appendix provides the derivation of the standard CPPI value together with it’s first
and second moments. The value of the floor growing at the constant interest rate r can
be determined at time t as given in Equation (2) by

Ft = e−r (T−t)G .

The dynamics of the risky asset are assumed to follow a standard geometric Brownian
Motion

dSt

St
=µd t +σdWt ,

where µ is the expected rate of return , σ the volatility and Wt the standard Wiener
process. The solution to the above stochastic differential equation (s.d.e.) is

St = S0 exp

{(

µ−
1

2
σ2

)

t +σWt

}

, (30)

where S0 is the initial value of the risky asset. The expected value and variance of the
risky asset is (see (Hull, 2005, p.282))

E[St]= S0 exp{µt }

V ar [St ]= S2
0 exp{2µt }

(

exp{σ2t }−1
)

.

The cushion is the difference between the portfolio value and floor (from Equation (1))

Ct =Vt −Ft .

The exposure to the risky asset is defined as a multiple m of the cushion (from Equation
(4))

Et = mCt .

At any time t , the change in the value of the CPPI portfolio is given by

dVt = (Vt −Et )
dBt

Bt
+Et

dSt

St
,Khuman, Maringer, and Constantinou, Constant Proportion Portfolio Insurane: Statistial Properties and PratialImpliations, CCFEA WP 023-08, University of Essex 2008.
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where Bt is the risk-free asset which follows the same dynamics as the floor. The cush-
ion then satisfies the following

dCt = dVt −dFt = (Vt −Et )
dBt

Bt
+Et

dSt

St
−dFt

dCt = (Ct +Ft −mCt)
dBt

Bt
+mCt(µd t +σdWt )−dFt

dCt =Ct [((1−m)r +mµ)d t +mσdWt].

Rearranging the s.d.e. satisfied by the cushion gives

dCt

Ct
=µc d t +σc dWt ,

where

µc = (1−m)r +mµ

σc = mσ

Hence, the cushion follows a standard GBM and therefore

Ct =C0 exp

{(

µc −
1

2
σ2

c

)

t +σcWt

}

. (31)

From Equation (30) it follows that

Wt =
1

σ

[

ln

(

St

S0

)

−
(

µ−
1

2
σ2

)

t

]

and substituting this result into Equation (31) gives

Ct =C0

(

St

S0

)m

exp

{(

r −m

(

r −
σ2

2

)

−
1

2
m2σ2

)

t

}

Vt = Ft + (V0−F0)

(

St

S0

)m

exp

{(

r −m

(

r −
σ2

2

)

−
1

2
m2σ2

)

t

}

.

The expected value and variance of Vt can be deduced from the fact that the cushion
Ct follows a GBM (Equation (31)). Hence the expected value is

E[Vt −Ft ]=C0 exp{µc t } =C0 exp{((1−m)r +mµ)t }

E[Vt ]= Ft + (V0 −F0)exp{((1−m)r +mµ)t } (32)

and the variance

V ar [Vt −Ft ]=V ar [Ct ]=C 2
0 exp{µc t }(exp{σ2

c t }−1)

V ar [Vt ]= (V0−F0)
2 exp{((1−m)r +mµ)t }

(

exp{m2σ2t }−1
)

. (33)
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