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Abstract

This paper presents a novel application of advanced methods from Fourier analysis
to the study of ultra-high-frequency financial data. The use of Lomb-Scargle Fourier
transform, provides a robust framework to take into account the irregular spacing
in time, minimizing the computational effort. Likewise, it avoids complex model
specifications (e.g. ACD or intensity models) or resorting to traditional methods,
such as (linear or cubic) interpolation and regular resampling, which not only cause
artifacts in the data and loss of information, but also lead to the generation and use
of spurious information.
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1 Introduction

Recently there has been a growing interest in the analysis of intraday data
collected from financial e-markets. The increased availability of tick-by-tick
“ultra-high frequency” (UHF) data fostered by the decreasing cost of data
gathering, storing and manipulation, has certainly encouraged this trend lead-
ing to the analysis of financial data that was not readily available in the past,
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requiring new techniques for efficient analysis. The availability of UHF data
opens a window to provide new insights in the understanding of financial sys-
tems at the deepest market microstructure level.

UHF data (such as order book data) is observed in real-time and at non-
periodic (irregular) intervals, typically resulting in a significant amount of
information over a relatively short period. Although the literature has sug-
gested several econometric models to deal with this specific data type, such
as the ACD model (Engle and Russell, 1998) and its recent enhancement (for
a comprehensive overview see Bauwens et al., 2004; Fernandes and Grammig,
2006; Bauwens and Hautsch, 2006a), count models (Grammig et al., 2004) or
intensity models (see Hall and Hautsch, 2006; Bauwens and Hautsch, 2006b),
none of these approaches seems apt to analyse the data both in real-time
and within a multivariate framework. Duration models, as pointed out by
Hall and Hautsch (2006), cannot consider more than a single process because
of the asynchronization problem of multivariate point processes (otherwise
truncation is required as shown in Engle and Lunde, 2003). Other approaches
are easier to extend to multidimensional settings, but they either lose infor-
mation (count models) or involve complex model specifications and significant
computational time (intensity models). Furthermore, since point processes
naturally focus on points, they sometimes overlook other variables and in-
formation recorded in the order book. In fact, though order book variates are
sometimes included in the models as explanatory variables for duration or
intensity, they are never modelled as independent self-contained processes.

The analysis of standard (periodic) econometric time series in the frequency
domain, employing the Fast Fourier Transform (FFT) has a long history. In
this Letter, it is demonstrated for the first time, that UHF data can also
be analysed in the frequency domain via the so-called “Lomb-Scargle Fourier
Transform” (LSFT) without the need for any data manipulation. The LSFT
is the generalisation of the FFT to non-periodic processes and therefore pro-
vides a natural framework for the study of UHF data in the frequency do-
main. The LSFT has been successfully developed and applied in diverse ar-
eas of science, such as astronomy (Scargle, 1982, 1989), cardiology (inter alia
Laguna et al., 1998; Castiglioni and Rienzo, 1996; Chang et al., 2001), palaeo-
climatology (Schulz and Stattegger, 1997), meteorology (Muller and Macdonald,
2000), and biology (see Glynn et al., 2006, and Ruf, 1999). All these applica-
tion of the LSFT share the property that the data are non-periodic, which is
of course one of the defining properties of UHF data.

Indeed, a significant result of this simulation study is that resampling or in-
terpolating UHF data to transform the set to a periodic data set for analysis,
as has been carried out by other authors (see, for example, Dacorogna et al.,
2001), introduces spurious data (or market microstructure noise) and loss of
information. In order to clearly demonstrate this, the LSF'T is applied to both



periodic and non-periodic series generated by a benchmark AR(1) process,
and a Monte Carlo simulation is performed to highlight its features and the
advantages of this methodology over the traditional FFT coupled with regular
resampling.

The outline of the Letter is as follows; Section 2 introduces the LSF'T, Section
3 presents the simulation results and Section 4 provides the conclusions.

2 Spectral analysis of unevenly-spaced data

The general aim of spectral analysis is the decomposition of a time series into
its periodic (frequency) constituents in order to detect and analyse the cyclical
behaviour of economic processes by means of the estimation of the spectral
density function (SDF) (see Priestley, 1981; a survey of spectral analysis of
economic time series can be found in Granger and Engle, 1984 and Iacobucci,
2003). The SDF is the natural tool to analyse the frequency properties of
time series, and is the analogue of the autocorrelation function in the time
domain. It describes how the variation in a time series may be accounted for
by components at different frequencies, and provides information on the con-
tribution to the variance of the underlying process from different frequencies.
Spectral analysis of evenly-spaced time series is typically carried out using a
FFT algorithm (Priestley, 1981). UHF data are, however, unevenly-spaced,
and hence the traditional FFT cannot be applied to the raw data. Attempts
to transform the irregularly spaced raw data into regularly spaced data (e.g.,
Dacorogna et al., 2001), by regular resampling or using interpolation, prior
to applying the FFT to calculate the SDF, is demonstrated in the following
section to introduce artifacts in the data, loss of information and generation
of spurious data.

These limitations can be overcome using the LSF'T, a statistical technique
first introduced in astrophysics by Lomb (1976), who proposed the use of
least-squares fit sinusoidal curves to the data, as a way to find periodicities in
unevenly spaced data. Scargle (1982) extended Lomb’s work by defining the
Lomb-Scargle (LS) periodogram and by deriving the null distribution for it.
Horne and Baliunas (1986) found that standardising the LS periodogram re-
sulted in well defined statistical properties. Press and Rybicki (1989) proposed
a novel fast and efficient algorithm (for its implementation see Press et al.,
1992).

Consider the finite time series x; with length 7" and N observations. In the
case of periodic sampling, the temporal distance between two realisations is
constant
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and the time series can be Fourier analysed as a sum of trigonometric functions
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where the angular frequency wy = 27k/N and the frequency fr = wy/27.
Summing up the squared modulus of the Fourier coefficients over a specific
frequency range returns an estimate of the power spectral density of the pro-

cess Iy, i.e.
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and the coefficients ¢, = N7 2N | 2,e7“* can be computed using the well-
known FFT (see, for example, Bloomfield, 2000 and Warner, 1998). However,
as discussed in the previous section, UHF transaction data are observed in
real-time and arrive in irregular time intervals (At in (1) is now stochastic),
so the simple FFT can not be directly applied. The main issue here is to find
an algorithm which is able to quickly compute (3).

As discussed in the previous section, this issue has been addressed in many
different areas of science (for an overview, see Ware, 1998) under the robust
framework of the LSFT. The general scheme is to transform the data on
the non-equispaced grid into the frequency domain in order to obtain an un-
biased estimation of the SDF. The corresponding Lomb-Scargle normalised
SDF is evaluated at k € {1,2,3..., M} points with M chosen as outlined in
Press et al. (1992). The normalised SDF is given by (for its implementation
see Press et al., 1992) by
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and fr = wi/27 € [0,0.5] as the frequency. In addition, Scargle (1982, Ap-
pendix C) proved that this particular choice of the offset 7 makes (4) the
same equation one would obtain by linear least-squares fitting sine waves to
the data (see also Van Dongen et al., 1999).

3 Simulation Results

The objective of this work is to highlight the advantages of the LSFT in ob-
taining the SDF for non-periodic UHF data and to demonstrate that the use
of the FFT on resampled evenly spaced data leads to a SDF which includes
spurious data generated by the resampling. This is achieved by employing the
FFT and LSFT to analyse artificial processes with different characteristics,
within a univariate framework. The simulation study is divided into the fol-
lowing steps, starting with the generation of a standard stationary process

Xy =aX,_1 +e, (6)

with |a| < 1, {&} ~ WN(0,0?), as the benchmark process and the compu-
tation of its theoretical normalised SDF (for the derivation of the close form
solution, see e.g. Chatfield (2003) and Fan and Yao (2005)):

1 —a?

(1 — 2acosw + a?)

SDF(w) = (7)

This benchmark process is then transformed via two resampling methods to
simulate irregularly spaced data for which the LSFT is applied to calculate
the SDF. These irregularly spaced data are then re-sampled to make them
equally spaced and the SDF calculated using the FFT. The empirical analysis
is outlined in the following steps:

(1) An evenly spaced AR(1) process is generated with parameter o = 0.9,
N = 10,000 data points and unitary time-span. A comparison between
the SDFs of an equally-spaced AR(1) process, computed using respec-
tively the simple FFT and the LSF'T is carried out to check that both
methods yield the same results.



(2) (a)

(b)

By irregular resampling through N /2 random permutations the pro-
cess (1), an irregular AR series is generated, with N/2 data points
and variable time-span (AR-irreg). This is the first simulated UHF
process. The SDF is then calculated using the LSF'T.

By regular resampling process (2a), an evenly-spaced process is gen-
erated, with N /5 data points and time-span equal to 5 (AR-res). The
SDF is then calculated using the FFT.

As reported in many empirical studies in the literature, all order book
data exhibit the characteristic duration clusters when computing the
time interval between two consecutive economic events. Hence, in or-
der to provide a more realistic representation of real financial market
data and in particular to mimic the dynamics of a typical UHF order
book data set with this stylized fact, we apply a linear ACD(1,1)
model with exponentially distributed durations (Engle and Russell,
1998), yielding an irregularly-spaced process (AR-irreg-Clust) with
variable time intervals between the observations of the original AR(1)
process. The SDF is then calculated using the LSF'T.

By regular resampling the clustered series of point (3a), an equally
spaced series is obtained, with variable length and time-span equal
to 5 (AR-res-Clust). The SDF is calculated using the FFT.

(4) Finally, a Monte Carlo simulation with n = 10,000 iterations is car-
ried out repeating steps 1 — 3, each time comparing the theoretical SDF
(7) of the AR(1) process and the empirical SDF of the simulated pro-
cesses (original AR(1), irregularly-sampled, regularly-resampled, cluster-
sampled and regularly-resampled from the clustered process). Addition-
ally, summary statistics such as the first four moments of the paired dif-
ferences (“errors”) between the real and the empirical spectral densities
are computed.

Table 1 shows the results of the Monte Carlo simulation for a simulated series
of 10,000 data points and 10,000 iterations, considering the four resampled
processes (2a, 2b, 3a, 3b). An interesting point to note about the summary
statistics is that while the variance of of the differences for the inhomogeneous

Table 1

Four moments of the differences (“errors”) between the real spectral density and the
spectral densities of the simulated processes

Data AR1 | AR-irreg | AR-res | AR-irreg-Clust | AR-res-Clust

Mean 0.0039 0.0131 0.1348 0.0509 0.0193
Variance | 0.1828 2.8062 7.5068 1.0993 4.3213
Skewness | 3.4664 4.4863 4.4440 5.8945 3.2496
Kurtosis | 29.2934 | 27.5141 | 22.8056 38.4357 19.3971




Figure 1. A comparison between the theoretical SDF and empirical spectral densities
of the simulated processes
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(non-periodic) processes (2a) and (3a) is lower than that of the homogeneous
(periodic) ones, the kurtosis is significantly higher.

Finally, Figure 1 depicts the results of the Monte Carlo simulation. In order
to generate the graphs, we first compute for each process an average curve
(of all 10,000 estimated spectral densities) and then use a filter to smooth the
periodograms (Bloomfield, 2000).

Figure 1 confirms the intuition about the limitations of regular resampling
introducing spurious data. As discernible in the upper left panel, the spec-
tral densities of the autoregressive processes exhibit a declining slope, which
implies a higher contribution to the variance of the process coming from low
frequencies. This would translate in a significant disturbance of the processes
in the long term and a lower variability in the short run. Similar results have
been obtained in the literature (see e.g. Easley and O’Hara, 1992) for the tra-
ditional ACD model, in which clusters with long durations were proved to be
more likely than those with short ones, as a result of asymmetric information
among market participants (O’Hara, 1998).

As expected, the spectral densities of the processes (2a) and (2b) clearly
demonstrate the two main problems arising from regular resampling (see upper
right panel in Figure 1). At low frequencies (f; < 0.025) the SDF of the ir-
regular process is above the SDF of the regularly resampled one, which means
that by resampling the data, we lose information that is, in fact, available.
On the contrary, at higher frequencies (0.025 < fi < 0.225), the reverse is



true, clearly demonstrating that relying on resampled data, leads to the use
of spurious information generated as a result of the resampling process (i.e.
information which is actually not available). As visible in the lower left panel
in Figure 1, similar considerations are also true for (3a) and (3b), but the
differences have become smaller due to the sampling from clustered obeser-
vations. For a better comparison, the lower right panel contains all spectral
densities.

4 Summary and concluding remarks

UHF data are observed in real-time and therefore are characterized by the
irregularity of time intervals between two consecutive events. The analysis of
UHF data is now a rapidly growing area within financial research, with the
prospect of providing new insights into the microstructure of financial mar-
kets. This work proposes a new approach to the study of UHF data based
on the LSFT. It provides, for the first time, a rigorous theoretical framework
(borrowed from other areas of science) to investigate UHF data in the fre-
quency domain (calculation of the SDF), that incorporates, in a natural way,
the non-periodic property of UHF data without the need to first transform the
data to a periodic array. Any such transformation via the regular resampling of
unevenly-spaced data or interpolating them to an evenly spaced grid in order
to calculate the SDF with the simple FFT, is demonstrated to introduce arti-
facts in the data in the frequency domain (and hence time domain), leading to
loss of information and the use of spurious information. The LSFT has the ad-
ditional advantages of greatly reducing the computational effort required when
analysing large order book data sets, avoiding complex model specifications
or obligatory deseasonalisation, and providing a robust consistent framework
to analyse multivariate data.

The work presented here by necessity employed simulated UHF data generated
from a benchmark AR(1) process to highlight the advantages of the LSFT.
The next step is to apply the theoretical framework to real order book data.
In addition, the framework can be generalised to a multivariate scheme (see
e.g. Schulz and Stattegger, 1997), which holds out the prospect of looking at
dependencies between various variables (e.g. price, volume, etc.) that can not
be easily accommodated by current econometric models in the literature. In
contrast, as it is well-known in the signal processing literature, comovements
of multivariate time series can be easily detected in the frequency domain by
computing the cross-spectra, the gain function and the phase function. These
research areas are currently under investigation.
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