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Spectral Densities of Ultra-high Frequency Data

Abstract

This paper suggests the application of advanced methods from
Fourier Analysis in order to describe ultra-high frequent data in limit
order books. Using Lomb’s normalized periodogram and Scargle’s Dis-
crete Fourier Transforms to take account of the irregularity in spac-
ing, the power spectra of different time series processes can be eas-
ily estimated, without immense computational effort caused by the
large amount of observations. With empirical data extracted from the
German XETRA system, the spectral analysis shows that the entire
trading process contains various different periodic components. While
duration and volume processes have a strong cyclical behavior in the
low-frequency domain, seasonalities of price differences arise in the
high-frequency domain. Contrarily, the time series of the spread re-
veals no periodicity, neither in the long term, nor in the middle or short
term.

Key Words: Ultra-high frequency transaction data, limit order
book, irregularly spaced data, Lomb-Scargle Fourier Transforms, spec-
tral density.

JEL Classifications: C22, C32, C63.
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1 Introduction

For the last decade, the literature on financial econometrics has witnessed
a growing interest in the analysis of order book data provided by electronic
exchange trading systems. Since this so-called “ultra-high-frequency” data
is observed in real-time, yielding the highest possible sampling limit, it is
characterized by one key feature, namely the irregularity of time intervals
between two consecutive events. Therefore, the econometric analysis of this
unevenly spaced data always focus on the modelling of durations in order
to avoid any loss of important information stored in the temporal structure
of the entire transaction process. Treating these special time series as point
processes, Engle and Russell (1997) have introduced the Autoregressive Con-
ditional Duration (ACD) model, which describes a dynamic duration process
with a conditional expectation that is written as a linear function of past
durations. Based on their seminal work, many studies have concentrated on
its further development in order to describe limit order book activities more
accurately (for a survey, see Fernandes and Grammig (2006) or Hautsch
(2004)). According to Cox and Isham (1980), alternative approaches to deal
with point processes are count models (see Grammig, Heinen, and Rengifo
(2005)) or intensity models (see Hall and Hautsch (2006)).

Although these three types of models have been improved by many au-
thors and shown a good performance in numerous previous studies, they
still have their drawbacks and limits. Duration models, for example, can
not consider more than one single process because of the asynchronization
problem of multivariate point processes (otherwise truncation is required as
shown in Engle and Lunde (2003)). In contrast, the other approaches are
easier to be extended to multidimensional settings, but they either lose too
much information due to the aggregation over discrete time intervals (count
models) or involve complex model specifications and computational burdens
by reasons of the assumption of continuity (intensity models). Furthermore,
there are many additional variables and information recorded in the order
book that has to be considered as well. Since point processes naturally focus
on points, they sometimes lose sight of their “marks”, in which economists
are more interested. In fact, in many models these order book variables
serve as regressors explaining the duration or the intensity of the process,
or, the relationship of different covariates are analyzed by decomposition
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Figure 1: Fitting the FFT on non-equispaced order book data

methods (see Engle (2000) or Rydberg and Shephard (2003)). However, the
key variables are never treated as single self-contained processes.

In order to solve these problems, this paper suggests using advanced
modelling techniques from the Fourier analysis, minimizing the computation
time of the large amount of transaction data. Fast Fourier algorithms afford
a rapid calculation of the Fourier values of a given time series that represent
the same process in the frequency domain without any loss of information.
Applying modified Fourier transforms which are especially designed for non-
equidistant spaced data, this framework allows to reveal the stochastics of
every single process without loss of any information. Hence, the main goal
of this study is to recover the underlying stochastic behaviour of the entire
transaction process observed in an electronic trading system. Compared to
models of the autoregressive conditional framework, where the estimation
procedure always require recursive evaluations of the likelihood, the adopted
methods in this research make an enormous reduction of the computational
effort possible though analyzing large sets of order book data.

Finally, there is one more important reason that motivates this applica-
tion and is referred to the periodicity of financial time series. It is well-known
that intraday data have a consistent diurnal pattern of trading activities over
the course of a trading day due to institutional characteristics of organized
financial markets, such as opening and closing hours or intraday auctions.
Indeed, most researchers only take the regular daily seasonality of durations
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into account, assuming that all other variables (price limit, order volume,
etc.) are not influenced by the diurnality or other seasonal patterns. Since
this study concentrates on the investigation in the frequency domain, we can
easily detect characteristic cyclical patterns of all interested variables by es-
timating their power spectra which captures the periodicity of stochastic
processes as is generally known.

The paper is structured as follows: In Section 2, the modified Fourier
transforms for irregularly spaced data and the estimation of spectral density
are described. Section 3 represents the data and the empirical results with
regard to the economic implications. Section 4 concludes.

2 Spectral Analysis of Order Book Data

The general aim of spectral analysis is the decomposition of a time series
into its periodic constituents and seasonalities in order to reveal the cyclical
behavior of economic processes (see Priestley (1981), a survey can be found
in Granger and Engle (1983) or Iacobucci (2003)).

Consider the finite time series xt with length T and N observations. In
case of periodic sampling, the temporal distance between two realizations is
always constant

tj − tj−1 = ∆t =
1
T

∀j ∈ N ,

and the time series can be regarded as a sum of trigonometric polynomials

xt =
N/2−1∑
k=−N/2

ak cos (2πkt) + bk sin (2πkt) (1)

=
N/2−1∑
k=−N/2

cke
i2πkt/N , (2)

where the Fourier coefficients

ck =
1
N

N∑
t=1

xte
−i2πkt/N (3)

can be easily computed by the well-known Fast Fourier Transforms (FFT )
that needs onlyO (N logN) arithmetical operations (see, for example, Bloom-
field (1976) and Warner (1998)). Since high frequency transaction data is
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observed in real-time and, thus, arrives in irregular time intervals, the imple-
mentation of the common FFT can not be done for the unevenly sampled
data. Because ∆t is no more constant but stochastic, the computation of
(3) will require O

(
N2
)

operations. The problem here is to find an algorithm
that is able to compute (3) faster.

Interestingly, this issue has been addressed in many different areas of sci-
ence, such as astrophysics, geology, computer tomography and other fields of
applied mathematics (for an overview, see Ware (1998)). The general pur-
pose is to transform the data on the non-equispaced grid into the frequency
domain in order to get a unbiased estimation of the power spectrum. Recent
tools especially designed for these problems are, for example, the advanced
NFFT algorithms proposed by Kunis, Potts, and Steidl (2006) (see also
Steidl (1998) and Fenn and Potts (2005)). More simply, one can directly
calculate the “normalized” periodogram

P (ω) ≡
(

C1 cos (ωτ) + S1 sin (ωτ)
N + C2 cos (2ωτ) + S2 sin (2ωτ)

+
S1 cos (ωτ)− C1 sin (ωτ)

N − C2 cos (2ωτ)− S2 sin (2ωτ)

)
with

τ =
1

2ω
arctan

(∑N
j=1 sin (2ωtj)∑N
j=1 cos (2ωtj)

)
(4)

S1 =
N∑
j=1

(xj − x̄) sin (ωtj) (5)

C1 =
N∑
j=1

(xj − x̄) cos (ωtj) (6)

S2 =
N∑
j=1

sin (2ωtj) (7)

C2 =
N∑
j=1

cos (2ωtj) (8)

as suggested by Lomb (1976) (see also Press, Teukolsky, Vetterling, and
Flannery (1992), p. 581, a generalization for the non-sinusoidal case can
be found in Bretthorst (2001)). The advantage of this estimator is that
it considers the inequidistance of observations by multiplying the Fourier-
frequencies ω with τ . Based on this method, Scargle (1982) proposed an
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improved version with modifications, resulting in the altered discrete Fourier
transforms

f (ωk) = f0 (ωk)
M∑
j=1

a (ω∗k)xj cos (ω∗k) + ib (ω∗k)xj sin (ω∗k) (9)

(see also equation (1)) with

ωk = 2πk/N k = 1, 2, ...,K (10)

ω∗k = ωk (tj − τ (ωk)) (11)

τ (ωk) =
1

2ωk
arctan

(∑N
j=1 sin (2ωktj)∑N
j=1 cos (2ωktj)

)
(12)

f0 (ωk) =
1√
2

exp (iωkτ) (13)

a (ω∗k) =

√√√√ N∑
j=1

cos2
(
ω∗k
)−1

(14)

b (ω∗k) =

√√√√ N∑
j=1

sin2
(
ω∗k
)−1

(15)

(see also Scargle (1989)). Due to the (re-)shifting of all N sampling times
tj with τ , the time invariance of f (ωk) is ensured. The shift in the time
domain that causes the irregular grid can be easily considered by the phase
shift in the frequency domain induced by f0 (see also Schulz and Stattegger
(1997)).

In financial transaction data, a plethora of additional information X =
(X1, ..., Xm)′ can be observed at the arrival times t (for example, price, vol-
ume, quotes, depth, etc.). These variables provide the transparency in a
market and, thus, have important economic value. In this study, we concen-
trate on the variables stored in the limit order book without conditioning
them on the time varying duration, intensity or the filtration of the process
as required in existing autoregressive point process models in the literature.
Hence, the stochastic processes of price differences, transaction volume and
spread will be “directly” investigated. After computing their Scargle-DFTs
(SDFT ), their power spectra are estimated with the common Schuster-
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Figure 2: Kernel density of trade durations

Periodogram

P (ω) =
∣∣∣f̂ (ω)

∣∣∣2
and their spectral densities can be obtained by standardizing P (ω) with σ2

X ,
i.e. the variance of the variable.

For reasons of better comparison with existing ACD models, the dura-
tion variable will be analyzed as well. The distribution of financial durations
is generally skewed to the right and unimodal (see Figure 2). In case of asym-
metric information as often assumed in the common market microstructure
theory, the appearance of insiders will lead to duration clusters as illustrated
in O’Hara (1997). Hence, the spectral density of the duration process should
have a declining slope in the [0; 0.5]-interval, which indicates that the “en-
ergy” (i.e. the variance) of the process comes from the lower frequencies,
i.e. the long periods.

3 Empirical Results

The transaction data of the Deutsche Telekom stock is extracted from the
open order book of the German XETRA system, which is an order-driven
market. The sample includes the whole history of N = 71902 transactions
from 31st July until 1st September 2000, observed for 25 trading days over
5 weeks. The continuous trading phase starts after the opening auction at 9
a.m. and ends before the closing auction at 8 p.m. Further, it is interrupted
by (at least) two intraday auctions at 1 p.m. and 5 p.m., each lasting at most
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Figure 3: The original (irregularly spaced) time series

120 seconds. These and other delays involving deterministic waiting times,
such as overnight durations, are cut off. The electronic trading is based
on an automatic matching algorithm, generally following a strict price-time
priority of orders. The ultra-high frequency order book data does not only
show the price, the volume and the time stamp of the transaction (with an
accuracy as of one hundredth second), but also the initial buy or sell order.

Descriptive statistics of the transaction volume, price difference and
spread are listed in Table 1. The original (irregularly spaced) times se-
ries of these three variables are presented in Figure 3. Their power spectra
estimation, smoothed with a Bartlett window, are shown in Figure 5, 6 and
7, a comparison of the spectral densities can be found in Figure 8. The time
unit is one second. Since tN ends with 910386.17 (seconds), the overall ob-
servation period has a length of T = 252.8850 hours. For purposes of better
orientation and interpretation, Table 1 also reports the descriptive statis-
tics of the single trade durations (the non-parametrically estimated kernel
density is shown in Figure 2).

For a given time series, the power spectrum gives a plot of the contri-
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Variable Volume Price-dif. Spread Duration

Mean 1522.8664 0.0007 0.0248 12.6614
Median 1000.0000 0.0000 0.0000 6.1600
Variance 3759.83e3 0.0008 0.0125 417.1340
Std. dev. 1939.0288 0.0287 0.1120 20.4238
Dispersion 1.2732 39.1836 4.5030 1.6130
Skewness 3.4666 0.2908 9.7503 4.9969
Kurtosis 24.7195 9.9741 142.7619 40.7198

Table 1: Descriptive statistics

Figure 4: Power spectrum of duration

Figure 5: Power spectrum of traded quantity
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Figure 6: Power spectrum of price differences

Figure 7: Power spectrum of spread

Figure 8: Comparison of the spectral densities
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bution of a “signal’s energy”, i.e. the variance per unit time, falling within
given frequency bins. The power spectrum of the duration process is shown
in Figure 4 and has a decreasing slope as expected. This result implies high
disturbance of the process in the “long term” (and no disturbance in the
“short term”) and is in line with most ACD estimation results in the liter-
ature on intraday trading. Representing duration clusters in the frequency
domain, it confirms the hypothesis of asymmetric information as stated in
the market microstructure theory (see O’Hara (1997)).

For the process of the transaction volume, Figure 5 also exhibits a de-
clining slope and signalizes that the essential contribution to the variance
of the process comes from the low frequencies, that means the long run de-
velopment of the trading quantity. In economic terms, this indicates that
financial markets have a limited absorption speed. Each time passing this
limit, it induces a recurring volume shock causing temporary market illiquid-
ity. Contrarily, the periodogram of the price differences reveals a demanding
proportion of spectral energy for the high and middle frequencies, but not
for the low ones, as discernible in Figure 6. This effect is reported in the
literature on realized volatility and is called as market microstructure noise,
which appears when sampling data at the highest frequencies (see Aı̈t-Sahlia
and Mykland (2003) and Andersen, Bollerslev, and Diebold (2005)). Hence,
the ascending slope shows that there is no evidence of long-term seasonalities
of returns in the data.

Concerning the three dimensions of the classical liquidity concept, these
findings imply that (high-frequent) price shocks appear more often than
(low-frequent) volume and durations shocks in the market. Hence, in case of
liquidity trading, a market participant should (a) avoid high-volume-orders,
which the market need to much time to absorb, and (b) prefer aggressive
order limits to decrease the inside spread. However, the power spectrum
of the spread shows several peaks at different frequencies, which indicates
that there are cyclical patterns with (relative) high energy in short, middle
and long periods respectively. Indeed, after rescaling all periodograms by
the variance of the investigated variable, Figure 8 shows that time series of
the spread seems to have a uniformly distributed spectral density similar to
White Noise processes, implying a constant proportion of the variance in all
frequencies.
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4 Conclusion

This paper applies advanced methods from Fourier Analysis in order to de-
scribe the stochastic processes of non-equispaced order book data in the
frequency domain. In contrast to existing autoregressive conditional models
(ACD, ACI, etc.) in the literature, this approach has the advantage that
it can (a) directly investigate all economic variables without conditioning
on the filtration of the underlying point process and (b) save a lot of com-
putation time that is usually needed for modeling the large data sets. In
order to take account of the irregularity in spacing, the power spectra of
different time series processes are estimated by means of Scargle’s Discrete
Fourier Transforms (SDFT ) without any loss of information. It allows a
reduction of computational efforts and has no complex model specifications
or obligatory deseasonalisation. Using empirical limit order book data from
the German XETRA system, the spectral analysis shows that various parts
of the whole transaction process display different periodic patterns, revealed
by the energy of the process in the respective frequency domain. While du-
ration and volume processes have cycles of “long periods” which indicates
duration clusters and absorption limits in the intraday trading, seasonalities
of price differences are relatively short, characterizing high-frequent oscil-
lations at the microstructure level of financial markets. However, the time
series of the spread seems to have no periodic patterns at all.
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