
Forecasting – where computational intelligence meets the stock market

Edward Tsang

Working Paper WP026-08
Centre for Computational Finance and Economic Agents (CCFEA)

University of Essex, UK
Revised December 2008

Abstract
Forecasting is an important activity in finance. Traditionally, forecasting
has been done with in-depth knowledge in finance and the market.
Advances in computational intelligence have created opportunities that
were never there before. Computational finance techniques, machine
learning in particular, can dramatically enhance our ability to forecast.
They can help us to forecast ahead of our competitors and pick out scarce
opportunities. This paper explains some of the opportunities offered by
computational intelligence and some of the achievements so far. It also
explains the underlying technologies and explores the research horizon.

1. Beating the market
Wouldn’t it be nice if you can tell us whether stock prices will go up or down tomorrow?
Numerous attempts have been made to forecast stock prices. Motivation is not limited to
financial gains. Financial stability could be improved should regulators be able to
recognize patterns that signal market failure.

Traditional approaches to forecasting can roughly be divided into two paradigms:
fundamental analysis and technical analysis. Fundamental analysts attempt to study the
“true value” of financial assets, such as shares. If their market prices deviate from the true
value perceived, prices are expected to return to the true value some time in the future. If
the deviation is large enough, it signals an opportunity to buy or sell. Technical analysts
attempt to observe the movement of the prices, and discover patterns in it. If patterns can
be found, then they will be used to recognize investment opportunities.

The key question that fundamental analysts face is how to assess the value of an asset.
What information is relevant to the calculation? Costs are involved in acquiring and
processing such information. Research and computation involve expertise, expenses and
time. Could computational intelligence be used to boost expertise and reduce research
and computation cost and time? Optimization is an important branch of computational
intelligence. Could it help?

Technical analysts also face a number of key questions. What information is relevant to
forecasting the market? Do patterns exist? Even if they do, could one find them? Even if
one manages to find patterns, would those patterns repeat themselves in the future?
Machine learning is an important branch of computation intelligence. Could it help
finding patterns?

Working Paper WP026-08 Forecasting Edward Tsang

 Page 2 of 17

2. The bad news: the efficient market hypothesis
The bad news is: classical economics tell us that the market cannot be predicted. Fama
 [3] defined the concept of efficient capital markets. What it says is that if a market is
“efficient”, prices will always fully reflect the available information that relates to the
financial asset being traded. Therefore, it is impossible to consistently outperform the
market (i.e. earning more than what the market as a whole offers – often referred to as
excess return) by using information that is available on the market. This is known as the
efficient market hypothesis (EMH).

Classical economists believe that markets are by and large efficient, though efficiency
can be interpreted in different ways. The weak-form of EMH suggests that one cannot
gain excess return based on past share prices and returns. The semi-strong-form of EMH
suggests that one cannot gain excess return based on information that is publicly
available; new information (such as company announcements and change of interest
rates) will quickly be reflected in the price. The strong-form of EMH suggests that one
cannot gain excess return even if one has insider information.

If EMH holds (at least in semi-strong-form), any forecasting attempt is futile. The price
of an asset always reflects its true value, which is the result of fundamental analysis, and
therefore does not reflect any potential excess return in the future. Technical analysis is
futile too. This is because patterns, even if they exist and repeat themselves, are
consequences of price movements, which reflect the dissemination of new information.
They therefore have no predictive power.

3. Is the market really “efficient”?
Many have examined the EMH, both theoretically and empirically. Empirical results
have been found, both in support of the EMH and its contrary. In general, early research
provided strong evidence in support of weak-form efficiency. In contrast, recent works
tend to illustrate anomalies, which pose challenges to the weak-form of EMH [20]. As
always, statistics tend to support results that one is looking for.

EMH also faces a lot of challenges from the theoretical front. EMH is built upon a
number of assumptions [3]. Some of the fundamental assumptions include:

a) Frictionless information flow: information item is equally and instantaneously
available to all market participants.

b) Perfect rationality: all participants are fully rational in decision making.
c) Homogeneous expectations: all participants agree on the implications of each

information item on the price of each security.
d) Costless analysis: analysis of each information item is costless.

Some might be prepared to believe that information flow (especially price and return) is
close to frictionless (assumption (a)), but full rationality and homogeneous expectations
(assumptions (b) and (c)) attract a lot of debate. Coming from a computational angle, we
know that analysis is not costless (assumption (d)). If it is, then computer science is not a
worthy subject. This is an important point, which needs a bit of elaboration.

Despite the speed of modern computers, many problems are still beyond our reach. This
is due to the fact that many problems involve the consideration of an exponential number
of combinations – a phenomenon known as the combinatorial explosion problem. For
example, in chess, all the rules are clearly defined. Therefore, in principle, all possible

Working Paper WP026-08 Forecasting Edward Tsang

 Page 3 of 17

moves can be evaluated exhaustively. However, as one increases the number of moves
that one looks ahead, the combinations of moves grow exponentially. For example,
suppose for simplicity that in every move, a player has 20 options (obviously this number
varies as the game develops – increasing at the opening and decreasing towards end-
game, but that does not fundamentally affect our discussion here). If one looks ahead for
30 moves in a brute-force manner, there are 20 to the power 30 (i.e. in the order of ten to
the power 39) possible board positions to evaluate. Even the fastest computers today will
take millions of years (in fact much more) to evaluate them. Much of computer science
involves the studying of how to compute quickly; i.e. to do better than brute-force search.

The market is only efficient if enough investors have the capability of analysing the true
values of assets, and assessing the impact of new information. Not everyone has the same
computational competence. Perhaps optimization, machine learning and other
computational intelligence techniques still have some roles to play.

4. What would be a reasonable research agenda?
Could computational intelligence help us to create a crystal ball that tells us the exact
price of a stock tomorrow? That would be very useful indeed. However, knowing the
exact price tomorrow is probably too much to ask for. I am happy to settle for less.

Suppose I know that a coin is biased. Suppose I know that it has a 60% of turning up with
head with it is flipped. Equipped with this piece of information, I manage to turn a 50%-
50% game to 60%-40% in my advantage. This piece of information does not necessary
guarantee winning in every game. Not only does it guarantee winning in the long run. But
it increases my chance of winning. That may be good enough.

What could we aim to achieve in forecasting research? We could attempt to predict prices
in the future. Technically speaking, this task is to find a function that maps input values
to a numerical value. Input to this function could be past prices, returns, dividends, or any
values that the analyst may want to use, including fundamental values derived from the
analyst’s model. In fact, the practical difficulty is to know what inputs might be relevant,
given that one could look at any indicators in the company or the economy, and derive
any number of ratios from the other inputs.

Instead of attempting to predict future prices, one could also attempt to answer questions
of the following form:

“Will the price go up (or down) by at least r% within the next n days?”

If one could answer this question, one could identify investment opportunities.
Answering this question is arguably easier than predicting future prices. The task here is
to find a Boolean function that maps the input values to a “yes” or “no” value.

It is worth stating the obvious that we do not have to find all situations under which price
will go up (or down) by at least r% within n days. In other words, we do not have to find
all investment opportunities. We could also attempt to answer the opportunity question
with different values for r (target return) and n (investment horizon). Besides, we could
attempt to forecast for different stocks. Doing all these will not only potentially increase
the number of opportunities being detected, but also help to build a bigger picture of the
market.

Working Paper WP026-08 Forecasting Edward Tsang

 Page 4 of 17

5. How can computational intelligence help?
There is no guarantee that functions for price prediction or investment opportunity
detection exist. However, if they do, then the next question is “how to fund them?”
Human expertise is essential. In this paper, I would like to argue that machine learning is
a discipline that one could not ignore.

Suppose you want to answer the question “will Company X’s price rise by at least 6%
within the next 21 days?” Suppose, through years of research, you have discovered that a
certain ratio R is a good indicator on the movement of the share price of Company X.
Suppose you are right. With such insight, you expect yourself to be able to out-smart
other investors who have discovered R. However, you don’t know exactly how share
prices will move in response to changes in R. To use the terms introduced in the previous
section, you have not discovered any function that maps R, together with other market
indicators, to investment opportunities. What can you do?

For argument’s sake, suppose it is a fact that whenever R has a value outside 1.4 and 2.7,
the volatility of the share prices is above 2.5, and the share’s yield is above 5.7%, then
prices will rise by at least 6% within the next 21 days. The question is how would you
find this fact? The number of market indicators is vast. Of all the market indicators
available, how could you discover that the volatility and yield interact with R? How could
you discover values such as 1.4, 2.7, 2.5 and 5.7%?

We explained in the previous section that the task on hand is a function fitting problem:
one attempts to find a Boolean function using inputs which include R, volatility, yield and
any other indicators. The hypothetical function mentioned above could be expressed in a
Boolean function of the following form:

IF (((R < 1.4 OR R > 2.7) AND Volatility > 2.5) AND Yield > 5.7)
THEN TRUE
ELSE FALSE

False here is best interpreted (in line with logic programming) as “no, this rule does not
suggest that r% can be achieved within the next n days” rather than “no, price will not
rise by r% in n days”. In other words, while this rule does not suggest that the target price
will be reached within n days, it does not contradict with other rules that may say so.

6. Machine learning, an introduction
In the previous section, we have established that forecasting can be seen as a task of
finding functions that may input values numerical or Boolean values. In the rest of this
paper, we shall focus on Boolean functions.

Function fitting is an application that many machine learning methods have been applied
to. These methods search in the space of functions permitted by a given grammar. For the
purpose of classification, the fitness of a function is judged by its correctness in
classifying the given data. The components and structure of the function and the
thresholds (1.4, 2.7, etc.) mentioned in the previous section are subjects of the search.

Machine learning typically involves finding patterns (functions in our context) that fit the
data available to the learner, and hope that such patterns apply to unseen data. A data set
typically contains many instances of observations. Table 1 shows an example of ten

Working Paper WP026-08 Forecasting Edward Tsang

 Page 5 of 17

instances in a data set. This is a data set that could have supported the hypothetical
function above. Each instance comprises R, Volatility and Yield and possibly other
variables. Column (e) is the target, which is available to the researcher in hindsight. For
example, Instance 1 shows that R is 1.2, volatility is 3.1 and yield is 4.8. If these values
are fed into the Boolean function above, the function will return “false” because the
condition “yield > 5.7” is false.

Table 1: Example of a partial data set for training in machine learning
(a)

Instances
(b)
R

(c)
Volatility

(d)
Yield

… (e)
Target

1 1.2 3.1 4.8 False
2 1.3 3.0 6.6 True
3 2.8 2.9 5.9 True
4 2.5 1.7 7.0 False
5 2.4 3.5 6.9 False
6 2.0 2.9 5.6 False
7 3.1 3.3 5.8 True
8 3.1 3.0 5.5 False
9 2.8 2.4 5.0 False
10 2.6 2.5 5.2 False
….

In machine learning, information obtained in hindsight is used for training a system.
Functions found by the system are typically tested on unseen data (i.e. data that was not
used for training). Each function that the system generates classifies the instances into
true or false – true meaning that in that particular instance the target return was
achievable within the time horizon; false means otherwise. The challenge is to find
functions which outputs match all the values in the “Target” column.

Table 2 shows the classifications of the data in table 1 by a hypothetical function F,
content of which is unimportant here. The attention here is about how the fitness of a
function is evaluated.

Table 2: Example of classifications in a sample data set by a hypothetical function F
(a)

Instances
(b)
R

(c)
Volatility

(d)
Yield

(e)
Target

(f)
Classifications

1 1.2 3.1 4.8 False False
2 1.3 3.0 6.6 True True
3 2.8 2.9 5.9 True False
4 2.5 1.7 7.0 False False
5 2.4 3.5 6.9 False False
6 2.0 2.9 5.6 False False
7 3.1 3.3 5.8 True True
8 3.1 3.0 5.5 False True
9 2.8 2.4 5.0 False True
10 2.6 2.5 5.2 False False

Working Paper WP026-08 Forecasting Edward Tsang

 Page 6 of 17

By comparing columns (e) and (f) in Table 2, one can see that the function F has made
some correct classifications, and some misclassifications. Five of the False instances
were correctly classified, but two False instances were misclassified as True (namely
Instances 8 and 9). Two of the True instances were correctly classified, but one True
instance was misclassified as False (namely Instance 3). The performance of function F
can be summarized in a confusion matrix, as shown in Table 3.

Table 3: Confusion matrix of the performance of function F in Table 2
 False in Classification True in Classification Total
False in reality True Negative: 5 False Negative: 2 6
True in reality False Positive: 1 True Positive: 2 4

7 3 10

It would be useful to introduce some performance measures here. The overall rate of
correctness in a classification can be measured by the total number of correct
classifications divided by the total number of instances. The precision of a classification
is the number of correctly classified True instances divided by the total number of
instances classified as True. The recall is the number of True instances in reality that
were classified as True. The performances of function F as shown in Table 3 are therefore
as follows:

Correctness = correct classifications ÷ Total number of instances = (5 + 2) ÷ 10 = 70%

Precision = True Positive ÷ Number of instances classified as True = 2 ÷ 4 = 50%

Recall = True Positive ÷ Number of True instances in reality = 2 ÷ 3 = 66.7%

Depending on the application, some may prefer to have high precision, and some may
prefer to have high recall. For example, in finding investment opportunities, we may
weigh precision higher than recall. This is because if a False instance is misclassified as
True, the target return may not be achievable; it may even lead to a loss. For preliminary
scanning in medical applications, False alarm will cause anxiety and further
examinations, but that is preferred to missing life-threatening diseases. Therefore, one
may put more weigh on recall than precision.

7. Genetic Programming in Forecasting
Evolutionary computation [7] is a branch of computer science. It borrows Darwin’s idea
of evolution, where survival depends on fitness. In the context of function fitting, the idea
is to maintain a set of candidate functions. Each function is evaluated for its fitness,
which is measured in terms of their correctness in classifying the data. The functions are
then modified in an artificial environment that mimics evolution, which eliminates weak
individuals and allow fitter individuals to pass their genetic material to later generations.

Functions are often represented by trees in computer science. Since we do not know in
advance what sorts of trees make good strategies, we need a representation that allows us
to generate trees of any structure any size. Tree is a dynamic data structure, which means
it can be used to represent functions of any size (within practical limit). Genetic
programming is a branch of evolutionary computation that evolves trees [10] [11].

Working Paper WP026-08 Forecasting Edward Tsang

 Page 7 of 17

Therefore, it is a good candidate for machine learning for finding investment
opportunities.

An early publication that reported the application of genetic programming to financial
forecasting was by Neely et al [16]. They showed that technical rules can be generated by
genetic algorithms to beat the foreign exchange market. Their rules gained excess returns
on major currency exchanges without incurring extra risk. This is significant because the
results suggested that patterns can be found in historical prices and those patterns
appeared to repeat themselves. Moreover, this work gave evidence that genetic
programming can be used to find such patterns.

EDDIE (which stands for Evolutionary Dynamic Data Investment Evaluator) is an
umbrella under which a number of programs have been developed. James Butler
developed the first version of EDDIE, which was used for forecasting in horse racing
 [26]. Jin Li and the author later enhanced its effectiveness and applied it to financial
forecasting [13]. Then it was developed into an interactive tool for finding investment
opportunities [28]. EDDIE uses genetic programming to learn functions that identify
investment opportunities.

Functions are represented by genetic decision trees in EDDIE. Within the tree
representation, there are many ways to represent investment decisions. Figure 1 shows an
example of a genetic decision tree that contains the rule shown in Section 5. The root of
the tree represents an IF-THEN-ELSE function, which takes three arguments. The first
argument, shown as the left branch in Figure 1, represents a condition. If the condition is
met, then the decision will be determined by the second argument, which is True in the
tree shown in Figure 1. When the condition is not met, the decision will be determined by
the third argument, which is a function represented by the sub-tree on the right-most
branch in Figure 1.

Figure 1: Example of a Genetic Decision Tree (GDT)

IF

AND

AND

OR

R < 1.4 R > 2.7

Volatility > 2.5

Yield > 5.7

True IF

… … …

Working Paper WP026-08 Forecasting Edward Tsang

 Page 8 of 17

EDDIE has been tested extensively, on a large number of data sets. Even when limited to
using basic textbook indicators (e.g. see [2] [24]) EDDIE was demonstrated to find
technical trading rules in the stock market [12].

8. Inside the box – how does EDDIE work?
Here we shall briefly explain how EDDIE works. Readers interested in the technical
details are referred to [27]. Given a set of variables, EDDIE attempts to find interactions
among them. Following the practice of genetic programming, EDDIE generates a
population of (e.g. 1,000) random functions. Then it iterates in a predefined number of
evolutionary generations (e.g. 50). In each generation, two parents are picked. EDDIE
picks each parent by a “tournament”, which means selecting the fittest individual from a
number of (e.g. 4) randomly-picked individuals from the population. The two parents
generate two offspring by exchanging part of their genetic building blocks. In this case,
each parent is a tree, and their genetic building blocks are branches (i.e. sub-trees). The
offspring thus generated form the new population.

A bit of explanation on the principle of EDDIE, or evolutionary computation in general is
necessary for the understanding of the rest of the article. Evolutionary computation is
only effective when it maintains a good balance between exploration and exploitation.
Exploration means searching widely in the space of candidate solutions (i.e. functions in
our application). This is important for ensuring that we do not easily miss any good
solutions. Obviously we shall not be able to explore every single individual, due to the
combinatorial explosion problem explained in Section 3. Therefore, one has to invest
one’s computation time efficiently. This means spending more time on individuals that
look more promising – if one can tell which individuals are more promising. In
evolutionary computation, one hopes that the higher an individual’s fitness is, the more
promising that its genetic building blocks are in forming good offspring. Therefore, fitter
individuals are given more chances to become parents. This is called exploitation (of the
fitness information). Exploitation is implemented through tournament in EDDIE.

Exploration is closely related to diversity. It is important that some weaker individuals
also have a chance to survive as diversity plays a key part in evolution (which is agreed
by the experience in evolutionary computation). Diversity is achieved through the
random operations in EDDIE; e.g. in picking individuals to participate in tournaments.

In EDDIE, functions are expressed in a grammar, which is specified by the user. This
grammar must be defined in a formal, unambiguous way; typically in Backus-Naur Form
in computer science. Figure 2 shows a grammar that a version of EDDIE has used; it has
been varied in different versions of EDDIE.

Defining the grammar requires financial expertise. The engineer must know what
indicators are relevant to target in the forecast. Garbage-in-garbage-out certainly applies
here. If EDDIE is provided with indicators that are irrelevant to the price changes, then
EDDIE will not be able to find rules that reflect opportunities.

Working Paper WP026-08 Forecasting Edward Tsang

 Page 9 of 17

 Tree := "If-then-else" <Condition> <Tree> <Tree> | <Prediction>
<Condition> := <Condition> "And" <Condition> | <Condition> "Or" <Condition> |

"Not" <Condition> | <Indicator> <RelationOperation> <Threshold>
<Indicator> := technical indicators, such as moving average and break out rules, which

will not be elaborated here (see [27])
<RelationOperation> := "<" | ">" | "="

<Threshold> := Number
<Prediction> := "Positive" | "Negative"

Figure 2: The BNF grammar used by FGP

The grammar in Figure 2 only allows numerical relations such as “less than”, “greater
than” or equal to”. There is nothing to stop one allowing more operators. For example,
one can construct expressions from the given indicators using arithmetic operators
(addition, multiplication, etc). Changing the grammar is not difficult at all. A more
complex grammar will allow the program to express more complex functions, which in
principle increases its chance of capturing good rules. In practice, a more expressive
grammar demands the program to search a bigger space of functions. This tends to
require more computation to achieve the same level of thoroughness in the search.

EDDIE finds interactions between indicators, and thresholds for those indicators. It is
worth noting that interactions can also be found in other machine learning techniques
such as neural networks [1]. Interactions found by neural networks are largely
quantitative – they are basically numerical functions. Interactions found by genetic
programming are qualitative – they are basically rules. Arguably rules are easier to
understand by human users. This is important because it allows human experts to inspect
the rules, and have a final say upon their meaningfulness. By being able to interpret the
decisions, human expert can also channel their expertise into EDDIE, as Tsang et al [28]
explained. By inspecting the rules and their performances, human experts can decide to
modify relevant indicators, or add new indicators related to those which appear in
successful rules.

9. Deeper inside the box – constraint-guided search
There is no magic in EDDIE, or machine learning in general. All an algorithm attempts to
do is to search the space of solutions efficiently. The cleverer an algorithm, the more
chance it has in finding good solutions. The efficiency of an algorithm can sometimes be
improved by heuristics, which are guesses or rules of thumb that often work, though
could be wrong – for example a restaurant that is full of customers tend to be better than
one next door that has few customers, though there are numerous possible explanations
beside food quality or value for money. In this section, we introduce one stipulation that
gave EDDIE its efficiency.

Evolution is driven by the fitness measure. From research in constraint satisfaction (a
field of computer science, e.g. see [25] [20]), we know that constraints can help in a
search, although it is the existence of constraints that created the problem in the first
place. An experienced constraint programmer will use constraints to guide the search.
Perhaps constraints can help EDDIE to focus its search in more promising areas. This
was what Li and Tsang did in FGP [13] (which stands for Financial Genetic
Programming), a version of EDDIE.

Working Paper WP026-08 Forecasting Edward Tsang

 Page 10 of 17

Based on past experience as well as the investor’s expertise, one can often make a
reasonable guess on how many investment opportunities there will be in a particular
stock. In FGP, the user can prescribe the desirable range of opportunities, e.g. 10-15% of
the time. This range forms a constraint to FGP. Decision trees that violate this constraint
are punished. The hope is that by prescribing FGP a lower range, FGP will be more
cautious in reporting opportunities. (Obviously if it is too cautious, it is never going to
report any opportunities.)

Li and Tsang [13] [27] found that the range set in the constraint did not affect FGP’s
overall correctness. However, it did change the precision and recall of the trees generated.
When FGP was given a lower range (e.g. 5-10%) the trees generated had higher
precision, but very low recall. When FGP was given a higher range (e.g. 30-50%) the
trees generated had lower precision but higher recall. Therefore, the constraint gives the
user a handle to trade precision with recall. This makes FGP more useful as a forecasting
tool.

It is worth mentioning that, given the successful experience in FGP, Jin & Tsang [8] [9]
applied the constraint-guided incentive method to evolve strategies in automated
bargaining [15]. The results were in line with theoretical results known. Evolutionary
computation allows one to handle situations far more complex than those tackled
theoretically so far [6].

10. How can we trust a program?
EDDIE is only a bit smarter than its human user. The human user is responsible for
providing EDDIE with relevant financial indicators. If two investors are using EDDIE,
the one who can provide EDDIE with smarter financial indicators are likely to out-
perform the other.

What if the market is unpredictable? This will be the case if the market is efficient. Even
if the market is inefficient, it can change fundamentally (paradigm change), which means
past patterns are irrelevant to current behaviour of the market. Or, the grammar may not
be sufficient to express the patterns in the market. In all these situations, EDDIE will
report no patterns, as it often did. If the market is unpredictable, EDDIE will not make an
investor poorer.

What if EDDIE gets it wrong, even if its human user provides it with all the relevant
indicators? The fact is: it surely could. Nobody can be sure about the future. But that is
not to say that all information that carries an element of uncertainty is useless. When
paradigm changes occur, an investor who cannot recognize such changes will suffer the
same with or without EDDIE. When patterns repeat themselves in the market, an investor
could do better with support by EDDIE.

It is worth saying a word about automated trading. EDDIE can be embedded in auto-
trading systems. Computer traders may not be cleverer, but are certainly more diligent
than their human counterparts. While their human user needs to rest, eat and sleep,
computer traders don’t. EDDIE and similar programs can plough through financial data
nonstop day and night. If one can afford more computers, one can run multiple copies of
EDDIE. They can work on different targets. They will prompt their human users
whenever opportunities are spotted. Computer traders will become more and more
popular. Computer traders will not replace human traders, but they will work with them.

Working Paper WP026-08 Forecasting Edward Tsang

 Page 11 of 17

11. EDDIE-ARB predicts risk-free investment opportunities
EDDIE is not limited to evolving technical trading strategies. It can be supplied with
fundamental values. In this section, we shall explain how EDDIE was used for detecting
risk-free opportunities [29].

The prices of option and futures of a stock both reflect the market’s expectation of futures
changes of the stock’s price. Their prices normally align with each other within a limited
window. When they do not, arbitrage opportunities arise. This means an investor who
spots the misalignment will be able to buy (sell) options on one hand, and sell (buy)
futures on the other and make risk-free profits (this is known as put-call-futures
arbitrages, details of which is explained in [29]).

According to the efficient market hypothesis, profitable risk-free investment
opportunities should not exist. However, through analysing historical option and futures
prices on the London International Financial Futures and Options (LIFFE) market, Hakan
Er discovered that these prices occasionally do not align (around 15,500 cases from
January 1991 to June 1998) [29]. Profitable risk-free investment opportunities do exist
after transaction costs (assuming 0.1%) are taken into consideration. Judged by
transaction record, a good proportion of these opportunities were indeed taken up.
Arbitrage opportunities typically last for minutes or seconds only before the market
adjusts itself.

Computer systems could be set up to monitor the market. As soon as price misalignment
occurs, actions can be taken for profit. Such systems do not have to be equipped with any
computational intelligence. All they need is life-feed of option and future prices from the
market and a mathematical formula from economic textbooks that determines whether
price misalignment has occurred. However, if two computer systems are set up to pick up
the same arbitrage opportunities, then the competition is boiled down to which system
has the faster network.

Could one detect such opportunities one step ahead of other arbitragers? This is where
forecasting comes in. Prices do not become misaligned suddenly without early signs.
EDDIE was fed with option and futures prices and the calculation of arbitrage
profitability in the current market. For convenience, we call this specialization of EDDIE
EDDIE-ARB. EDDIE-ARB was asked to forecast opportunities five minutes before they
occur (to allow for delay in setting up the transactions).

Future and Options prices as they came did not help EDDIE-ARB to find patterns. They
must be pre-processed to form variables suitable for building functions for forecasting.
There is no magic in EDDIE, as we explained in Section 8. The more effective the pre-
processing, the less hard work EDDIE-ARB has to do, and the more chance it has in
finding quality rules.

As a tool, EDDIE-ARB enabled economists and computer scientists to work together to
identify relevant function variables. Trained on historical data, EDDIE-ARB was capable
of discovering rules with high precision. Tested on out-of sample data, EDDIE-ARB out-
performed a nave ex ante rule, which reacts only when misalignments were detected [29].
This establishes EDDIE-ARB as a promising tool for arbitrage chances discovery. It also
demonstrates how EDDIE brings domain experts and computer scientists together.

Working Paper WP026-08 Forecasting Edward Tsang

 Page 12 of 17

Although EDDIE-ARB has successfully forecast arbitrage opportunities, it only managed
to pick up a very small proportion of the opportunities. The more cautious we instruct
EDDIE-ARB to be (by using the constraint described in the Section 9), the fewer
opportunities it picked up. Unfortunately, relaxing the constraint compromises precision.
This limits the commercial potential of EDDIE-ARB, which motivates the research
described in the next section.

12. When the going gets tough – facing scarce opportunities
Suppose I am asked “will there be an earthquake in the next three days?” It is pretty safe
for me to answer “no”. If I were asked the same question tomorrow, I could easily answer
“no” again, regardless of my knowledge in earthquake. The chance of me getting it right
is high, because earthquake does not happen too often, even if I live in an earthquake
zone. However, although statistically my predictions are accurate, they are not interesting
at all, because they fail to pick up any earthquake events.

In financial forecasting, one is keen to spot scarce events, such as arbitrage opportunities,
big rises and crashes. Martinez-Jaramillo [14] pointed out that EDDIE could fail to find
useful rules when it is given the task to find exceptionally high return within a short
period of time. This does not just apply to EDDIE. It applies to practically all machine
learning methods in the literature so far. They could fail because the data set is highly
imbalanced. If very few of the instances are positive, there is not sufficient incentive for a
function to classify any case as positive.

Consider the confusion matrix in Table 4. In reality, there are 9,900 (99%) negative
instances, and 100 positive instances (1%). A conservative classification function that
makes no positive classifications will be 99% correct; though its recall is 0% (precision is
undefined as no positive classifications were made). As explained in the earthquake
example above, this function is useless even though it is correct most of the time.

Table 4: Performance of a conservative classifier in an unbalanced data set
Accuracy: 99%; Precision: undefined; Recall: 0%

 False in Classification True in Classification Total
False in reality True Negative: 9,900 False Positive: 0 9,900
True in reality False Positive: 100 True Positive: 0 100

10,000 0

Suppose, knowing that 1% of the instances are positive, a classifier randomly make 1%
positive classification. Its statistical performance is shown in Table 5. Compared with the
conservative classifier, this classifier will have an improved recall rate (from 0%
increased to 1%). However, this is paid for by deteriorating overall correctness (from
99% to 98.02%).

Working Paper WP026-08 Forecasting Edward Tsang

 Page 13 of 17

Table 5: Performance of a random classifier in an unbalanced data set
Accuracy: 98.02%; Precision: 1%; Recall: 1%

 False in Classification True in Classification Total
False in reality True Negative: 9,801 False Positive: 99 9,900
True in reality False Positive: 99 True Positive: 1 100

9,900 100

To do better than random classification, one would hope for a higher increase in True
Positive than False Positive, such as the performance shown in Table 6. Like the random
classifier, this classifier has made 1% positive classifications. However, it has better
precision and recall (both at 10%, as opposed to 1% in the random classifier). Being able
to pick up 10% of investment opportunities with exceptionally high return is not a bad
thing. Unfortunately, this classifier has an overall accuracy of 98.2%, which lower than
that of the conservative classifier (99%). Unless appropriate mechanisms are set up to
encourage its survival, it will be discouraged or discarded in evolutionary computation.
One could attempt to use a weighted fitness function, which gives higher weights to
recall and lower weights to overall accuracy. Our experience with EDDIE suggests that
this sometimes works, but sometimes encourages the wrong sort of classifiers.
Performance of the classifier is very sensitive to the fine tuning of the weights.

Table 6: Performance of better than random classifier in an unbalanced data set
Accuracy: 98.2%; Precision: 10%; Recall: 10%

 False in Classification True in Classification Total
False in reality True Negative: 9,810 False Positive: 90 9,900
True in reality False Positive: 90 True Positive: 10 100

9,900 100

Motivated by the need to detect scarce opportunities, Alma García-Almanza invented the
Repository Method [4] [5]. It is designed to work with genetic programming, though it can
be applied to any other methods that generate decision trees, such as C4.5 [18] or
See5/C5.0 [19].

The Repository Method is built upon a set of carefully designed ideas. The basic
principle is to analyze trees that are generated by genetic programming, with the view to
(a) prune redundant or detrimental rules and (b) combine the strength of different rules.
Each tree represents a number of rules, as illustrated in Section 7. There is no reason why
one should take a tree in its entirety, when the performance of each of its rules can be
examined against the data based on which the tree is generated. Furthermore, there is no
reason why one should use only one tree for classification, when different rules in
different trees could complement each other. The Repository Method maintains a
repository of rules; starting from an empty set. A rule will be added to the repository if
(a) it has high precision; and (b) it is dissimilar to the rules present in the repository.
Similarity between two rules is measured by calculating the potential of them covering
different instances in the database.

Working Paper WP026-08 Forecasting Edward Tsang

 Page 14 of 17

In evolutionary computation, the users often pick the best solution from the final
generation. One common threat in evolutionary computation is that vital genetic material
could be lost during the evolution process – a threat that many researchers are aware of
and guard against. By using the Repository Method, one can combine rules from different
generations. This alleviates (though does not eliminate) the problem of losing vital
genetic material in the process. Besides, the rules generated during evolution will not go
to waste. Experience shows that many of those trees during the early evolutionary process
did contribute to the repository [4] [5].

When opportunities are scarce, one does not have the luxury to ignore any useful rules.
By combining useful trees from different generations, the Repository Method gives the
user a better chance of picking up scarce opportunities. It is a useful tool for machine
learning in highly unbalanced data set – in fact it is the only tool that the author is aware
of that specializes in machine learning in highly unbalanced data sets. Experience shows
that given a set of decision trees, the Repository Method will improve their performance
reliably. It is able to pick more arbitrage opportunities than EDDIE-ARB (training on the
same data set), without compromising precision.

13. Computational intelligence determines effective rationality
Rationality is a key assumption in all major classical economic theories, including the
efficient market hypothesis mentioned in Section 2. Economic agents, whether it is a
human being or a computer program, is assumed to maximize return and minimize risk.
For simple decisions, such as choosing between $100 and $200, one can assume that a
rational agent would choose the latter. However, when the situation is more complex, it is
questionable whether the rationality assumption stands. For example, it is unreasonable to
assume that an agent can always find the optimal move in a chess game.

Herbert Simon pointed out that most people are only partly rational. He suggested that
people are "bounded rational", which means that they can only make the best decisions
within their knowledge and resources [23]. Although most economists would accept that
perfect rationality is not a realistic assumption, it is not clear how most of the economic
theories can be revised to reflect bounded rationality. Concretely quantifying what
bounded rationality means remains a grand challenge to the research community. As
decision makers have to make decisions about how and when to decide, Ariel Rubinstein
proposed to model bounded rationality by explicitly specifying decision making
procedures [21]. This puts the study of decision procedures on the research agenda.

From a computational point of view, decision procedures can be encoded in algorithms
and heuristics. In writing a chess program, some heuristics will find us better solutions
than others. Our knowledge of algorithms, heuristics and our computational power
determines how optimal our solutions can be. If rationality is measured by optimality,
then our computational knowledge determines how rational we are. Therefore, designing
better algorithms and heuristics helps to extend the rationality boundary. Computational
Intelligence Determines one's Effective Rationality – we refer to it as the CIDER Theory
 [30].

Everything being equal, the quality of the solution depends on the algorithm that one
uses. Some algorithms are better than others. From a computational point of view, we
assume that an agent’s rationality is reflected by its computational intelligence.

Working Paper WP026-08 Forecasting Edward Tsang

 Page 15 of 17

An investor who uses EDDIE is likely to pick up more opportunities than the same user
not using EDDIE. That is, EDDIE enhances this investor’s rationality. The better
forecasting algorithms one has, one would be able to pick up more opportunities.
Therefore, advancing forecasting algorithms can be considered pushing back the
boundary of rationality.

14. Where does it go from here?
Computational finance and economics is still in its infancy. Much more exciting research
is lying ahead. When financial insight is combined with advanced computing, one can
achieve what others cannot with financial knowledge or computing knowledge alone, as
it is demonstrated in EDDIE-ARB.

History also shows that technology is often driven by application needs (e.g. warfare
drives technology – this is a factual statement as opposed to a promotion of warfare).
FGP and the Repository method both born out of needs that could not be fulfilled by
current technology. The potential rewards for forecasting will motivate top-class
computer scientists to invent more powerful computational methods.

It is important to point out that technology alone is not sufficient. A complete investment
strategy demands more than a forecasting algorithm. For example, suppose we believe
that prices of an asset will rise by 6% within the next 30 days. Do we commit all our
capital on that asset? If we do, then when the program predicts another opportunity, we
shall not have capital to invest in it. What proportion of one’s capital should one invest
when the program spots an opportunity? Financial expertise is needed to complement
machine learning.

Forecasting algorithms so far are only scratching the surface of the matter. Most
forecasting algorithms are trained on past share prices. The prices are in fact the result of
interactions between traders. Traders interact through market orders, which are available
for analysis. Research in this direction has barely started. If one studies the interactions,
one could better understand the price dynamics, e.g. how big orders affect the prices (see
 [17]). Only when enough observation is available shall we be in a position to model
decision processes or model market dynamics.

The field of computational finance has grown rapidly in the last few years. Judged by the
number of publications, forecasting is a very popular research area in computational
finance. Given the diversity of research (which is a healthy sign) it is difficult to know
where the next breakthroughs will come; innovations are hard to foresee by nature. But it
is easy to forecast that computational intelligence will completely change the frontier of
forecasting research. It is also easy to forecast that companies that ignore new technology
will be left behind.

Acknowledgements
This paper summarizes research results by my co-researchers and myself. All works that
involves my co-researchers have been published. James Butler invented EDDIE, which is
extended by Jin Li. I extended the idea of constraint-directed search to automated
bargaining, which Nanlin Jin perfected. EDDIE-Arb was the result of many hours’
collaborative work with and Hakan Er and Sheri Markose (both economists). The
Repository Method was invented by Alma García-Almanza. Tim Gosling, Serafin

Working Paper WP026-08 Forecasting Edward Tsang

 Page 16 of 17

Martinez-Jaramillo, Biliana Alexandrova-Kabadjova and Paul Yung have all made
valuable contributions to the research. The author is also grateful to the anonymous
reviewers for their valuable advices.

References
[1] Bishop, C.M., Neural networks for pattern recognition, Oxford University Press,

1995

[2] Brock, W., Lakonishok, J. & LeBaron, B., Simple technical trading rules and the
stochastic properties of stock returns, Journal of Finance, 47, 1992, 1731-1764.

[3] Fama, E.F., Efficient capital markets: A review of theory and empirical work,
Journal of Finance, Vol.25, No.2, 1970, 383-417

[4] García-Almanza, A., New classification methods for gathering patterns in the
context of genetic programming, PhD Thesis, Department of Computing and
Electronic Systems, University of Essex, July 2008

[5] García-Almanza, A.L. & Tsang, E.P.K., Detection of stock price movements using
chance discovery and genetic programming, International Journal of Knowledge-
based and Intelligent Engineering Systems, Vol.11, No.5, December 2007, 329-344

[6] Gosling, T., Jin, N. & Tsang, E.P.K., Games, supply chains and automatic strategy
discovery using evolutionary computation, in J-P. Rennard (Eds.), Handbook of
research on nature-inspired computing for economics and management, Vol II,
Chapter XXXVIII, Idea Group Reference, 2007, 572-588

[7] Holland, J.H., Adaptation in natural and artificial systems, University of Michigan
press, Ann Arbor, MI, 1975

[8] Jin, N., Equilibrium selection by co-evolution for bargaining problems under
incomplete information about time preferences, Proceedings, Congress on
Evolutionary Computation, Edinburgh, 2-5 September 2005, 2661-2668

[9] Jin, N. & Tsang, E.P.K., Co-adaptive Strategies for Sequential Bargaining Problems
with Discount Factors and Outside Options, Proceedings, Congress on Evolutionary
Computation (CEC) 2006, 7913-7920

[10] Koza, J.R., Genetic Programming: on the programming of computers by means of
natural selection, MIT Press, Cambridge, MA, 1992

[11] Koza, J.R., Genetic programming II: automatic discovery of reusable programs,
MIT Press, Cambridge, MA, 1994

[12] Li, J. & Tsang, E.P.K, Investment decision making using FGP: a case study,
Proceedings of Congress on Evolutionary Computation (CEC'99), Washington DC,
USA, July 6-9 1999.

[13] Li, J. & Tsang, E.P.K, Reducing failure in investment recommendations using
genetic programming, Computing in Economics and Finance Conference,
Barcelona, July 2000

[14] Martinez-Jaramillo, S., Artificial financial markets: an agent based approach to
reproduce stylized facts and to study the Red Queen Effect, PhD Thesis, Centre for
Computational Finance and Economic Agents (CCFEA), University of Essex, 2007

Working Paper WP026-08 Forecasting Edward Tsang

 Page 17 of 17

[15] Muthoo, A., Bargaining theory with applications, Cambridge University Press,
1999

[16] Neely, C., Weller, P. & Ditmar, R., Is technical analysis in the foreign exchange
market profitable? A genetic programming approach, Journal of Financial and
Quantitative Analysis, 32, 1997, 405-26

[17] Olsen, R., Classical economics: an emperor with no clothes, Wilmott Magazine
Volume 15, January 2005, p84-85

[18] Quinlan, J.R., Improved use of continuous attributes in C4.5, Journal of Artificial
Intelligence Research, AI Access Foundation and Morgan Kaufmann Publishers,
Vol.4, 1996, 77-90

[19] Quinlan, J.R, Data mining tools See5 and C5.0, http://www.rulequest.com/see5-
info.html (accessed 25 August 2008)

[20] Rossi, F., van Beek, P. & Walsh, T. (ed.), Handbook of Constraint Programming,
Elsevier, 2006

[21] Rubinstein, A., Modeling bounded rationality, MIT Press 1998

[22] Shleifer, A., Inefficient markets, an introduction to behavioral finance, Oxford
University Press, 2000

[23] Simon, H., Models of Man, Wiley, New York, 1957

[24] Sweeney, R.J., (1988), Some new filter rule tests: Methods and results, Journal of
Financial and Quantitative Analysis, 23, 285-300.

[25] Tsang, E.P.K., Foundations of constraint satisfaction, Academic Press, London and
San Diego, 1993

[26] Tsang, E.P.K., Butler, J.M. & Li, J., EDDIE beats the bookies, International Journal
of Software, Practice & Experience, Wiley, Vol.28(10), 1998, 1033-1043.

[27] Tsang E.P.K. & Li, J., EDDIE for financial forecasting, in S-H. Chen (ed.), Genetic
Algorithms and Programming in Computational Finance, Kluwer Series in
Computational Finance, 2002, Chapter 7, 161-174

[28] Tsang, E.P.K., Yung, P. & Li, J., EDDIE-Automation, a decision support tool for
financial forecasting, Journal of Decision Support Systems, Special Issue on Data
Mining for Financial Decision Making, Vol.37, 2004, 559-565

[29] Tsang, E.P.K., Markose, S. & Er, H., Chance discovery in stock index option and
future arbitrage, New Mathematics and Natural Computation, World Scientific,
Vo.1, No.3, 2005, 435-447

[30] Tsang, E.P.K., Computational intelligence determines effective rationality,
International Journal on Automation and Control, Vol.5, No.1, January 2008, 63-66

