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High-frequency Index Returns: The Stylized

Facts Revised

Abstract

This paper applies a nonparametric copula-based approach to an-

alyze the first-order autocorrelation of returns in high frequency fi-

nancial time series and revise their stylized facts. Using EUREX tick

data from the German DAX index, it can be shown that the short-

term temporal dependence structure of price movements is neither

negatively nor positively autocorrelated as often claimed as a stylized

fact in the literature. The dependence structure between consecutive

returns as well as the sign of their correlation is highly dependent on

the sampling interval.

2



For a long time, the literature on financial econometrics and quantitative

finance dealt with daily asset prices or returns and their volatility. The in-

creasing availability of high-frequency and ultra high-frequency data shifted

the research focus towards the micro structure of asset markets (Andersen,

Bollerslev, and Diebold 2005, Russell and Engle 2005). A well-established

stylized fact of index (or portfolio) returns is their positive first-order autocor-

relation (Mech 1993, Boudoukh, Richardson, and Whitelaw 1994, Koutmos

1997, Ogden 1997). The positive index autocorrelation is in contrast to the

negative autocorrelation generally found in individual stocks (Dacorogna,

Gençay, Müller, Olsen, and Pictet 2001, Goodhart and Figliuoli 1991, Tsay

2002). According to the classical transaction model of Roll (1984) for stock

markets, negative autocorrelation of returns are caused by the bid-ask-bounce.

Bollerslev and Domowitz (1993), for example, describe this phenomenon as

an outcome of market makers skewing the spread into particular directions

when they have order imbalances. A well-known microstructure model recon-

ciling negative individual autocorrelation with positive index autocorrelation

is based on nonsynchronous trading (Lo and MacKinlay 1990). Other promi-

nent explanations of the positive index autocorrelation are time-varying ex-

pected returns or risk premia Conrad and Kaul (1989), and nonsynchronous

information flows Badrinath, Kale, and Noe (1995).

The empirical studies on the temporal dependence structure of returns ap-

ply the Pearson-type autocorrelation coefficient, which by construction only

measures the “aggregated” or “overall” linear dependence. Nonlinear effects

cannot be revealed and are therefore neglected in most studies. However,

a negative linear correlation is by no means incompatible with a nonlinear

positive dependence. Attempts to discover nonlinearities in financial data

are for instance phase portraits, often used in the physical sciences to detect
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chaotic phenomena in dynamic systems (Szpiro 1998). In its simplest ver-

sion, it represents a scatterplot, in which a time series is plotted against its

lagged values, see Wöhrmann (2005) for an overview. Another drawback of

many previous empirical studies is that they do not take into account the

effect of the sampling frequency. However, the intertemporal dependence

structure might, of course, vary with the sampling interval: There could be

positive dependence of returns when sampling in one-second intervals while

the dependence could be negative for sampling intervals of one minute (Cai,

Hudson, and Keasey 2003).

In fact, the sign and the magnitude of the first order autocorrelation

has become an important issue in the real world trading practice as many

submissions in electronic markets are not executed by human traders but

algo-traders, i.e., algorithmic trading programs that initiate certain strategies

depending on high-frequency price movements. In most cases, the software is

trained to forecast the next transaction prices and the pre-specified trading

rules are kept rather simple. As the trading decision has to be made quickly in

order to benefit from short-term statistical arbitrage, an accurate dependence

measure is required.

The objective of this paper is to re-investigate the empirical properties of

high-frequency returns and bring out new stylized facts of the first order inter-

temporal dependence. We avoid both the restriction to linear dependence

and the limitation to a single sampling frequency. A flexible copula-based

approach is developed to describe the temporal dependence of high-frequency

EUREX returns. Since time series can be regarded as drawings from a mul-

tivariate distribution, one may split this distribution into two components:

(a) the marginal distributions and (b) the dependence structure determined

by its copula. This paper focuses on univariate stationary return processes,
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in which the copula controls the temporal dependence. The unconditional

distributions are left unspecified, allowing all kinds of marginal distributions.

A salient feature of very high frequency return data is a singularity at zero

return. If there is no trading during an interval the price does not change

and the return is zero. This happens with positive (and at very short inter-

vals with rather high) probability. We carefully describe statistical methods

capable to adequately take into account the singularity.

The copulas are estimated nonparametrically to detect the first order

temporal dependence of the data exploratively. We find that the stylized

fact of positive first order autocorrelation is too crude and should be bro-

ken down into the following more sophisticated stylized facts: (a) There are

always patterns of both (not necessarily linear) positive and negative depen-

dence, regardless of the sampling frequency. (b) The overall direction of the

dependence structure depends on the sampling frequency. When sampling

at high frequencies (i.e. short sampling intervals), a globally positive de-

pendence with local negative patterns is visible. When sampling at lower

frequencies (i.e. longer sampling intervals) the picture reverses and we ob-

serve a globally negative dependence with local positive patterns. These

complex dependence structures show a high degree of nonlinearity that can-

not be revealed by the linear correlation coefficient. Traders (either human

or algorithmic) relying on a linear measure will systematically cut out the

existence of nonlinearly dependent price movements and, thus, may suffer

from losses due to an under-estimation of price jumps in the high-frequency

transaction process.

The outline of this paper is as follows. Section 1 introduces the copula

approach with special emphasis on a rigorous treatment of singularities in

the margins and singular components of the copula. Section 2 describes the
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estimation procedure. In Section 3, the data and our results are presented.

Section 4 concludes.

1 Copulas and Singularities

This section briefly introduces the most important definitions and properties

of copulas. In finance, many studies using copulas focus on the contempora-

neous dependence between two or more random variables, see Fermanian and

Scaillet (2005) for an overview. In contrast, in this paper we will model the

temporal dependence structure of a univariate time series {Xt}Nt=1 via copulas
(see Chen and Fan (2006a), Chen and Fan (2006b) and Patton (2006)). For

a comprehensive survey of the basic theory of copulas, the reader is referred

to Joe (1997), Mari and Kotz (2001), Cherubini, Luciano, and Vecchiato

(2004) and, in particular, Nelsen (1990), chap. 2, to which we refer in the

following. Since high frequency data usually have a significant proportion of

observations with zero price changes, any realistic model of the theoretical

return distribution needs a singular component. Strictly speaking, the exis-

tence of price ticks implies that return distributions are to be modelled as

discrete random variables with countably infinite possible outcomes. We do,

however, stick to the usual simplification and model return distributions as

continuous random variables — apart of course from the important singular

component at zero.

Consider two random variables X and Y with marginal distribution func-

tions FX (x) = P (X ≤ x) and FY (y) = P (Y ≤ y) and joint distribution

function FX,Y (x, y) = P (X ≤ x, Y ≤ y) . The random vector (X,Y ) may

have singular and absolutely continuous components. Denote the general-
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ized inverse distribution function (generalized quantile function) of X as

F−1X (p) = inf{x : FX(x) ≥ p}

for 0 < p < 1, and similarly for F−1Y . While the distribution functions

are right-continuous, the generalized inverse distribution functions are left-

continuous. In particular, they are continuous if the distribution function is

strictly increasing.

A copula is a bivariate distribution function with standard uniform mar-

gins. Sklar (1959) proves that there always exists a copula C such that for

all x, y ∈ R
FX,Y (x, y) = C(FX(x), FY (y)). (1)

The copula C is unique on RanFX×RanFY . Restricting the domain to

RanFX×RanFY , the copula is called subcopula and denoted C 0. Subcop-

ulas can be extended to copulas, but only in a non-unique way. If FX and

FY are continuous then C is unique on the unit square and C 0 = C. Using

the generalized inverses the following holds for all (u, v) ∈ RanFX×RanFY ,

C 0(u, v) = FX,Y (F
−1
X (u), F−1Y (v)). (2)

Note that the equality C(u, v) = FX,Y (F
−1
X (u), F−1Y (v)) does not hold on

the entire unit square if there are singularities in X or Y . Of course, the

subcopula C 0 defined by (2) can be extended to a copula C.

Any copula C can be decomposed into an absolutely continuous compo-

nent CA and a singular component CS

C(u, v) = CA(u, v) + CS(u, v)

where

CA(u, v) =

Z u

0

Z v

0

∂2C(s, t)

∂s∂t
dtds

CS(u, v) = C(u, v)− CA(u, v).
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By construction, the second derivative of the copula with respect to both

arguments is defined almost everywhere on the unit square. Since both mar-

gins of a copula are standard uniformly distributed, the singular component

CS does not have atoms. Note that neither CA nor CS needs to be a copula.

In particular, it is possible that CA = 0 (in which case C is a singular cop-

ula) or CS = 0 (then C is an absolutely continuous copula). If the copula is

absolutely continuous the second derivative ∂2C(u, v)/∂u∂v is called copula

density and denoted c(u, v). For simplicity we call ∂2C(u, v)/∂u∂v copula

density even if CA(1, 1) < 1. The simplest way to extend a subcopula to a

copula is to assume that the copula density is constant on the complement

of RanFX×RanFY (i.e. bilinear interpolation, see Nelsen (1990)).

Singular components can be thought of as curves in the unit square on

which the random variable (FX(X), FY (Y )) lies with positive probability;

a well known example is the Marshall-Olkin copula (Marshall and Olkin

1988, Mari and Kotz 2001). However, each single point of the curves has

zero probability, i.e. no atoms. Note that vertical and horizontal curves

are not possible as they would imply a singular component of the marginal

distributions. Hence, the copula of a return distribution (to be discussed

in more detail in Section 4) has no singular components even though there

is a positive probability of zero returns, i.e. a singularity in the marginal

distributions.

If the random variables X and Y are interpreted in a time series con-

text, the copula can be used to define a first-order Markov process (Darsow,

Nguyen, and Olsen 1992). In general, time series models are constructed

as Xt = g (Xt−1, Xt−2, . . . , εt), where the current variable is explained as a

function of past observations and a random innovation εt. Applying the cop-

ula concept has the advantage that the temporal dependence structure of
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the stochastic process can be modeled in a flexible way without restrictive

assumptions such as linearity (Savu and Ng (2005)).

Let {Xt}t=0,1,... denote a stochastic process in discrete time. We assume
that {Xt}t=0,1,... is strictly stationary, implying FXt(x) = FXt−1(x) for all

x ∈ R and t = 0, 1, . . ., and write FX for the marginal distribution function.

The joint distribution function of consecutive observations Xt−1 and Xt is

simply denoted as F

F (xt−1, xt) = P (Xt−1 ≤ xt−1,Xt ≤ xt)

= C (FX (xt−1) , FX (xt)) .

The copula C can also be regarded as the joint distribution function of the

transformed random variables U = FX (Xt−1) and V = FX (Xt). We will

now turn to the question of how to estimate the copula and the marginal

distributions.

2 Estimation

As we are mainly interested in the intertemporal dependence structure of

the returns, no particular parametric form for the marginals is assumed.

Any problems concerning misspecification or overfitting are ruled out. Since

recent studies have shown that temporal aggregation and the sampling fre-

quency have an essential impact on the resulting stochastic process (Lee,

Gleason, and Mathur 1999, Cai, Hudson, and Keasey 2003, Aït-Sahlia and

Mykland 2003), one must take these effects into account. Therefore, the es-

timation is not only performed on the original data observed at the 1 second

interval, but also on various thinned return processes with increasing obser-

vation intervals from 2 seconds up to 30 minutes. Let Pt be the price of an
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asset at time t, observed at a certain sampling frequency, then {Rt}Nt=1 with

Rt = (Pt − Pt−1)/Pt−1 × 100% (3)

represents the return process. When estimating copulas it is immaterial

whether the returns are defined in a discrete or continuous fashion (i.e.,

lnPt−lnPt−1). Since discrete returns are a strictly increasing transformation

of continuous returns their copulas are identical. The differences only show

up in the marginal distribution.

Due to stationarity, the marginal distribution function FR(r) = P (Rt ≤
r) is time-invariant. It is estimated nonparametrically using the empirical

distribution function

F̂R (r) =
1

N + 1

NP
t=1

1 (Rt ≤ r) ;

the empirical distribution function is re-scaled by the asymptotically neg-

ligible factor N/(N + 1) in order to avoid computational problems at the

boundaries of the copula. Singularities in the margins manifest themselves

in F̂R as steps larger than 1/(N + 1). Usually, the copula estimation with

nonparametrically estimated margins proceeds by using the empirical distri-

bution function to map the observations into the unit interval,

Ut = F̂R(Rt). (4)

This approach needs some modifications if there are ties (i.e., singularities).

Obviously, (N + 1)F̂R(Rt) is the rank of Rt in R1, . . . , RN if the value of Rt

appears only once. If the value of Rt is a singularity, (N + 1)F̂R(Rt) is the

maximal rank of all observations at (or below) the singularity. Hence, Ut

is no longer evenly spaced on the unit interval. This has to be taken into

account for the statistical inference.
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Statistical inference for copulas is by now well developed (Charpentier,

Fermanian, and Scaillet 2007, Chen and Huang 2007). However, most studies

assume that the random variables under consideration are absolutely continu-

ous which is not the case for high-frequency returns. We present two modified

nonparametric estimation procedures that can cope with singularities in the

marginal distributions.

First, only the subcopula (2) is estimated by explicitly restricting its do-

main to RanFX×RanFY . The density in each part of the domain is estimated

as if it were a separate copula, observing its bounded support. Weights are

attached to each part according to its proportion of observations. The sub-

copula is then extended to a copula by bilinear interpolation. Note that we

assume that there are no singularities in the subcopula C 0 but only in the

marginal distribution FR.

Second, the entire copula is estimated at once using a randomized bilinear

interpolation. The mapping (4) does not spread the observations evenly over

the unit interval if there are ties. A straightforward remedy is to assign

random ranks to ties. Contrary to the common approach, the observation

Rt is not mapped by F̂R(Rt) but by

Ut =
1

N + 1
Rankrand(Rt), (5)

where Rankrand(Rt) is the randomized rank in case of ties. In this way,

the singularities are extended over the unit square in a randomized way

akin to bilinear interpolation. In a different context Brockwell (2007) has

suggested a generalized Rosenblatt transformation that is similar to our ap-

proach. Note that the randomization only affects those areas of the copula

that are not uniquely defined. Other mappings are, of course, allowed as

long as U1, . . . , UN are evenly distributed along the unit interval. Equation
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(1) will hold for any such mapping.

Having transformed the observations Rt into Ut, t = 1, . . . , N , one can

estimate the copula density by means of an ordinary product kernel (Fer-

manian and Scaillet (2003)). However, since the copula is only defined on

the unit square, one has to take the boundary bias into account that occurs

when using fixed symmetric kernel functions. To resolve this problem, one

can use the mirroring technique suggested by Gijbels and Mielniczuk (1990),

or apply non-fixed beta kernels as proposed by Chen (1999). We opted for

the latter technique because of its superior computation performance. Let

k (p, q, u) =
up−1 (1− u)q−1

B (p, q)

= up−1 (1− u)q−1
Γ (p+ q)

Γ (p)Γ (q)

be the density of a random variable U with Beta(p, q)-distribution. The

copula density can be estimated as (Härdle, Müller, Sperlich, and Werwatz

2003)

ĉ (u, v) =
1

N − 1

NX
t=2

(K (u, h, Ut−1) ·K (v, h, Ut))

where

K (u, h, r) =

⎧⎪⎪⎨⎪⎪⎩
k
¡
ϕ (u) , 1−u

h
, r
¢

if u ∈ [0, 2h)
k
¡
u
h
, 1−u

h
, r
¢

if u ∈ [2h, 1− 2h]
k
¡
u
h
, ϕ (1− u) , r

¢
if u ∈ (1− 2h, 1]

and

ϕ (u) = 2h2 + 2.5−
r
4h4 + 6h2 + 2.25− u2 − u

h
.

In addition to its good computation performance, the beta kernel estimation

has several other advantages (Charpentier, Fermanian, and Scaillet 2007,

chap. 2): Beta kernels naturally match the support of the density to be
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estimated. The kernel’s form changes smoothly depending on which part

of the density is estimated. The beta kernel density estimator is unbiased

even at the boundaries of the support. Further, using the nonparametrically

estimated marginal distributions usually reduces the variance of the density

estimator.

3 Data and empirical results

The high frequency data set D3047 containing the DAX performance index

is extracted from the EUREX database. The sample includes observations

at one second sampling frequency from 2nd January until 28th April 2006,

observed for 90 trading days over 18 weeks. Daily trading starts at 9 a.m.

and ends at 5.45 p.m. For our analysis, the time series is sampled several

times, using successively increasing time intervals (1, 2, 3,..., 9, 10, 15, 20,...,

1800 seconds). For each sampling frequency, returns are computed using (3);

overnight returns are deleted. Descriptive statistics of the return processes

at various sampling frequencies are given in table 1.

Initially, the singularity at 0 has a large probability mass of about 0.5.

It is quickly declining with decreasing sampling frequency; there are hardly

any zero returns at a sampling interval of 5 min or more. Both skewness and

kurtosis tend to be the smaller, the lower the sampling frequency. Note that

the minimum (maximum) does not uniformly decrease (increase).

Figure 1 depicts the (univariate) distribution function of the returns at the

one second sampling frequency (left) and its generalized inverse (right). The

range of the empirical distribution function is RanFR = [0, 0.236]∪ [0.761, 1].
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Sampling interval (in sec)

1 10 30 60 300 600 1800

#obs. 2612106 261136 86990 43454 8625 4271 1435

% zeros 52.48 4.46 3.50 3.04 0.97 0.14 0.00

mean 0.0000 0.0000 0.0001 0.0002 0.0007 0.0009 0.0068

median 0.0000 0.0000 0.0000 0.0000 0.0010 0.0017 0.0100

sd 0.0032 0.0111 0.0206 0.0300 0.0669 0.0934 0.1889

skewness 1.72 0.16 −0.11 0.06 −0.19 −0.44 −0.54
kurtosis 421.85 46.35 20.78 14.68 9.53 7.92 13.41

min −0.23 −0.26 −0.37 −0.34 −0.51 −0.67 −1.62
max 0.46 0.45 0.42 0.43 0.62 0.64 1.25

Table 1: Descriptive statistics of the returns

Hence, the supcopula is only defined in the four corners of the unit square

defined by RanFR × RanFR.

The first-order autocorrelation of the price process as a function of the

sampling frequency is shown in Figure 2 (upper left panel). The correlation

coefficient is positive and increasing at high frequencies, having a peak of

0.091 at 7 sec. The autocorrelation coefficient decreases rather quickly and

crosses the abscissa at about 150 sec. The minimum is reached at about 7

min where the correlation coefficient is roughly −0.05. For larger intervals
the autocorrelation is increasing again, at the 15 min sampling interval and

beyond the first-order autocorrelation coefficient oscillates around 0. Re-

moving all zero returns one can calculate the non-null return autocorrelation

shown in Figure 2 (upper rigth panel). Apart from the one second sampling

interval (where the autocorrelation coefficient is 3% when all observations

are included but 4.5% when null returns are removed) the difference between
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Figure 1: Empirical distribution function and quantile function of the returns

at the one second sampling interval

the two autocorrelation functions is hardly discernible.

In contrast to the first-order autocorrelation of the returns, the first-order

autocorrelation of their ranks does not eventually revert to the abscissa (see

Figure 2, lower panels). Even for sampling intervals as large as half an

hour there is a substantial negative rank autocorrelation of about −6%. It
does not really matter whether the ranks are computed by (4) or (5), the

only exception being the rank correlation at the one second interval which is

positive for random ranks but negative when assigning the maximal rank to

ties.

Although the information contained in the “global” autocorrelation co-

efficient and rank correlation coefficient is already revealing that there are

substantial nonlinearities in the return dynamics, it does neither show what is

happening locally nor where the nonlinearities are located. To gain a deeper

insight we take a look at the nonparametrically estimated subcopulas and
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copula densities1 for four specific sampling intervals (see figures 3 to 8). As

expected, the entire dependence structure cannot be accurately captured by

a single measure.

Figure 3 depicts the copula when analyzing the returns at the 1 second

interval. As more than half of the observations are zero-returns, the middle

of the copula appears flat, similar to the product copula. This is, however, a

statistical artefact of our method of extending the subcopula by randomized

bilinear interpolation. Concentrating on the subcopula density ĉA, Figure 4

indicates both positive and negative dependencies in the four corners. Ex-

tremely small returns tend to be followed by extremely small or (less often)

extremely large returns. The reverse holds for extremely large returns. Due

to the singularity, the subcopula shows a “cross” in the center, similar to the

well-known compass rose that displays several “rays” radiating from the ori-

gin with the thickest streams pointing towards the “north”, “east”,“south”

and “west” of the compass. This pattern was first documented by Huang

and Stoll (1994) and later reinvestigated by Crack and Ledoit (1996). As

shown by Krämer and Runde (1997) and Szpiro (1998), this phenomenon is

caused by the discreteness of price changes in financial markets, resulting in

a finite number of possible (often clustered) returns. As long as the jumps

take discrete ticks, this phenomenon also holds for portfolios and indices, due

to rounding.

Adopting the allegories of the literature, Figure 5 presents the copula of

5 sec returns and seems to resemble a rose with one blossom in the middle.

The petals in the four corners of the unit-square reveal again that extreme

returns are associated with subsequent both positive and negative extreme

1The CML-procedure of the Aptech software GAUSS 5.0 was used for estimating the

copula densities.

16



returns (where positive dependence patterns are still stronger than the neg-

ative ones). The subcopula in Figure 6 again shows a cross in the middle.

Of course, the width of the cross is smaller, as the number of zero-returns at

this sampling frequency has decreased. The singular component vanishes at

all higher frequencies, see Figure 10 below, therefore, the subcopula equals

the copula.

Increasing the observation interval to 30 seconds (Figure 7), the petals

in the south-western and the north-eastern corner dominate the petals in

the other corners, indicating that negative returns tend to be followed by

negative ones, and positive returns by positive ones. This pattern clearly

shows an overall positive dependence of consecutive index returns being in

line with the conventional stylized fact of positive autocorrelation. Taking

a closer look at the centre of the copula in Figure 7, one can recognize

a slightly negative dependence within the “interquartile-square”. While the

global rank correlation is positive there is a negative rank correlation for non-

extreme returns. This result shows similarities to the so-called overreaction

phenomena that has been widely studied in behavioral finance and financial

psychology (see, for example, Bikhchandani, Hirshleifer, and Welch (1992)

and Caginalp, Porter, and Smith (2000)), but not at the high-frequency

level. It is to be emphasized that these nonlinear dependence structures

have a high degree of complexity and cannot be detected by a simple scalar

measure, such as the linear correlation coefficient. Traders (either human or

algorithmic) relying on a linear measure will misleadingly conclude that less

extreme negative (positive) returns tend to be followed by negative (positive)

ones. Ignoring the existence of nonlinearly correlated price movements, the

trader will execute wrong order submissions and, thus, might suffer from

losses cumulated over a short period of time due to the underestimation of
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certain price jumps in the high-frequency transaction process.

Figure 9 shows the local correlations, i.e., the correlation coefficients cal-

culated from only one quadrant of the copula or — in case of a singularity at

zero — from one part of the subcopula. The balance of the two counter-acting

effects switches again when the observation interval is further increased (see

Figure 8). The density in the north-western and the south-eastern corners is

increasing so strongly that the overall dependence becomes negative.

Comparing all nonparametric copulas, one can see that the rose is the

clearlier visible the shorter the observation interval. This result is in line with

the analysis of Wang, Hudson, and Keasey (2000), who found “that the com-

pass rose becomes more apparent as the frequency of observations increases”.

In contrast to phase portraits, where the pattern is sometimes not discernible

due to the huge number of rays, the copula is always able to reveal the under-

lying dependence structure of the data. Figures 9 and 10 show the evolution

of the local rank correlation coefficient and its weights (i.e. estimated prob-

ability mass) within each quadrant of the (sub-)copula as a function of the

sampling frequency. There are always patterns of both positive and negative

dependence, regardless of the sampling frequency. Hence, the overall direc-

tion of the rank correlation coefficient is not unique and strongly depends on

the sampling frequency. The overall aggregated dependence within the unit

square is either negative or positive, but there are always “local” dependence

patterns in the opposite direction. These two antagonistic effects cannot be

discovered by common linear regression or correlation coefficients.
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4 Conclusion

This paper re-investigates the return process of high-frequent EUREX tick

data; the copula-based statistical analysis shows that the conventional styl-

ized fact of positive first-order autocorrelation of index returns has to be

modified in two respects: First, allowing for nonlinearities, there are patterns

of both positive and negative dependence. Second, the relative strength of

the positive and negative dependence is a matter of the sampling frequency.

When sampling at high frequencies, the positive relationship within the unit-

square is stronger than the negative one, whereas the dependence of the less

frequently observed data is negative. The copula rose shows that the global

rank correlation coefficient cannot capture some important nonlinear local

dependencies.

The advantage of the copula approach is its capability to separate the

temporal dependence from the marginal distribution of the stationary times

series, enabling more flexibility. The bivariate distribution of consecutive

returns Rt and Rt−1 is split into two components: the marginal distribution

without any parametric assumptions, and the serial dependence of the re-

turn process captured by the copula. The pronounced singularity at zero

return visible in the marginal distribution of high-frequency returns is care-

fully taken into account.

The stylized facts established in this paper cannot be explained by current

theoretical models of the stock market mechanism. Bringing in line theory

with the new empirical evidence is a major challenge for future research.
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Figure 2: Correlations and rank correlations
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Figure 3: Contour plot of the copula at 1 sec sampling interval
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Figure 4: Density of subcopula at 1 sec sampling interval
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Figure 5: Contourplot of the copula at 5 sec sampling interval

R(i-1
)

R(i)

subcopula

Figure 6: Density of subcopula at 5 sec sampling interval
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Figure 7: Contourplot of the copula at 30 sec sampling interval

Figure 8: Contourplot of the copula at 300 sec sampling interval
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Figure 9: Local rank correlations within each quadrant of the subcopula
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Figure 10: Weights of the quadrants of the subcopula
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