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Abstract

This paper explores the di¤erences and relative goodness of �t of
two term structure models, the CIR two factor model and a two factor
essentially a¢ ne model, EA1(2). The latter model generates correla-
tion between the factors and time-varying risk premia. However these
characteristics increase the complexity of the model and is therefore
computationally more intensive. The comparison is made using data
that incorporates both Black Wednesday and the 2008 credit crisis,
covering the widest range of short term rates in recent UK history.
It is found that the added complexity of the essentially a¢ ne model
only marginally improves the �t to the UK term structure for the time
period studied. Both models provide a good �t to the observed yield
curve.

1 Introduction

Over the past few years, researchers and �nance practitioners have focused
on the accurate modelling of the term structure. One of the main goals has
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been to try to understand the dynamics and to create an accurate model
that �ts the observed yield curve both at the long and short end. The �rst
models employed were the so called a¢ ne models where the bond yields were
assumed to be a¢ ne (constant plus linear) functions of some state variable.
These types of models were favored due to their tractability and �exibility.
The initial impetus was provided by Vasicek (1977) and Cox, Ingersoll and

Ross (1985) (CIR hereafter), who assumed that the instantaneous interest
rate (or short rate) was an a¢ ne function of a single factor, the state variable.
The short rate was modelled as a di¤usion where both the drift and the
di¤usions terms were a¢ ne functions of the short rate itself. Other models
were later developed by Ho and Lee (1986), Hull and White (1990) and
Longsta¤ and Schwartz (1992) who introduced stochastic volatility, among
other features.
The Vasicek and CIR models remain popular as both models have the ad-

vantage of being a¢ ne and tractable as well as yielding a simple close form
solution for the bond price. The CIR model has an advantage over the Va-
sicek model as it assures positive rates. However as highlighted by Canabarro
(1985), single factor models, when estimated empirically, do not accurately
�t the observed yield curves which led to multifactor generalisations.
The multifactor CIRmodel has been investigated by various authors, Chen

and Scott (2003), De Jong (1998), Duan and Simonato (1999), Geyer and
Pichler (1999) and De Jong and Santa Clara (1999) focusing on US data and
Nath and Nowman (2001) on UK data. The general �nding is the poor �t
of the single factor CIR model, for example Chen and Scott (2003) reported
measurement errors greater than 100 basis points for the single factor model
while for the two factor model the errors did not excedeed 35 basis points
providing a signi�cant improvement.
The CIR model and its multifactor generalisations lie within the category

of completely a¢ ne models (Du¤ee 2002). The market price of risk is given
by a constant parameter that implies a¢ ne dynamics in both the real and
risk neutral measure. Du¤ee (2002) went further and introduced essentially
a¢ ne models. In these models, the price of risk is not completely de�ned
by the variation of the volatility of the yields, implying that the price of
risk can vary independently. The simplest multifactor model with correlated
factors and essentially a¢ ne characteristics (denoted by �E�) is, the EA1(2)
model. Following the notation of Dai and Singleton (2000), the model has
two factors but only one of them determines the conditional variance of the
factors or state variables.
Du¤ee�s insight was to allow for time varying risk premia and with this

added �exibility generated an improved �t to the U.S. Treasury term struc-
ture. However this is at the cost of an increase in mathematical complexity
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and the number of parameters (e.g. the EA1(2) model has four more para-
meters than the two factor CIR model which has eight). Dai and Singleton
(2000) also concluded the need for correlation among the state variables and
time varying volatility. Cheridito et al. (2007) compared di¤erent market
price of risk speci�cations and using likelihood ratio statistics showed that
their extended a¢ ne speci�cation �tted better than the completely a¢ ne
model. Driessen (2005) also employed the EA1(2) model to �t the term
structure of interest rates for his study on the decomposition of corporate
bond spreads. These studies focused on US data and support the use of the
EA1(2) model to �t the term structure.
The term structure models studied in this paper are calibrated using a

panel approach as implemented by Chen and Scott (2003). This approach
avoids the disadvantages of the cross section and time series approaches by
taking into account both the dynamics of the model and the observed yields.
The actual implementation is achieved by representing the problem in a
state space form and combining the Kalman Filter (described in Section
2.4) with a maximum likelihood (or a quasi maximum likelihood) approach.
Alternative methodologies have been used in the literature to estimate or
model the term structure based on the CIR model. Some examples include
the E¢ cient Method of Moments used by Dai and Singleton (2000), and the
Maximum Likelihood Method used by Chen and Scott (1993).
Di¤erent calibration methods have di¤erent disadvantages, some use prox-

ies, others are less e¢ cient or are computationally expensive. Speci�c to the
Kalman Filter, it has been noted in the literature that for non Gaussian mod-
els such as the CIR model, the Kalman �lter can not give an exact maximum
likelihood, instead an approximation is done to generate a quasi maximum
likelihood. Chen and Scott (2003), Lund (1997) and Duan and Simonato
(1999) validated the methodology by showing in Monte Carlo experiments
that although there is a bias in the estimators, it is negligible. These results
imply that the quasi maximum likelihood is an appropriate approach to use.
The motivation for this paper is to compare the relative �tness that both

the CIR two factor and EA1(2) model give to the UK term structure from
February 1992 until April 2009. The UK term structure has seen a sharp
decrease in rates following actions to help alleviate the recent credit crisis.
The 6-months rate has decreased from 5% to 0.6% between 2007/08 and
across the whole period, the yield has ranged between 10.59% and 0.6%.
This paper focuses on modelling the UK term structure for a time period
that includes Black Wednesday (16th September 1992) and the credit crisis
of 2008.
The rest of this paper is organized as follows: Section 2 presents the two

factor CIR and EA1(2) model, the state space formulation and the Kalman
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�lter. Section 3 consists of the empirical results and analysis, and Section 4
concludes.

2 Theoretical Framework

This section outlines the general theoretical framework followed by a descrip-
tion of the two factor CIR and the EA1(2) model. The section concludes with
a description of the Kalman �lter methodology and in particular the trans-
formation of the two models to state space form.

2.1 Term Structure

A common group of models used to characterize the term structure are the
so-called a¢ ne models. Bond yields are linearly related to the underlying
state variables. Di¤erent states create di¤erent bond prices implying that
the dynamics of the term structure depends on the evolution of the state
variables. The mathematical framework is outlined below. Hereafter the
superscript Q is used to di¤erenciate the risk neutral measure from the P or
�real-world�measure.
The time t price of a default free zero coupon bond expiring at time T

(Du¢ e and Kan (1996)), is given by the following expression:

P (t; �) = EQt

�
exp

�
�
Z T

t

r (s) ds

��
(1)

where r is the (instantaneous) risk free rate and EQ is the risk neutral expec-
tation. Given that the instantaneous rate is known it is su¢ cient information
to be able to characterize the whole term structure. Du¢ e and Kan(1996)
show that equation (1) can also be expressed in the following way, where the
price P (t; �) of a discount bond that matures in � = (T � t) years can be
given by:

P (t; �) = exp (A (�)�B (�) r (t)) : (2)

In equation (2) r(t), also known as the short rate, can be modelled within a
single or a multifactor framework. In both cases, the short rate is an a¢ ne
function of unobservable N -state variables, represented by the vector Y (t).
In its most general form, the short rate is de�ned as

r (t) = �0 + �
0
yY (t) (3)

where Y0 (t) = (Y1 (t) ; Y2 (t) ; :::; YN (t)), �0 represents a constant term and
�0y = (�1; �2; :::; �N), a vector of state variable loadings. The vector Y (t)
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follows the following process (Dai and Singleton (2000))

dY (t) = KQ
�
�Q �Y (t)

�
dt+�

p
S (t)dWQ (t) : (4)

In the above, KQ and � are N � N matrices, �Q is a N -vector, WQ is a
N -dimensional independent Wiener process, while S (t) is a N �N diagonal
matrix with diagonal elements (conditional variances) given by

[S (t)]ii = �i + �
0

iY (t) for i = 1; N (5)

where �i is a constant and �i is a N -vector.
Given the dynamics of the short rate and the expressions for A (�) and

B (�) ; the bond price may be calculated using equation(2) where A (�) and
B (�) satisfy the following ordinary di¤erential equations

dA (�)

d�
= �(�Q)0(KQ)0B (�) +

1

2

NX
i=1

[�0B (�)]
2
i �i � �0 (6)

dB (�)

d�
= �(KQ)0B (�)� 1

2

NX
i=1

[�0B (�)]
2
i �i + �y (7)

with initial conditions A (0) = 0 and B (0) = 0N�1 (see Dai and Singleton
2000). In general the ODEs have to be solved numerically however for some
models such as the multifactor CIR model, analytical expressions can be
derived.
For empirical studies equation (4) must be expressed under the real or

objective measure P . To change the measure some assumption about the
market price of risk is necessary. Du¤ee(2002) characterizes completely a¢ ne
models as those where the price of risk vector �(t) is given by �(t)=

p
S(t)�

where � is a N -vector of constants. From Girsanov�s Theorem

dWQ(t)= dW(t)+�(t)dt; (8)

replacing equation (8) in equation (4) yields the P dynamics which are given
by (see Dai and Singleton 2000)

dY (t) = K (� �Y (t)) dt+�
p
S (t)dW (t) (9)

where
K = KQ���

and
� = K�1 �KQ�Q +�	

�
:

The ith row of � is given by �i�
0

i and 	 is an N -vector with elements �i�i.
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2.2 Two Factor CIR Model

This section reviews the formulation and speci�cation of the uncorrelated
two factor (N = 2) CIR model (see Chen and Scott 2003). The model is
presented under the P measure in the following SDEs:

dYi(t) = �i (�i � Yi(t)) dt+ �i
p
Yi(t)dWi(t) for i = 1; 2: (10)

The two state variables are independent, W1(t) and W2(t) are independent
Wiener processes. The parameters �1and �2 represent the speed of mean re-
version of the short rate for each individual process, while �1and �2 represent
the risk neutral long run mean, and �1 and �2 the volatility of the factors.
The form of the CIR di¤usion restricts the resulting rates to be positive and
only when the condition 2�i�i > �2idoes not hold, rates can become zero.
Equation (10) can also be expressed under the Q measure, by introducing

the market price of risk (�). The CIR model is a completely a¢ ne model
where the transformation of measures is straightforward since (see Nawalkha
2007)

�(t)i = �i
p
Yi(t)=�i:

This transforms equation (10) to the following expression for the risk neutral
dynamics of the two factor CIR model:

dYi(t) = (�i�i � (�i + �i)Yi(t)) dt+ �i
p
Yi(t)dW

Q
i (t): (11)

The bond price formula in equation (1) is given by

P (t; �) =
2Q
i=1

Ai (�) exp

�
�

2P
i=1

Bi (�)Yi (t)

�
: (12)

The ODEs in equations (6) and (7) can be solved analytically for the CIR
model giving a close form solution for the bond price and are given by the
following equations (see e.g. Geyer and Pichler 1999)

Ai (�) =

"
2
i exp

�
1
2
(�i + �i + 
i) �

�
2
i + (�i + �i + 
i) (exp (
i�)� 1)

# 2�i�i
�2
i

(13)

Bi (�) =
2 (exp (
i�)� 1)

2
i + (�i + �i + 
i) (exp (
i�)� 1)
(14)


i =

q
(�i + �i)

2 + 2�2i : (15)

The above equations determine the bond price under the two factor CIR
model, with parameters to be determined from the empirical data via the
Kalman �lter method.
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2.3 The EA1(2) model

This section outlines the framework for the more general two factor essentially
a¢ ne model. The EA1(2) notation follows from Dai and Singleton (2000)
which denotes that the model has two factors but only one of them determines
the conditional variance of Y. The EA1(2) model is represented by the
following matrix equation�
dY1 (t)
dY2 (t)

�
=

�
�11 0
�21 �22

� �
�1 � Y1 (t)
�Y2 (t)

�
dt+

�p
Y1 (t) 0

0
p
1 + �21Y1 (t)

� �
dW1 (t)
dW2 (t)

�
(16)

which is a canonical representation of equation (9)(see e.g. Driessen 2005).
For an arbitrary choice of parameters, the general speci�cation of equation
(9) is not admissible1, and constraints to the drift parameter (K and �)
and di¤usion coe¢ cients � need to be imposed (� is the identity matrix
under the canonical representation). Dai and Singleton (2000) speci�ed ad-
ditional parametric restrictions to ensure admissibility, for the essentially
a¢ ne EA1(2) the restrictions:

�2 � 0; �21 � 0; �1 > 0; �21 � 0; �11 > 0: (17)

Equation (16) illustrates the �rst factor follows a similar speci�cation as the
CIR model however the second factor is coupled to the �rst factor. For
this reason this model is considered to be correlated as both processes have
common factors; the Wiener processes however are still independent.
The EA1(2) processes are expressed under the P measure but bond prices

are estimated under the risk neutral measure. The transformation between
one measure and the other is determined by the form of the bond risk premia
as discussed before. For the EA1(2) model presented in this paper the price
of risk follows (Du¤ee (2002))

�(t)=
p
S(t)�1 + S(t)

��2Y (t)

and explicitely given by the following equation:

� (t) =

�p
Y1 (t) 0

0
p
1 + �21Y1 (t)

� �
�1(11)
�1(21)

�
+ (18)�

0 0

0 (1 + �21Y1 (t))
� 1
2

� �
0 0

�2(21) �2(22)

� �
Y1 (t)
Y2 (t)

�
1Dai and Singleton (2000) de�ned an admissible model as a speci�cation of equation(9)

where the resulting values of S(t)ii are strictly positive for all i.
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In the above equation the �rst part of the equation corresponds to the com-
pletely a¢ ne speci�cation (� (t)=

p
S(t)� ) where there is only one market

risk parameter per factor. The second part of the equation corresponds to
the additional �exibility that the essentially a¢ ne model allows.
To express equation (16) in the risk neutral measure (for bond pricing

purposes), the P measure drift parameters need to be transformed into their
corresponding Q measure given the form of the price of risk given in equation
(18); the following are the transformed parameters (Du¤ee 2002):

KQ = K+�+ I��2 (19)

�Q =
�
KQ
��1

(K� �	) ; (20)

where � is a 2 � 2 matrix with the ith row is de�ned by �1i�0i, and 	 is
a 2 � 1 vector with the ith element given by �1i�i. I� is a 2 � 2 diagonal
matrix with I�ii = 1 if S

�
ii 6= 0, I�ii = 0 if S�ii = 0. The various parameters

are estimated using the Kalman Filter described in the following section.

2.4 The Kalman Filter

The Kalman Filter methodology combined with a quasi maximum likelyhood
approach is used to estimate the model parameters. This methodology is
useful as it treats the short rate as the unobservable variable and uses its
relationship with observable yields to estimate model parameters and a time
series of the factors. The Kalman Filter is a recursive estimator that has
been used in the context of a¢ ne term structure modelling in the studies of
Duan and Simonato (1999), Lund (1997), and De Jong (1998) among others.
This technique is well suited for this class of problem as the underlying
state variables are not observable. The state variables are �ltered using
the relationship between the observed variable (bond yields) and the state
variables (measurement equation) and the dynamics through time of the state
variables (transition equation).
The measurement equation is used in the updating phase of the �lter

while the transition equation is used in the prediction phase. Once the
equations are established the standard recursive steps are implemented to
generate, through the Kalman gain, a minimum mean square error of the
state variables. The recursive inferences are used to construct and maximize
a log-likelihood function to �nd the optimal parameter set. To incorporate
the above into the CIR and EA1(2) models it is necessary to express the
models in a state space form. The following section outlines this form for the
di¤erent models studied in this paper.
For both models the instantaneous nominal interest rate is assumed to be

the sum of two state variables as observed in equation (3). The speci�cation
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of the CIR model implies that �0 = 0 and �y = (1; 1), i.e. the short rate is
just the sum of the individual factors. For the EA1(2) model, �0 and �y are
not predetermined, instead these parameters are estimated by the Kalman
�lter.

2.4.1 Transition Equation

The CIR and EA1(2) models are continuous time models. However for the
state variable estimation they need to be time discretized (for convenience
the time dependence will be denoted by subscripts). The transition equation
is recursive and de�nes how the state variable evolves through time. As
demonstrated by Bolder (2001) and Chen and Scott (2003), the transition
equation can be expressed in the following way:

Yt = C+HYt�1 + "t (21)

Yt, represents the state variable vector for time t. In the above, C (2 � 1
vector) and H (2� 2 matrix) follow from the mean of the transition density
of r (t) over a discrete time interval and "t denotes a vector of noise terms.
The details of the derivation can be found in Bolder (2001). For the CIR
model elements of C are given by

Ci = �i (1� exp (��i�t)) for i = 1; 2 (22)

where �t denotes the time step of the discretization (�t = 1=52 for weekly
data): For the CIR modelH is a diagonal matrix where the diagonal elements
are given by:

Hii = exp (��i�t) (23)

The last term in the transition equation is a noise term that is assumed to
follow a normal distribution, "it � N (0;Qt) where Qt is a N � N matrix.
The elements of Qt represent the variances of the transition densities of the
factors which are employed by the Kalman Filter. For the CIR model these
values depend on the previous estimate (�ltered value) of the factor denoted
by bYi;t�1. As the CIR two factor model is uncorrelated, Qt is a diagonal
matrix with elements given by Bolder (2001):

qii =
�i�

2
i

2�i
(1� exp (��i�t))2 +

�2i
�i
(exp (��i�t)� exp (�2�i�t)) bYit�1:

(24)
For the EA1(2) model the expression for the transition equation is modi�ed

(see Du¤ee 2002) as

Yt = (I� exp (�K�))� + exp (�K�)Yt�1 + "t (25)
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where I is the identity matrix and K is a 2 � 2 matrix. The conditional
variance for the EA1(2) model is more complex than for the CIR model.
The Qt matrix is given by (Du¤ee 2002):

Qt = Nb0N
0 +

NX
i=1

 
NX
j=1

NbjN
0N�1

i;j

!
Yi;t (26)

The speci�c forms of the di¤erent elements of equation (26) are given in
Du¤ee (2002) and summarized in the appendix.

2.4.2 Measurement Equation

The second equation that is key to the Kalman �lter methodology is the mea-
surement equation which is identical for both the CIR and EA1(2) model. It
is derived from the relation expressed in equation (2). It describes the inter-
action between the observable variable,M -zero coupon yields Zt = (z1;:::zM)
with term to maturity � = (� 1 ; :::; �M) and the unobservable variable (the
short rate). The measurement equation is obtained from the following rela-
tionship, where the subscript M denotes a speci�c maturity

ZM;t = �
ln(PM (t; �))

�M
=

2P
i=1

�
� lnAi (�M)

�M
+
Bi (�M)Yt;i

�M

�
(27)

where P (t; �) is given by equation (12). From equation (27) the measurement
equation is derived and it is given by

Zt = eA+ eBYt +Vt (28)

where Zt represents a M � 1 vector of the continuously compounded yields
extracted from the yield curve. eA and eB correspond to the two last ex-
pressions in equation (27). The additional term, Vt; is a M -vector of noise
terms. This term re�ects the assumption of small measurement errors in the
bonds prices. For the purpose of this paper the error terms are assumed to
be uncorrelated across di¤erent maturities following Chen and Scott (2003).
The noise term is assumed to followVt � N (0;R) , where R is a diagonal

M �M matrix where the variance of the measurement errors are denoted
by r2M . These elements are part of the set of parameters that are estimated
with the Kalman �lter and the maximum likelihood method. The standard
deviation of the errors are an indication of the goodness of �t of the model.
The transition equation for six di¤erent maturities and two factors employed
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in this work is set out below:26666664
Zt;1
Zt;2
Zt;3
Zt;4
Zt;5
Zt;6

37777775 =
2666666664

P2
i=1

� lnAi(�1)
�1P2

i=1
� lnAi(�2)

�2P2
i=1

� lnAi(�3)
�3P2

i=1
� lnAi(�4)

�4P2
i=1

� lnAi(�5)
�5P2

i=1
� lnAi(�6)

�6

3777777775
+

2666666664

B1(�1)
�1

B2(�1)
�1

B1(�2)
�2

B2(�2)
�2

B1(�3)
�3

B2(�3)
�3

B1(�4)
�4

B2(�4)
�4

B1(�5)
�5

B2(�5)
�5

B1(�6)
�6

B2(�6)
�6

3777777775
�
Yt;1
Yt;2

�
+

26666664
Vt;1
Vt;2
Vt;3
Vt;4
Vt;5
Vt;6

37777775 : (29)

Once the measurement and transition equations are established the stan-
dard Kalman Filter recursions are implemented to generate and estimate
the state variables. For each point in time a measurement prediction error
and a prediction error covariance matrix were estimated to construct the
log-likelihood function. The optimization (given the restrictions in equation
(17)) of the log-likelihood estimators were achieved using a Genetic Algo-
rithim which has the advantage of not requiring initial values and is well
suited in situations where search spaces are rough.

3 Empirical Analysis and Results

3.1 Data Description

The data used for this paper consists of weekly UK zero coupon yields from
12 February 1992 to 29 April 2009 shown in Figure 1. The data was obtained
from the Bank of England�s Statistics Section website2.

Mar93 Dec95 Sep98 May01 Feb04 Nov06
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 (%
)

Figure 1: UK Term Structure (Feb 92 - Apr 09).

2http://www.bankofengland.co.uk/statistics/yieldcurve/index.htm
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Following Nath and Nowman (2001) the observations were sampled on
Wednesdays to avoid the weekday e¤ects or missing data due to bank hol-
idays. To characterize both the short and long end of the yield curve, six
maturities were considered: 0.5, 1, 5, 10, 15 and 20 years. For each maturity
there are 899 data points. For the six month maturity the complete data set
was not available for few days previous to January 1997. Given the current
methodology the Bank of England uses, the reason for unavailable data could
be either there were no bonds with this maturity or the bonds were not liquid
enough to be included in the Bank�s yield estimation. Regression analysis
was used to estimate the missing points (0.94% of the data). Table 1 shows
the statistical summary of the data.

Maturity (years) Mean (%) Standard Deviation (%)
0:5 5:3028 1:4595
1 5:3447 1:4505
5 5:7586 1:5342
10 5:8432 1:5919
15 5:8248 1:6341
20 5:7573 1:6760

Table 1: UK Data Summary

3.2 Two Factor CIR and EA1(2) Model Results

The results of the parameter estimation for the two factor CIR model are
presented in Table 2. As time is measured in years, all the parameter val-
ues are expressed on an annual basis. The variance parameters are both
signi�cant. The market price of risk parameters are both negative implying
positive excess returns. Investors demand higher expected excess returns in
compensation for holding extra risk, however neither of these parameters are
statistically signi�cant. As for b� and b� both are not signi�cant for the second
factor as well as the values for br1, br3, br5. These results are consistent with
the results of Chen and Scott (2003).
The values of the standard deviation of the measurement errors (rM) show

that there is a better �t for the 15 year yield as its value is the lowest, 4 basis
points. The largest is for the 5 year yield with 36 basis points. In respect
to the speci�c value of the parameters the �rst factor is characterized by a
very small long run mean and speed of mean reversion. On the contrary,
the second factor has a mean level of 3.7% and a much faster speed. The
volatility values are very similar just short of 7%. The predominance of one
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factor�s speed has been found in previous studies as well (Chen and Scott
2003).

Parameters �1 �2 �1 �2 �1 �2 �1
Estimate 0:0001 0:0376 0:0662 0:0690 0:0001 0:3641 �0:0471
Std Error 0:0472 0:0051 0:0118 0:0159 0:0675 0:0735 0:0591

Parameters �2 r1 r2 r3 r4 r5 r6
Estimate �0:0249 0:0019 0:0014 0:0036 0:0018 0:0004 0:0012

Std Error 0:0530 0:0023 0:00001 0:0092 0:0005 0:0010 0:0003

Table 2: Two Factor CIR Results

The results of the parameter estimation for the EA1(2) model are pre-
sented in Table 3. As discussed by Cheridito et al. (2007), the state vari-
ables in the EA1(2) are not easily interpreted. The intuitive interpretation
of the CIR model is lost as the state variables are only indirectly related to
the term structure through the bond pricing formula. The sum of the state
variables do not constitute the short rate as in the CIR model but the sum
of a constant and the scaled factors. However the standard deviation of the
measurement errors are still a measure of relative goodness of �t. As shown
in Table 3 these parameters are between less than 1 basis point (for both the
1 and 15 years yield) and 33 basis points. The estimates for the constant
term of the instantaneous rate, b�0, is 1.79%, while the values of the coe¢ -
cients b�1 and b�2 are quite small. All parameters are statistically signi�cant
except for b�11, b�21, br2, br5.
Parameters Estimate Std. Error Parameter Estimate Std. Error

�11 0.0002 0.0003 �1(21) 0.0878 0.0002
�21 -0.0001 0.0042 �2(21) -4.4497 0.0086
�22 0.2321 0.0035 �2(22) 0.0223 0.0035
�1 29.6943 0.7542 r1 0.0022 4.08E-05
�0 0.0179 0.0003 r2 1.74E-05 0.0001
�1 -0.0011 2.02E-05 r3 0.0033 0.0001
�2 0.0011 3.29E-07 r4 0.0016 2.21E-05
�12 39.5291 0.0971 r5 1.01E-05 3.81E-05
�1(11) -0.0067 0.0004 r6 0.0010 1.29E-06

Table 3: Parameter estimates for the EA1(2) Model
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To further investigate the results and as a comparative metric, di¤erent
errors were measured for each of the maturities; root mean square error
(RMSE), mean error (ME) and mean absolute error (MAE). These errors
were calculated comparing the �ltered yields with the observed ones. The
�ltered yields were estimated using the parameters given by the maximum
likelihood estimation and using the �ltered factors in the measurement equa-
tion. The standard deviation and mean absolute deviation of the errors were
also estimated and shown in Table 5.

Two Factor CIR model EA1(2) model
Maturities (years) MAE RMSE MAE RMSE

0.5 0.0013 0.0017 0.0017 0.0022
1 0.0008 0.0013 0.0001 0.0005
5 0.0026 0.0036 0.0022 0.0032
10 0.0012 0.0018 0.0011 0.0016
15 0.0001 0.0002 1.66E-05 0.0001
20 0.0009 0.0011 0.0008 0.0010

Table 4: Mean Errors (in sample)

Table 4 shows in accordance to the standard deviation of the measurement
errors, that the best �t in the Two Factor CIR model was for the 15 year
yield. The RMSE is only 2 basis points while for the other maturities the
errors are between 11 and 36 basis points. These errors are quite small and
comparable with the results of Nath and Bowman (2001) and therefore the
two factor CIR model can be said to be appropriate to �t the UK term
structure for the period studied in this paper. As for EA1(2) model the
RMSE showed the best �tted yield is also 15 year followed by the 1 year yield,
while the others show errors between 10 and 32 basis points. Comparing the
RMSE for both the models studied, the EA1(2) model shows slightly lower
RMSE errors across most maturities. An average across maturities shows
a di¤erence of 2 basis points between the two models. Table 5 shows the
standard deviation and the mean absolute deviation of the errors for both
models. For most of the maturities the error standard deviation is lower for
the EA1(2) model.
Although testing rigously the goodness of �t of any of the models used in

this paper is not a trivial problem, a measure that can be used, in addition to
the pricing errors of the yields used in the estimation, are the out of sample
errors. The latter are given in Table 6 and support the good �t of both
models. The out of sample maturities used are 2,4,7,9 12 and 18 years.
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Two Factor CIR model EA1(2) model
Maturities (years) Std MADev Std MADev

0.5 0.0016 0.0013 0.0022 0.0017
1 0.0013 0.0008 0.0005 0.0001
5 0.0034 0.0024 0.0031 0.0022
10 0.0016 0.0012 0.0016 0.0011
15 0.0002 0.0001 0.0001 3.24E-05
20 0.0011 0.0009 0.0010 0.0008

Table 5: Error statistics

Two Factor CIR model EA1(2) model
Maturities (years) MAE RMSE MAE RMSE

2 0.0013 0.0018 0.0017 0.0025
4 0.0008 0.0012 2.30E-05 0.0003
7 0.0009 0.0013 0.0005 0.0008
9 0.0006 0.009 0.0004 0.0006
12 0.0001 0.0002 1.15E-05 0.0001
18 0.0010 0.0013 0.0008 0.0011

Table 6: Mean Errors (Out of sample)

For the out of sample comparison again the EA1(2) model is marginally
better than the two factor CIR model. The RMSE are slightly lower for the
EA1(2) model except for the two year maturity. The error statistics are also
consistent with the previous result.
As a by-product of the Kalman Filter methodology a time series of the

estimated state variables and the short rate are available. The estimated
short rate (Figure 3) shows two main drops. The �rst corresponds to the
e¤ect of Black Wednesday, this corresponds to September 16, 1992. On
that day the interest rates increased as a response to the increase by the
government of the base interest rates from 10% to 12% and 15%, only to be
lowered a day later back to 12%. This event a¤ected mostly the short end of
the curve, this increase-fall period is re�ected mainly in the time series of the
second factor. The other factor does not react signi�cantly while the second
one has a sharp drop. The second drop corresponds to the decrease in rates
by the Bank of England in response to the current crisis. Once again it is
the second factor that makes the adjustment.
The characteristics of the individual factors are aligned with the results
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Figure 2: Factor Loadings (Two Factor CIR Model)

in Table 2. The �rst factor has a general trend to decrease towards a low
mean while the second factor has a much faster speed and higher long run
mean. An additional view of the two factors can be given by the factor
loadings, the eB terms of the measurement equation (see equation (29)). As
observed in other studies (Chen and Scott 2003, Geyer and Pichler 1999), the
two factors correspond to a level and slope factors. The �rst factor slightly
increases with time to maturity while for the second factor it is quite evident
that the impact of this factor is greater for the short end of the curve as seen
in Figure 2.
The short rate for the EA1(2) model can similarly be obtained given the

parameters in Table 3 and the estimates of the two factors for the EA1(2)
model. The �ltered short rate given by the EA1(2) model follows a similar
behaviour given by the two factor CIR model, the short rate decreases dra-
matically during Black Wednesday and again at the end of the period when
the Bank of England decided to decrease the base rate to 0.5%, at this point
the estimated short rate is 0.44%.
Figure 3 shows the comparison between the 6-month yield and the esti-

mated short interest rate by both the two factor CIR and the EA1(2) model.
The short rate estimated by both models follows closely the 6 month yield
except for periods after sharp decreases in the 6 month yield such as after
Black Wednesday and September 1998. It can be assumed that after extreme
shocks the models take longer to adjust and therefore over or underestimate
the short rate.
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Figure 3: Comparison of 6-month yield and estimated short rate.

4 Conclusions

In this paper the UK term structure has been modelled using two factor CIR
and essentially a¢ ne EA1(2) model. A panel approach was used to estimate
the model parameters incorporating both the time series and cross sectional
properties of the term structure. This approach was implemented using the
Kalman Filter to construct a quasi maximum likelihood
The yield curve data �tted covers the period from Black Wednesday to

the recent credit crisis, where yields have been as high as 10.5% and as low as
0.6%, the widest variation in recent times. It is demostrated that the more
sophisticated EA1(2) model provides only a marginal improvement over the
more tractable analytic two factor CIR model. Even though the essentially
a¢ ne EA1(2) model achieved a higher loglikelihood the errors between the
observed and estimated yields only favored the latter model on average by 2
basis points. The added �exibility given by the essentially a¢ ne speci�cation
is not substantially re�ected in the �t of the UK term structure.
Both models are demonstrated to provide a good �t to the empirical term

structure across all maturities as shown by the small magnitude of the root
mean square errors (both in and out of sample) and standard deviation of
the measurement errors.
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6 Appendix

6.1 Conditional Variance

The conditional variance for the EA1(2) model is derived by Du¤ee (2002)
and its components are summarized for convenience in this appendix. The
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Qt matrix (conditional variance) for the Kalman Filter is as follows

Qt = Nb0N
0 +

NX
i=1

 
NX
j=1

NbjN
0N�1

i;j

!
Yi;t (30)

where the matrixN is the results of the diagonalization ofK asK = NDN�1

with D as the diagonal matrix. The diagonal elements of D are denoted as
d1; :::; dN . Before de�ning the other elements in the equation, new variables
need to be de�ned

�� = �

�� = N�1�

�� = N�1�

�� = �N:

Given the new variables matricesG0 andGi (N�N matrices) are constructed
as

G0 = ��diag (��)��0

Gi = ��diag (��i )�
�0

where ��i is the i-th column of the matrix �
�, diag(��) and diag (��i )

represent a diagonal matrix with elements given by ��and ��i respectively.
De�ne F0 , Fi , and Hi (for i = 1; :::; N) as N � N matrices with typical
elements (j; k), given by

F
(j;k)
0 = (dj + dk)

�1G
(j;k)
0 (1� exp (� (dj + dk)�t)) (31)

F
(j;k)
i = (dj + dk)

�1G
(j;k)
i (1� exp (� (dj + dk)�t)) (32)

H
(j;k)
i = (dj + dk � di)�1G(j;k)i (exp (�di�t)� exp (� (dj + dk)�t))(33)

where �t denotes the time step of the discretization (�t = 1=52 for weekly
data).Given the above de�nitions the elements of the Q matrix are con-
structed as follows

b0 = F0 +
NX
i=1

��i [Fi �Hi] (34)

bj = Hj (35)
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