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Abstract

This paper shows that it is possible to recover normality of asset re-
turns through a stochastic time change, where the appropriate operational
time is determined through a function of the cumulative number of trades
and/or the cumulative volume. Ané and Geman (2000) showed that the
re-centered cumulative number of trades could be used as the appropri-
ate stochastic clock of the market under which asset returns are virtually
Gaussian. Using tick-data for FTSE 100 futures, we show that normal-
ity is not always recovered by conditioning on the re-centered number of
trades, and instead demonstrate that a non-linear function of the num-
ber of trades and/or volume will provide a better stochastic clock of the
market.

1 Introduction

Advances in high-frequency finance have been greatly encouraged by the recent
surge in availability of large databases that contain information on every trade
performed for a given asset. These data, usually referred to as tick-by-tick data
(or simply tick-data), include vast amount of information not only about prices
but also about timestamps and size of trade, which can prove valuable when
studying the relationship between prices (or most commonly returns) and the
activity in the market as measured by the number of transactions or the traded
volume.

The positive relation between market activity and the volatility of asset re-
turns has been widely documented over several decades: Early studies focused
on the link between volume and volatility, e.g. Clark (1973) used traded vol-
ume in order to explain the non-normality of returns for cotton futures, while
other models related trading volume and price movements to the arrival of new
information (such as Harris (1982) and Tauchen and Pitts (1983)). Although
later work also investigated the connection between asset prices and volume
(see for example Gallant, Rossi, and Tauchen (1992), Schwert (1989), or – for
a comprehensive review – see Karpoff (1987)), more recent research carried out
by Jones, Kaul, and Lipson (1994) showed that the positive volume-volatility
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relation is in fact due to the positive relation between between volatility and
the number of transactions.

In the first study mentioned above, Clark (1973) put forward the idea that
calendar time was not the natural time scale over which prices evolve. Although
the notion of operational time1 first emerged in the context of business cycles
of macroeconomic variables (Burns and Mitchell, 1946) and in the investigation
of 1920s hyperinflation (see Allais (1966) and Barro (1970)), it was Clark who
first realized that price series evolve at “different rates during identical intervals
of time” (Clark, 1973, p. 137). More recently Geman, Madan, and Yor (2000)
proved that through the use of subordinated stochastic processes, asset prices
can be thought of as continuous processes in an “economic” measure of time.
The relation between volatility and number of transactions described above, was
used by Geman and Ané (1996) and Ané and Geman (2000) in order to estimate
the subordinated process under which asset prices are Brownian motion.

The main aim of this paper is to utilize the relationship between volatility
and market activity in order to identify the appropriate process under which
asset prices are Brownian motion. We allow for the volatility-activity relation-
ship to be non-linear and estimate several parametric functional forms for this
relation.

Using a set of 824 days of intraday tick-data on FTSE-100 index futures
separated into four sub-periods, 10 minute intraday returns are computed in
two different ways: using simple linear interpolation techniques, and by means
of inhomogeneous time series operators as developed by Zumbach and Müller
(2001). The relationship between the number of trades (traded volume) and the
stochastic clock of the market is then estimated by finding the process for the
trades (volume) under which the conditional returns are Gaussian.

The structure of the paper is as follows: Section 2 describes the general
framework for constructing an homogeneous price series from “raw” tick-data,
including a description of simple interpolation techniques and of convolution
operators as presented in Dacorogna, Gençay, Müller, Olsen, and Pictet (2001).
Section 3 contains a brief introduction to the market’s operational time, includ-
ing stochastic time changes and asset prices as Brownian motion. Details of the
data are given in Section 4, followed by a discussion of intraday seasonalities
in Section 5. Results and statistics of the conditional returns are presented in
Section 6. Finally, a summary and concluding remarks are given in Section 7.

2 Operators and sampling schemes

In the following sections we introduce the mathematical framework that will be
used to analyze the data, in particular the formalism of time-series operators
and their application on irregularly spaced data.

A broad classification of time series can be done according to the spacing
of their data points in time. Time series that are regularly spaced in time are
known as homogeneous, while irregularly spaced series are termed inhomoge-
neous. The information recorded in tick-by-tick data arrives at random times
and their time series are thus inhomogeneous. However, since most time series

1Referred to as economic time in the earliest studies, the recent literature in finance makes
use of terms such as business-, trading-, transaction- or operational-time. In order to avoid
confusion, only the terms economic and operational time will be used in this paper.
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analysis methods are applicable only to homogeneous series2, the raw tick-by-
tick data has to be transformed into an homogeneous time series. Section 2.1
presents the most common way of constructing homogeneous time series from
an inhomogeneous series via interpolation methods.

An alternative option to working with homogeneous time series is to utilise
time series operators that transform an inhomogeneous time series into another
inhomogeneous series. In Section 2.2 a particular group of this type of operators
is introduced.

2.1 Usual sampling scheme

Most homogeneous time series that are created from raw (inhomogeneous) tick-
data are constructed by sampling at a desired frequency and then using some
interpolation method. If the (irregularly spaced) timestamps of the tick-by-
tick data are given by times tj with associated values3 zj = z(tj) then, by
interpolation, we can create an homogeneous time series at times t0 + i∆t fixed
to t0, where the index i refers to the resulting homogeneous time series. Each
sampling time ti = t0 + i∆t will be bounded by two times tj of the original
inhomogeneous series, given by

tj′ ≤ t0 + i∆t < tj′+1 , i = 1, 2, . . . ,

with j ′ = max(j | tj ≤ t0 + i∆t) .

Interpolation is then carried out between the points (tj′ , zj′) and (tj′+1, zj′+1)
following a specific interpolation technique as shown in Figure 1. The two
most common interpolation methods are previous-tick interpolation (Wasser-
fallen and Zimmerman, 1985)

zi ≡ z(ti) = zj′ (1)

and linear interpolation

zi ≡ z(ti) = zj′ +
t0 + i∆t− tj′

tj′+1 − tj′
(zj′+1 − zj′) . (2)

Each interpolation method has its advantages and disadvantages. While
linear interpolation does not satisfy causality (i.e. at a time ti it uses information
from time tj′+1, which lies ahead of ti), previous-tick interpolation may produce
spurious jumps in z when there are long periods of missing or no data. When
the sampling interval ∆t is large compared with the distance between ticks,
both interpolation schemes will produce very similar homogeneous time series
(Dacorogna et al., 2001). Therefore, throughout this paper we will only consider
the case of linear interpolation. If the original (inhomogeneous) series z(tj) is
the log-price of the asset, then the returns can be easily found as:

r(ti) = z(ti)− z(ti−1) . (3)

Besides the time series of the log-prices zj , tick-data usually contains infor-
mation on the size of each trade (its volume), which we denote as vj ≡ v(tj). The

2A well known exception is the ACD model introduced by Engle and Russell (1998).
3These associated values are usually log-prices, but they could refer to volume or other

quantities.
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Figure 1: Interpolation methods. An inhomogeneous time series (blue) is sam-
pled at regular time intervals in order to construct a regularly spaced (homoge-
neous) time series at times ti. using previous-tick interpolation (magenta circles)
and linear interpolation (red squares) schemes.

number of trades that have “accumulated” up to time tj is simply n′(tj) = j,
while finding v′(tj) – the accumulated number of contracts traded up to time
tj – is straightforward with v(tj)′ =

∑j
k=1 v(tk).

Using any of the two interpolation schemes4 presented above, n′(ti) – the
values of an homogeneous time series for the number of trades up to times
t0 + i∆t – can be found. The homogeneous series v′(ti) can be constructed in
the same way.

The number of trades that take place during the interval [ti−1, ti] is what
we will refer to as the cumulative number of trades N ′(ti), and is expressed as:

N ′(ti) = n′(ti)− n′(ti−1) . (4)

The cumulative volume V ′(ti) can be found in a similar way:

V ′(ti) = v′(ti)− v′(ti−1) . (5)

Notice that equations (4) and (5) have a similar form to (3), the equation that
is commonly used to obtain (log-)returns. This fact that will be of use in the
next section when we make use of convolution operators.

2.2 Convolution operators

This section presents an alternative procedure to the one described in section 2.1,
which can be used to construct homogeneous time series from inhomogeneous

4As mentioned earlier, in this paper only linear interpolation will be used.
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tick-data. This methodology is based on the inhomogeneous time operators
originally introduced by Zumbach and Müller (2001).

When dealing with tick-by-tick data, instead of focusing on pointwise values
it makes more sense to deal with average values inside intervals and thus “the
usual notion of return has to be changed” (Dacorogna et al., 2001, p. 51).
For a homogeneous time series (e.g. data observed at intervals of size τ), a
return is usually computed as the pointwise difference between the (log-) price
observed at a given time t and the (log-) price of the previous observation (at
time t − τ). When working with inhomogeneous data (as tick-by-tick data)
a better definition of the return could be the difference between the “average”
price around time t and the “average” price around time t−τ . With this idea in
mind Zumbach and Müller (2001) developed a framework of efficient operators,
where an operator Ω that acts on a generic (homogeneous or inhomogeneous)
time series z is denoted Ω[z]. Their work focused on operators that have the
following properties:

• Linearity. Where operators satisfy: Ω[z1 + c z2] = Ω[z1] + c Ω[z2]

• Time–translation invariance. With: Ω[z(t−∆)](t) = Ω[z(t)](t−∆t), where
Ω[z](t) is the value of Ω[z] at time t.

• Causality. Where Ω[z](t), i.e. the value of the operator at time t, depends
only on information up to time t.

An operator with the above properties can be represented by the convolution
with a kernel ω(t):

Ω[z](t) =
∫ t

−∞
dt′ ω(t− t′) z(t′) . (6)

The simplest of the linear operators proposed by Zumbach and Müller (2001)
is the exponential moving average (ema), which has an exponentially decaying
kernel5 given by:

ema[τ ](t) =
e−t/τ

τ
, (7)

where τ is the characteristic time range (i.e. the time interval). In practice,
there is no need to compute the convolution integral in (6), instead one can use
a simple iterative formula first proposed by Müller (1991) for the ema:

ema[τ ; z](tj) = µema[τ ; z](tj−1) + (ν − µ) zj−1 + (1− ν) zj (8)

with

α =
tj − tj−1

τ
and µ = e−α .

Since the definition of the convolution in (6) makes use of an integral, z(t′)
should be a continuous function of time. However, since the time series of
interest are not continuous, an interpolation between points must be used in

5To distinguish between the operators and their respective kernels, the former are always
capitalised.
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order to compute the convolution. The type of interpolation method that is
used in equation (8) is defined by the parameter ν:

ν =





1 previous-point interpolation
(1− µ)/α linear interpolation
µ next-point interpolation

Due to the ema’s computational efficiency, it serves as the basis of other
more complex operators. Iterations of the basic ema operator can provide us
with a set of iterated exponential moving average operators ema[τ, n], with
kernel:

ema[τ, n](t) =
1

(n− 1)!

(
t

τ

)n−1
e−t/τ

τ
,

where n denotes the number of iterations used. Once more the iterated ema
operator does not need to be calculated through a convolution, it can instead
be computed using the simple recursive formula:

ema[τ, n; z] = ema[τ ;ema[τ, n− 1; z]] , (9)

with ema[τ, 1; z] = ema[τ ; z].
A last point to mention is that since the kernels have an exponential tail for

large t, when applying an EMA operator to a time series, a build–up time will
required and a lag with respect to the original time series will be introduced
(see top panel in Figure 2).

Through the use of the iterated EMA operator of equation (9), a low-noise
differential operator that measures the difference between an average value now
and an average value in the past can be used in order to obtain the “returns” of
our inhomogeneous tick-data series. Zumbach and Müller (2001) proposed the
differential operator ∆[τ ], as a suitable operator to measure returns:

∆[τ ] = κ (ema[aτ, 1] + ema[aτ, 2]− 2 ema[ab τ, 4]) , (10)

with κ = 1.22208, b = 0.65 and a−1 = κ(8b− 3). Where the value of κ ensures
that the integral of the kernel from the origin to the first zero is equal to one; the
value of b is fixed in order to get a short tail and a is fixed by the normalisation
condition6.

By applying the differential operator in (10) to the tick-data price series, a
new inhomogeneous time series of “economic time” (log-) returns can be ob-
tained. This new series can then be sampled at a given frequency in order to
construct an homogenous time series of returns.

A comparison of the returns constructed using usual interpolations schemes
described in Section 2.1 and the returns obtained by sampling on the homoge-
neous series obtained via the differential operator is shown in the bottom panel
of Figure 2. The inhomogeneous time series of returns via the differential oper-
ator is shown as a light–blue line, by sampling this time series every 10 minutes,
an homogeneous time series of returns is obtained (dark blue dots). The series
of 10min returns computed using the usual method (with linear interpolation)
is shown as red circles.

6Chosen so that for a constant function c = c(t), ∆[τ ; c] = 0 and ∆[τ ; t] = τ .
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Figure 2: Prices and returns series for 25 October 2002. Top: Tick-data prices (green
line); prices after using the ema operator (light-blue line) and homogeneous price
series (red circles) constructed by linear interpolation by sampling every 10 minutes.
Bottom: Returns constructed via the differential operator with τ = 10min (light-blue
line). Homogeneous time series of returns by sampling the differential operator at 10
minute intervals (blue dots), and 10 minute series of returns constructed following the
usual sampling scheme (red cirles). The “build-up” time is clearly visible.

Notice that although the two homogeneous series of returns (red circles and
blue dots) move together, they are not always the same. The returns sampled
from the differential operator incorporate more information from the original
raw tick–data and thus reflect variations in the price that the other series of
returns does not capture.

Finally, by applying the differential operator in (10) to the series n′(tj) we
can obtain an inhomogeneous time series N ′

op(tj), which can then be sampled
at times ti in order to obtain an homogeneous time series for the cumulative
number of trades N ′

op(ti). Once more, by sampling from the time series after the
operator has been applied, more information from the original (tick-data) series
will be incorporated than if the usual interpolation method had been used. In
order to obtain V ′

op(ti) – an homogeneous time series for the cumulative volume
– the same procedure can be applied to v′(tj). The series V ′

op(ti) will once
more incorporate more information from the original raw series than V ′(ti) (the
cumulative volume using the usual linear interpolation method described in
Section 2.1).

The top panel in Figure 3 shows the inhomogeneous time series for the cu-
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Figure 3: Number of trades and volume for 25 October 2002. Top: (Cumulative)
Number of trades with τ = 10min calculated using the differential operator on the
(accumulated) number of trades (light blue), by sampling of the operator (blue dots)
and by observing the number of trades in every 10 minute interval (red circles). Bot-
tom: (Cumulative) Volume with τ = 10min. Calculated by applying the differential
operator on the (accumulated) volume (light-blue line); by 10 minute sampling of the
operator (blue dots) and by counting the number of contracts trades in every 10 minute
interval (red circles).

mulative number of trades N ′
op(tj) (light–blue line); N ′(ti), the homogeneous

time series constructed by a simple sampling technique (red circles) and N ′
op(ti),

the homogeneous series obtained by sampling of the operator (blue dots). The
inhomogeneous time series for volume V ′(tj) (light–blue line) and the homoge-
neous V ′(ti) and V ′

op(ti) are shown in the bottom panel (red circles and blue
dots respectively). Both panels shown are constructed from intraday tick–data
for the 25 October 2002, with the homogeneous time series starting at 8:45 and
finishing at 17:15.

3 Operational time of the market

In this section the mathematical framework of stochastic time changes is intro-
duced, along with the definition of what constitutes the appropriate operational
time of the market in relation with the number of trades and volume.
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3.1 Asset price under a stochastic time change

Let x(s) be a discrete stochastic process indexed by a discrete variable. Such a
process may be expressed as:

x(s) = {x(0), x(1), . . . , x(s), x(s + 1), . . . } , (11)

where x(s) is the observed log-price of the asset in operational time, e.g. the
price after s units of operational time.

Consider now a discrete process x(t) made of observations of the price x at
(calendar) times t1, t2, t3, . . . , t, . . . , with t1 < t2 < t3 < · · · < t < . . . , i.e. a
process given by

x(t) = {x(t1), x(t2), x(t3), . . . , x(t), . . . } , (12)

and define a positive and strictly increasing stochastic process

{ϑ(t1), ϑ(t2), ϑ(t3), . . . , ϑ(t), . . . } , (13)

where ϑ(ti) measures the units of economic time that have passed up to time ti.
In general, up to a time t, s units of economic time will have passed, i.e.

s = ϑ(t) , (14)

where (14) denotes a random variable that defines the stochastic process in (13).
The processes described by (11) and (12) are related by

x(t)(t) = x(s)(ϑ(t)) . (15)

At time t, ϑ(t) units of economic time will have passed, so at this time processes
x(t) and x(s) will have the same value. It is straightforward to observe that
intraday calendar returns will also be related to operational time via

r(ti) = ∆x(s)(ϑ(ti)) , (16)

where ∆x(s)(ϑ(ti)) ≡ x(s)(ϑ(ti))− x(s)(ϑ(ti−1)).
In the terminology of subordinated stochastic processes, the non-stationary

process x(t) (the asset price observed at equidistant time intervals) is known as
the latent process, and is said to be subordinated to the parent process x(s) (the
asset price under operational time), and directed by the subordinator7 s = ϑ(t)
(Feller, 1971).

3.2 An appropriate definition of operational time

The original subordinated processes used by Clark (1973) represented asset
prices and time by two independent geometric Brownian motions respectively.
His findings have been generalised by Geman et al. (2000), who used pure jump
processes of finite variation to model asset returns. These processes can be
expressed as Brownian motion evaluated at random times with the added gen-
erality that the process of the stochastic clock need not be independent of the
price process.

7The subordinator is sometimes also referred to as the directing process.

9



It is well known that the existence of a risk-neutral probability measure under
which discounted asset prices are martingales is a result of the no-arbitrage
assumption, and that under the real-world probability asset prices must then
be semimartingales. Monroe (1978) stated an essential theorem in which he
showed that any semimartingale is equivalent to a time change of Brownian
motion. If the asset price is a semimartingale, then the asset log-price process
in calendar time, x(t)(t), will also be a semimartingale, and following Monroe’s
theorem it may be written as:

xt(t) ≡ W (ϑ(t)) , (17)

where W (·) is a Wiener process.8

Geman et al. (2000) compared (17) to (15) and proposed that the appropriate
choice for operational time will be the one under which the asset prices are
Brownian motion. It follows from this statement that in order to find the
appropriate stochastic clock for operational time one must identify the process
under which the distribution of returns is Gaussian.

With a vast amount of literature focusing on the relation between asset prices
and traded volume, a natural choice to describe the “activity” of financial mar-
kets would be to use the volume traded over an interval of time. Nevertheless,
studies by Jones et al. (1994) singled out the number of transactions and not
their size as the main factor that determines the volatility of the market (as
mentioned in Section 1). Work done by Ané and Geman (2000) showed that
the appropriate subordinator of operational time for asset returns could be ap-
proximated by a linear function of the cumulative number of trades, with asset
returns conditional on the re-centered (cumulative) number of trades being vir-
tually Gaussian. However, other studies (e.g. Murphy and Izzeldin (2006) and
Velasco–Fuentes and Chourdakis (2007)) have shown that conditioning on the
number of trades does not always recover normality.

In the rest of this paper no assumption will be made of whether it is the
(cumulative) number of trades or the (cumulative) volume that best relate to the
operational time of the market. Instead, the two alternatives will be investigated
and a third option, where both trades and volume are considered simultaneously,
will also be examined.

3.3 Number of trades and volume as subodinators

The distribution of returns conditional on the (re-centered) cumulative number
of trades can be computed using the following re-normalisation

r̆N (ti) =
r(ti)√

β̆N N ′(ti) + γ̆N

, (18)

where β̆N and γ̆N are constants estimated such that the conditional returns
r̆N (ti) are approximately Gaussian with variance one. Adding the constant to
the number of trades re-centers their distribution, while the β̆N is introduced
in order for the conditional returns to have unit variance.

As mentioned in Section 3.2 instead of the number of trades, an alterna-
tive is to use V ′(ti), i.e. the volume traded during the interval [ti−1 , ti]. The

8Brownian motion with zero drift and variance one.
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returns conditional on the (re-centered) volume can then be found using the
normalisation:

r̆V (ti) =
r(ti)√

β̆V V (ti) + γ̆V

, (19)

where the constants β̆V and γ̆V are once more estimated such that the condi-
tional returns r̆V (ti) are approximately Gaussian with variance one.

In a more general form, the re–normalisations in (18) and (19) can be ex-
pressed as the calendar returns divided over the square root of a function f(·),

r̆(ti) =
r(ti)√
f(·) , (20)

where f(·) can be either a function of N or V (the number of trades or the
volume), or of both. The simplest case being when f(·) is a linear function of
N or V as in equations (18) and (19).

As stated in Section 3.2, conditioning on the re-centered cumulative num-
ber of trades does not always recover normality (see Table 3). In order to re-
cover normality and find the appropriate process for operational time, Velasco–
Fuentes and Chourdakis (2007) proposed a non-linear relation between the num-
ber of trades and the stochastic clock of the market, and estimated a semi-
parametric function of the number of trades under which conditional returns
were much closer to Gaussian than those conditional on the re-centered number
of trades. To determine the appropriate subordinator for the stochastic clock of
the market, several parametric forms for f(·) will be estimated. The conditional
returns will be then found via (20) and tested for normality (see section 6).

4 Data

Our database consists of tick-data for FTSE 100 index futures9 spanning the
period from 2 January 2001 to 17 June 2004, which comprises a total of 824
trading days. This interval includes a wide-range of market conditions and
activity, from days of high market commotion and volatility to days of very low
activity. From a daily point of view, the maximum number of trades recorded
during a particular day is 31,440 (on 18 March 2003), with a minimum of 2,226
(on 27 December 2001). The average number of trades per day for the whole
sample is 12,185.99, with a standard deviation of 4,666.63 trades per day. In the
case of the volume, the maximum traded in a single day was 124,870 contracts
(on 24 July 2002), the minimum traded was 10,410 (on the 18 February 2002).
The volume per day had an average of 41,342.71 and a standard deviation of
17,346.05 contracts per day.

Using the differential operator of equation (10) with τ = 10min, the inho-
mogeneous series of intraday returns, r(tj), was calculated for each trading day.
In order to avoid the build-up time of the operator all points with timestamps
prior to 8:45:00 of the inhomogeneous series of returns are dropped, with the
last 15 minutes of the trading day also removed in order to avoid closing effects.
The resulting inhomogeneous series are then sampled at 10 minute intervals

9FTSE 100 futures are traded between 8:00 and 17:30.
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Figure 4: FTSE 100 Futures Index 10 minute returns. The four sub-periods are
clearly shown: An initial period of 156 days before 11 September 2001 (blue), a sec-
ond period that includes 11 September 2001 (green), followed by a period of 256 days of
high-volatility (red) and finally 256 less volatile days (light blue). Bottom: Returns ob-
tained through the usual method of sampling prices (at 10 minute intervals). Bottom:
Returns constructed using sampling on the differential operator (with τ = 10min).

in order to create the homogeneous time series of returns rop(ti). Using the
usual sampling method (at intervals of 10 minutes) with linear interpolation
described in Section 2.1 the intraday homogeneous series of returns r(ti) are
also computed.10

In a similar manner, two homogeneous series are constructed for the (cumu-
lative) number of trades: N ′(ti) by linear interpolation of observations every
10min, and N ′

op(ti) by applying the differential operator as described in Section
2. Finally, the time series for the (cumulative) volume V ′(ti) and V ′

op(ti) are
also constructed. The descriptive statistics of these homogeneous time series
are shown in Table 1.

For the main analysis the data was divided into four sub-periods: The first
one spanning all data prior to 10 September 2001 (consisting of 156 days). The
second subperiod includes also 156 days of data starting from 11 September
2001 and concluding on 7 May 2002. The third and fourth subperiods include
256 days of data each, the former starting on 7 May 2002 and ending on 30 May
2003, while the last sub-period expands from 2 June 2003 to 17 June 2004.

The descriptive statistics of the 10 minute intraday returns for each subpe-
10At the same times ti, i.e. at 10min intervals starting at 8:45 and finishing at 17:15
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riod are shown in Table 2, and a graphical representation of the returns r(ti)
and rop(ti) shown in figure 4. As expected the returns in the second subperiod
(green) have the highest skewness and kurtosis since that period contains the
events of 11 September 2001. The third subperiod (red) is the most volatile,
while the last (light-blue) is the least volatile. The Jarque-Bera (JB) test statis-
tics in Table 2 show that these returns are far from Gaussian11 in all cases.12

Before trying to find the process under which the asset returns are Gaussian,
one must first take into account any deterministic intraday patterns as explained
in the next section.

5 Intraday seasonality and volatility

A well established characteristic of activity13 in most markets is that it is higher
during the hours immediately after opening and closing than in the middle of
the trading day (see for example Brock and Kleidon (1992) and Bollerslev and
Domowitz (1993)). This intraday seasonality effect14 extends to other asset
characteristics, most importantly to intraday volatility.

The intraday seasonality pattern will be estimated for the three quantities
of interest: intraday volatility, cumulative number of trades and cumulative
volume. The intraday diurnal component of the volatility is computed as the
average of the squared returns at given times during the trading day measured
over all days in a sample.

For r(ti), i.e. the returns obtained by using linear interpolation as in (3),
the diurnal component of the volatility φ(ti), is computed in every subperiod as
the square root of the average of the squared returns at (equidistant) times ti:

φ(ti) =
(
E[r2(ti)]

)1/2
,

where the expectation is taken over all days in the subperiod. R(ti), the “de-
seasonalised” returns, i.e. the returns from which the deterministic diurnal
component has been removed are then calculated in a multiplicative way:

R(ti) =
r(ti)
φ(ti)

. (21)

Alternatively, φop(tj) – the deterministic diurnal component of the volatility
at non-equidistant times tj can be used. The inhomogeneous time series of
intraday prices of each day are weighted and incorporated into a single inho-
mogeneous series that is then passed through the differential operator and its
result squared in order to obtain φop(tj). The diurnal component of the volatil-
ity φop(ti) at equidistant times tj can then be calculated by interpolation and
the deseasonalised returns Rop(ti) found as

Rop(ti) =
rop(ti)
φop(ti)

. (22)

11Throughout this paper we focus only on the skewness and kurtosis aspects of normality,
without taking into account autocorrelation properties of returns.

12The critical value of the JB test is 9.21 (5.99) at 1% (5%) significance level
13This phenomenon holds both for the number of trades and for volume traded.
14Other effects, such as the seasonality related to the day of the week, will not be dealt with

in this paper.
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Figure 5: Diurnal component of the squared returns. Top: Diurnal components of
the squared returns as computed by usual interpolation scheme with sampling at 10
minute intervals. The overall level of the diurnal component is clearly lowest during
the fourth sub-period (light blue), with the highest being the one of the third subperiod
(red). Bottom: The expected component of the squared returns as computed by the
differential operator for the four different sub-intervals.

The diurnal components for the (cumulative) number of trades φN (ti) and
(cumulative) volume φV (ti), can be found in a similar way as for the volatility
and is then used to find their deseasonalised counterparts:

N(ti) =
N ′(ti)
φN (ti)

and V (ti) =
V ′(ti)
φV (ti)

. (23)

Using the differential operator the deseasonalised number of trades and vol-
ume will be given by

Nop(ti) =
N ′

op(ti)
φN, op(ti)

and Vop(ti) =
V ′

op(ti)
φV, op(ti)

. (24)

Figure 5 shows the deterministic diurnal pattern of the intraday volatility for
the four different subperiods. The top panel shows φ(ti), the volatility pattern
computed using the homogeneous time series of returns, while the bottom panel
shows φop(tj), i.e. the deterministic volatility pattern computed using the differ-
ential operator. A “U–shaped” pattern is clearly noticeable for all subperiods,
with the level of volatility being high during the early hours of the trading day

14



and decreasing as lunch time approaches, followed by a spike at the time of the
opening of the US markets and increased volatility thereafter until it diminishes
again prior to closing.

The diurnal component of the number of trades (Figure 6) and of the vol-
ume (Figure 7) show a pattern similar to the one of the intraday volatility, i.e.
decreasing activity towards lunch time with a sudden increase at the opening of
the US market and a period of high activity in the hours just before closing.

The descriptive statistics of the deseasonalised returns R(ti) and Rop(ti) are
shown in Table 2. Taking into consideration the diurnal component of volatility
considerably decreases the skewness and kurtosis of the returns in almost every
sub–period. However, these returns are still far from being Gaussian as can be
seen from the excessively high value of the JB statistic. The conditional returns
as mentioned in the next section, will be computed using these deseasonalised
returns, number of trades and volume.

6 Conditional returns

The returns conditional on the (re-centered) number of trades can be obtained
via equation (18), where the deseasonalised returns, R(ti), and the number of
trades, N(ti), are used in the minimisation problem:

min
β̆,γ̆

JB(β̆, γ̆; RN (ti)) where RN (ti) =
R(ti)√

β̆NN(ti) + γ̆
N

(25)

subject to Var[RN (ti)] = 1, where JB(RN (ti)) gives the JB test statistic of
the returns RN (ti). The returns conditional on volume can also be obtained in
a similar manner by replacing the number of trades with the (deseasonalised)
volume V (ti) in equation (25). The parameters β̆N and γ̆N in (25) represent a
line that describes the relationship between the number of trades and the process
under which the returns are closest to Brownian motion, i.e. the process that
determines the stochastic clock of the market.

Table 3 shows the skewness, kurtosis and values of the JB statistic of the
conditional returns RN and RV found by minimising the JB statistic as in
(25). These conditional returns have lower skewness and excess kurtosis than
their calendar counterparts (compare with Table 1). Nevertheless, although
conditioning on the re-centered number of trades and volume yields returns
closer to Gaussian, normality is only recovered in a few cases.15

6.1 Non-linear relationship

As discussed in Section 3.3, a more general approach can be achieved by letting
the function of the number of trades (or volume) take on forms other than linear.
The most general approach is best described through the minimisation

min
Θ̂
JB(Θ̂;RN,V ) where RN,V =

R√
f(N,V ; Θ̂)

, (26)

15The hypothesis of normality can not be rejected when the JB statistic is lower than 9.21
(at 1% significance level). These cases are shown in bold in Table 1.
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subject to Var[RN,V ] = 1. Where R, N and V are the deseasonalised calen-
dar returns, number of trades and volume16 respectively; and Θ̂ is a vector of
parameters of the function of the number of trades and volume f(N, V ).

Besides the particular cases of the linear functions:

• flin(N) = β̆NN + γ̆N , and

• flin(V ) = β̆V V + γ̆V

mentioned above, we propose separate quadratic forms for N and V :

• fquad(N) = α̂NN2 + β̂NN + γN , and

• fquad(V ) = α̂V V 2 + β̂V V + γV .

With their results presented in Table 3. The conditional returns constructed
in this way will be, by construction, at least as close to Gaussian as those
conditioned on the linear function, since the latter is a quadratic with α̂ = 0.
As discernible in Table 3, these conditional returns are approximately Gaussian
for the two sub-periods with less volatility.

If the relation between the stochastic clock of the market and the number of
trades (or volume) is linear, whenever there is a change in trading activity17 the
“clock” of the market will only be affected by the magnitude of this change, e.g.
an increment in activity from 10 trades per minute to 11 trades per minute will
have the same effect on the “clock” of the market as an increase from 110 to 111
trades per minute due to the constant slope of the lineḟootnoteThe same is true
if the volume is used instead of the trades. By allowing for the relation between
the number of trades (or the volume) and the stochastic clock of the market to
be non-linear, the relative size of the change can be taken into account. Going
back to the previous example, an increment in activity from 10 to 11 trades/min
can now have a different effect on the clock of the market than the increment
from 110 to 111 trades/min, i.e. an increase in activity has a greater effect on
the operational time when activity is already high than when it is low. The
estimated functions for the linear and quadratic forms mentioned above are
shown (together with their estimated parameters) in Tables 5 to 8.

In order to allow for asymmetric responses of the market to upward and
downward price movements, i.e. for the possibility that the market’s clock will
react differently to changes in activity when returns are positive than when they
are negative, the function of the number of trades can be constructed having
two separate components:

f∓lin(N) =
{

β̆−NN(ti) + γ̆−N if R(ti) < 0
β̆+

NN(ti) + γ̆+
N if R(ti) ≥ 0

, (27)

where β̆∓N and γ̆∓N are parameters that must be estimated by minimising the
JB statistic as described in (26). A similar function can also be written for the
volume as f∓lin(V ) = (β̆−V V + γ̆−V )1{R(ti)<0} + (β̆+

V V + γ̆+
V )1{R(ti)≥0}. Returns

conditioned on these functions will have JB statistics at least as low as the
16The same minimisation problem can be solved for Rop, Nop and Vop, yielding conditional

returns Rop
N,V

17Measured as an increase (or decrease) of the number of trades (or volume) per time
interval.
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simple linear functions flin( · ), since the latter is a specific case of (27) when
β̆− = β̆+ and γ̆− = γ̆+. The skewness, kurtosis and JB statistics of the returns
conditional on f∓lin( · ) can be seen in Table 4, with the values of the estimated
parameters and plots of the functions shown in Tables 5 to 8. As expected,
these returns are closer to Gaussian than those conditioned on the simple linear
function. One can also observe that dealing with negative and positive returns
separately has substantially lowered the skewness of the conditional returns in
most sub-periods when compared with those from the simpler linear function.

The quadratic function can also be modified so that the effect of the changes
in activity on the clock of the market will differ depending on the sign of the
returns, this will be addressed by using the function

f∓quad(N) =
{

α̂−NN(ti)2 + β̂−NN(ti) + γ̂−N if R(ti) < 0
α̂+

NN(ti)2 + β̂+
NN(ti) + γ̂+

N if R(ti) ≥ 0
, (28)

which by construction will give conditional returns that are at least as close to
normal as those obtained when conditioning on the simple quadratic function
fquad( · ). The skewness, kurtosis and JB statistics of the returns conditioned
on this type of function are presented in Table 4 and the estimated functions
(along with the estimated parameters) are shown in Tables 5 to 8.

6.2 Returns conditional on trades and volume

It was mentioned in Section 6.1 that the appropriate process under which the
returns are Gaussian could be a function of both the number of trades N and of
the volume V simultaneously (i.e. f(N, V ) in equation 26). However, so far we
have only considered the cases when the relation is given by either a function of
trades or by a function of volume. We can relax this assumption and consider
the following function of both:

f(N,V ) = α̃NN2 + α̃V V 2 + α̃NV N · V + β̃NN + β̃V V + γ̃ , (29)

where the parameters are once more estimated according to (26). Yet again,
returns conditional on (29) will be closer to Gaussian than those conditioned on
flin( · ) and fquad( · ), since the former two functions are special cases of f(N,V ).
The skewness, kurtosis and JB statistics of the returns conditional on f(N, V )
are given on Table 4.

7 Summary and conclusions

The notion that financial markets have their own “operational” time different
from the usual calendar time has been examined throughout this paper by focus-
ing on the relationship between market activity – proxied by number or trades
or volume – and the processes under which returns are normal. These pro-
cesses are assumed to be determined by a function of the (cumulative) number
of trades and/or the (cumulative) volume, with several parametric forms of this
function where estimated.

Even though calendar returns are evidently non-normal, with high skewness
and excess kurtosis, these same returns conditional on the (re-centered) number
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of trades or (re-centered) volume are closer to Gaussian. Other processes un-
der the number of trades and/or volume where also investigated, including the
case when a change in activity has different effects on the clock of the market
depending on the sign of the return associated with that change, and the case
when the effect is dependent not only on the size of the change but on its overall
level.

As indicated by the results, skewness of the conditional returns can be greatly
reduced by allowing the effect of a change in activity to be asymmetric, while
kurtosis can be dealt with by making the stochastic clock of the market react
more to changes in activity when activity is high than when it is low. A last
approach was to utilize a function of both number of trades and volume in order
to find the conditional returns.

Tick-data of FTSE 100 index futures was used in order to construct 10
minute returns spanning an interval of over three years. This data was sepa-
rated into four sub-periods with very different levels of volatility, skewness and
kurtosis. Conditioning on the number of trades and/or volume via different
functions produces returns that are Gaussian only for the two least volatile sub-
periods, however, normality was not recovered in the other two sub-periods.
These last results could indicate that the link between the operational time
of the market and the number of trades and volume during turbulent times
could be more complex than the relations proposed in this paper. Nonetheless,
the simple relationships that have been forward succeed in explaining possible
connections between changes in market activity and skewness and kurtosis of
returns.

Finally, a last remark must be made regarding the autocorrelation of re-
turns. Although the fact that asset returns possess significant autocorrelation
properties18 was not addressed in this study, one could conjecture that this au-
tocorrelation arises as a result of autocorrelation in the process followed by the
number of trades (volume), i.e. intervals with high (low) market activity –as
gauged by the number of trades (volume)– will be followed by other intervals
of high (low) activity. This final observation leads us to believe that future
research should not only improve the understanding of the number of trades
and volume as factors that determine the operational time of the market, but
also towards developing appropriate models for the process of number of trades
(and volume) that will also explain other autocorrelation properties.

18Of particular importance is the autocorrelation of the squared returns (or of their absolute
values).
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A Intraday patterns for trades and volume
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Figure 6: Diurnal component of the (cumulative) number of trades. Top: The deter-
ministic component for the four different sub-intervals as computed by counting the
number of trades during 10 minute intervals. Bottom: The same components com-
puted using the differential operator. In both cases the number of trades have been
divided by 10 in order to show number of trades per minute. The diurnal components
show that although the overall level of trading appears to have increased throughout
the four sub–periods, the third sub-period (red) had the highest activity measured by
the number of trades. The sudden increase in activity when the US markets open can
also be observed.
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Figure 7: Diurnal component of the (cumulative) volume. Top: The determinis-
tic component for the four different sub-intervals computed by observing the volume
traded during each 10 minute interval. Bottom: The same components computed
using the differential operator. In both cases the (cumulative) volume has been di-
vided by 10 in order to show volume per minute. The diurnal components show that
although the overall level of traded volume appears to have increased throughout the
four sub-periods, the third sub-period (red) had the highest activity measured by vol-
ume traded. The sudden increase in activity when the US markets opens can also be
observed.
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B Descriptive statistics and estimated functions

Interpolation Differential operator
r(ti) N ′(ti) V ′(ti) rop(ti) N ′

op(ti) V ′op(ti)

Mean −0.72×10−5 209.6658 708.0336 −2.30×10−5 211.3711 714.3638
Std. Dev. 0.0015 163.9125 669.7818 0.0013 160.7792 641.4822
Skewness -0.3980 1.7430 3.1575 -0.2963 1.7225 2.7640
Kurtosis 19.0380 7.2247 24.9928 16.7210 7.1448 17.1376
Max 0.0200 1,828.9994 15,840.4286 0.0205 1,755.0532 9,529.9379
Min -0.0338 4.6957 8.2570 -0.0193 6.8972 14.5178

Table 1: Descriptive statistics of calendar returns, (cumulative) number of
trades and (cumulative) volume at intervals of 10 minutes. Computed using
an usual interpolation scheme (left) and via the differential operator (right).
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Table 2: Left: Descriptive statistics of the 10 minute calendar returns. Computed
using an usual interpolation scheme (r(ti)) and via the differential operator (rop(ti)).
Right: Descriptive statistics of the 10 minute calendar returns where the intraday
volatility component has been removed. In almost all cases taking into account the
diurnal component reduces the skewness and kurtosis considerably.
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Table 3: Skewness, kurtosis and JB statistic of the conditional returns. Left: Returns
conditional on the (re-centered) number of trades, and conditional on the (re-centered)
volume. Right: Returns conditional on a quadratic function of the number of trades
fquad(N) and a quadratic function of the volume fquad(V ). With lower skewness and
kurtosis much closer to 3 for all subperiods (compared with the returns in Table 2),
conditional returns are much closer to Gaussian and in some cases (bold) their JB
statistics are lower than the critical value at 1% significance level.
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Table 4: Skewness, kurtosis and JB statistic of the conditional returns. Left: Returns
conditional via linear function f∓lin( · ). Middle: Returns conditional via quadratic
function f∓quad( · ). Right: Returns conditional on fquad(N, V ) – a quadratic function
of the trades and volume. The conditional returns with JB statistics lower than the
critical value at 1% significance level are shown in bold.
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f(N) = 1.54N − .007
f(N) = 1.71N − .006
f(N) = 1.78N − .127
f(N) = 1.67N − .076
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Table 5: Estimated function (and parameters) of the number of trades, where
the returns and number of trades have been computed by usual interpolation
sampling.

27



f(V ) = 1.57V + .083
f(V ) = 1.84V − .065
f(V ) = 1.82V − .081
f(V ) = 1.57V + .15
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Table 6: Estimated function (and parameters) of the volume, where the returns
and volume have been computed by usual interpolation sampling.
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f(N) = 1.59N − 0.05
f(N) = 1.71N − 0.08
f(N) = 1.75N − 0.13
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f(N) = (.600N2 + .223N + .347)1{R<0}
+(.820N2 + .117N + .304)1{R≥0}

f(N) = (4.88N2 − 2.99N + .591)1{R<0}
+(2.49N2 − 1.96N + .646)1{R≥0}

f(N) = (1.18N2 + .000N + .248)1{R<0}
+(1.22N2 + .132N + .225)1{R≥0}

f(N) = (.207N2 + .421N + .350)1{R<0}
+(.126N2 + .671N + .197)1{R≥0} 8 6 4 2 0 2 4 6 8
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Table 7: Estimated function (and parameters) of the number of trades, where
the returns and number of trades have been computed by sampling of the op-
erator.
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f(V ) = 1.49V + 0.10
f(V ) = 1.78V − 0.07
f(V ) = 1.81V − 0.11
f(V ) = 1.52V − 0.14
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f(V ) = (1.71V − .114)1{R<0}
+(1.65V + .004)1{R≥0}

f(V ) = (1.77V − .070)1{R<0}
+(1.78V − .074)1{R≥0}

f(V ) = (1.83V − .129)1{R<0}
+(1.81V − .110)1{R≥0}

f(V ) = (1.63V + .013)1{R<0}
+(1.48V + .197)1{R≥0}
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f(V ) = (.895V 2 + .448V + .173)1{R<0}
+(.421V 2 + 1.12V + .072)1{R≥0}

f(V ) = (2.04V 2 − 1.11V + .473)1{R<0}
+(2.38V 2 − .561V + .208)1{R≥0}

f(V ) = (.792V 2 + .596V + .173)1{R<0}
+(.619V 2 + .972V + .055)1{R≥0}

f(V ) = (.227V 2 + 1.27V + .113)1{R<0}
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Table 8: Estimated function (and parameters) of the volume, where the returns
and volume have been computed by sampling of the operator.
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