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Abstract

Advances in computer software and in agent-based computational
finance allow the use of numerical methods in order to optimize differ-
ent type of functions. In this paper we propose a numerical method in
order to find the level of leverage that maximizes the geometric mean
of a series of historical daily returns. One of the advantages of the use
of numerical methods is that it requires less assumption than analyt-
ical methods with closed-form solutions. Furthermore, after running
an experiment, the analysis of the results demonstrates that the use
of numerical methods yields a higher geometric mean than the use of
analytical method based on the assumption of a geometric Brownian
motion.

JEL Classification: C61
Keywords : Optimal level of Leverage, geometric Brownian motion, nu-

merical methods.

1 Introduction

Today, leverage plays a very important role in the financial markets. New

instruments designed to facilitate leveraged investments such as Financial

Spread Betting (FSB) and Contract for Difference (CFD) in conjunction
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with technology advances in electronic markets make leverage accessible for

every type of investor, from small individual investors up to big funds. For

example, in 2007, 30% of the volume on the London Stock Exchange was

driven for leveraged investments (FSA 2007).

However, to the best of our knowledge, there are relatively few studies

linking leverage and agent-based computational finance (ABCF). The ex-

isting papers analyse the implications of leverage on the financial markets

(Geanakoplos 2009; Thurner, Farmer, and Geanakoplos 2010). ABCF pro-

vides tools to test hypotheses regarding different aspects of finance. There is

a considerable amount of research on trading systems using ABCF tools (Lo

and MacKinlay 1990; LeBaron 2002; LeBaron 2006; LeBaron 2000; Martinez-

Jaramillo and Tsang 2009; Iori and Chiarella 2002), but the effects of lever-

age on capital returns have been receiving relatively little attention in these

models. It is commonly understood that if an unleveraged trading system

is good and yields superior returns, consequently, leverage will only increase

such returns proportionally and no further analysis is necessary to compre-

hend such results because it is intuitively obvious. However, this common

understanding is incorrect; recent studies about leverage demonstrate that

excessive levels of leverage are considered irrational behaviour (Geanakop-

los 2009; Thurner, Farmer and Geanakoplos 2010) which demonstrates that

studies linking leverage, trading system and ABCF are relevant.

Leverage has the ability to improve the investment performance, but, if

used to an excessive level, leverage can lead the investor to ruin. Thus, if

an excessive level of leverage is bad for investments; could leverage be good

on some level? Is there an optimal level of leverage? If yes, could it be
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quantified?

Assuming that the investor objective is to maximize the end of period

wealth, Kelly (1956) demonstrates that on binomial games with positive ex-

pectation, there is one specific value of leverage that maximizes the geometric

mean or the end of period wealth. He proposed a model to obtain this value

and this model was called Kelly criterion. Today, one of the possible uses of

Kelly criterion is to determine the optimal level of leverage on investments

considering the possible returns on different discrete scenarios. However,

the Kelly criterion cannot be properly used to determine the optimal level

of leverage on continuous games where the possible outcomes are unlimited

under certain distribution, like investments on financial markets.

In order to relax this restriction, Rotando and Thorp (1992) revise the

Kelly criterion version for continuous gambling games. In this case, the

issue is that the use of Kelly criterion for continuous gambling games is

complicated. Continuous games assume infinite number of outcomes and the

Kelly criterion was designed to assume limited number of outcomes. Hence,

in order to limit the number of outcomes and respect the Kelly criterion

assumptions, the authors assumed that the returns in the financial market

follow a normal distribution and such distribution should be transformed

to quasi-normal distribution by cutting off the tails. It allows the use of

Kelly criterion on continuous games, however, it still has an important issue,

namely the assumptions that the returns follow a normal distribution.

In order to obtain a more realistic approach, Peters (2009) introduces a

new model to obtain the optimal level of leverage. He assumes that asset

prices follow a geometric Brownian motion and demonstrates that the opti-
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mal level of leverage is simply the estimation of return divided by its variance.

The point in this proposition is the assumptions on the price process. In the

literature, there is a considerable discussion on the price process and return

characteristics (Cont 2001).

In this paper, in order to avoid any discussion about the return character-

istics, we propose to estimate the optimal level of leverage using a numerical

non-parametric method. In our case, we use a line-search method to get

the level of leverage that maximizes the geometric mean of a series of his-

torical returns. The insight for this proposition is that analytical methods

proposed in the literature are not able to capture the presence of the fat tails

on the return distribution (Cont 2001) and consequently, their results could

not represent the real optimal level of leverage.

In order to test the hypothesis that numerical methods yield superior

geometric mean to analytical methods, we calculated the optimal level of

leverage using geometric Brownian motion and using numerical methods of

104 series of daily return of the components of Dow Jones index. In the

experiment, the stock, the length of the series and the period are randomly

selected, and the result is that the numerical method shows superior level

of leverage and higher geometric mean to a closed-form model based on

geometric Brownian motion.

This paper is structured as follows. In section 2, we present the general

aspects of leverage. In section 3, we review the literature about the different

methods to measure and to estimate the investment performance. In section

4, we detail the models to optimize the level of leverage proposed in the lit-

erature. In section 5, we present the results of the experiment that compares
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two different methods to calculate the optimal level of leverage, geometric

Brownian motion and numerical methods. Finally, in section 6, we conclude

by presenting some final remarks and possible future work.

2 The Growth Optimal Portfolio

Studies of leverage are entirely associated to debates of individual investor

objectives. In the literature, the investor objectives can be divided in two

different approaches: mean-variance and growth optimal portfolio. Leverage

is linear in the mean-variance approach, and concave in the growth opti-

mal portfolio approach. Due to linearity of leverage, studies of leverage are

irrelevant in the mean-variance approach, because even when leverage is in-

troduced into the parameters of the model, it does not alter the model itself,

i.e., the model is independent of leverage. However, due to the non-linearity

of leverage in the growth optimal portfolio approach, the study of leverage is

important because the introduction of leverage on the parameters alters the

results of the model.

There is a very important debate about the objectives of individual in-

vestors. While Markowtiz (1952) develops a mean-variance method to deter-

mine the optimal portfolio to the next period; Kelly (1956) and Latan (1959)

argue that the main objective of the individual investor is to maximize the

end of period wealth; hence, the investor should be concerned about the

capital rate of growth which could be measured using the geometric mean.

This debate continued during the 1960s and 1970s. Breiman (1961) argues

that on a long sequence of trials the game objectives are to minimize the time
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to reach the target level of wealth, or to maximize the value of the end of

the period wealth. Breiman (1961) and Hakansson (1971a; 1971b) show that

the optimal strategy to attain both objectives is to maximize the expected

value of the log of the terminal wealth which is the same as maximizing the

geometric mean of return.

On the other hand, Samuelson (1971; 1979) argues that geometric mean

maximization was only one among others investment rules and there is no

sense on the belief on its superior results. He shows that the geometric mean

rule leads to sub-optimal expected utility and, because the end of period

expected is the sum of the utility for each period, the end of period wealth

under geometric mean rule will also be sub-optimal.

The debate was theoretical with each author advocating different rules by

using even more mathematical complex models. The reason is that during

that period, the use of numerical methods was extremely difficult because

of the low level of the computers technology compared to today’s comput-

ers. The lack of technology obstructed the debate for more than 20 years.

However, during the 1990s and the 2000s, new authors such as MacLean,

Ziemba, and Blazenko (1992), Ross (1999), Hunt (2002), Leippold, Trojani,

and Vanini (2004), Christensen (2005) and Estrada (2009), restarted the de-

bate, but at this time, using numerical methods to analyse, simulate and

compare different rules similar to the theory proposed on the 1970s.

Debates about investor objectives are associated with debates about the

model to measure the investment performance, risk-return or geometric mean.

The mean-variance approach is associated with the risk-return formula, and

growth optimal portfolio is associated with the geometric mean formula. The
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risk-return formula is:

RR =
µ

σ
(1)

where RR is the risk-return and µ and σ are the arithmetic average and the

standard deviation of the historical returns, respectively.

The alternative methodology to calculate the return is the geometric mean

formula:

GM =
n∏
t=1

(1 + rt)
1
n − 1 (2)

Applying Taylor expansion, assuming returns Normally distributed and

simplifying the Eq. (2) (See the appendix):

GM = (µ− σ2

2
) (3)

where GM is the geometric mean and µ and σ2 are the arithmetic average

and the variance of the historical returns.

A debate about the ideal methodology to measure average return has its

origin in Williams (1936), who demonstrates that speculators, in a multi-

period framework, should be concerned about the geometric mean instead

of the arithmetic mean. The main argument is that risk-return does not

consider the non-linearity of returns present on exponential compound series,

like financial series, and such characteristic is only captured by the geometric

mean (Latan 1959).

In order to introduce leverage, the Eq. (1) can be rearranged, and conse-
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quently the leveraged risk-return formula (RRL) is:

RRL =
lµi
lσi

= RR (4)

where l is the level of leverage; and rearranging the Eq. (2), the geometric

mean formula (GM) is:

GM = (lµ− l2σ
2

2
) = l(µ− lσ

2

2
) (5)

From the Eq. (4) and Eq. (5), note that leverage is monotonic and

linear in the risk-return formula, but is neither monotonic nor linear in the

geometric mean formula. For this reason, we argue that the geometric mean

formula is the appropriate model to measure the investment performance

whether the investor uses leverage. Thus, the geometric mean formula should

be used to calculate the optimal level of leverage.

3 Optimal Leverage Models

3.1 The Kelly Criterion

The importance of studies on leverage is not recent. Kelly (1956) demon-

strates that there is an optimal level of leverage for binomial games such

as coin tossing games. He assumes that the main objective of the player

is to maximize the trial’s expected value and, consequently, the end of pe-

riod cumulative return. He also demonstrates that if you have a positive

trial’s expected value, the size of your leverage depends upon two factors:
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the value of your expected value and the probability of ruin. This model is

called the Kelly criterion. Originally, the Kelly criterion consists of a model

to maximize returns on a binomial game similar to coin tossing. The model

is described below.

Suppose that on each trial the win probability is p > 1/2 and, conse-

quently, the probability of lose is q = 1 − p < 1/2. Once the outcome

probability is defined, the question is to decide the amount of capital Bi to

bet on each trial with the objective to maximize the expected value of the end

of trials wealth, E(Xn). Letting Ti = 1 if the ith trial is a win and Ti = −1,

if the ith trial is a loss. Furthermore, letting X0 is the initial capital, then

Xi = Xi − 1 + TiBi, for i = 1, ..., n and, consequently Xn = X0 +
∑n

i=1 TiBi

, then

E(Xn) = X0 +
n∑
i=1

(p− q)E(Bi) > 0 (6)

Assuming p > 1/2 > q and, consequently the expected value of the end

of trials wealth E(Xn) is positive, the objective is to find the amount of the

available capital which should be bet, Bi, and the amount of capital that

should be saved for later trials, Xi − 1. If the player decides to bet all the

capital, it increases the probability of ruin. On the other hand, if deciding

to bet the minimal capital, the player reduces the probability to maximize

the value of the end of trial’s wealth. Therefore, there is some optimal level

of leverage or optimal fraction, l, which balances the objective to maximize

the expected value with the restriction to minimize the probability of ruin.

In the coin-tossing game, since the gambling probability and the payoff
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at each trial are the same, it is clear that the optimal level of leverage is the

same for all trials. This assumption of fixed leverage helps us to comprehend

the Kelly purpose. Maximizing the expected end of trial wealth is similar

maximizing the expected value of the growth rate coefficient or the geometric

mean, GM(l), where after some algebraic calculations:

GMk(l) = E[log
Xn

X0

]
1
n = p log(1 + l) + q log(1− l) (7)

GM ′
k(l) =

p

1 + l
− q

1− l
(8)

GM ′′
k (l) =

−l2 + 2l(p− q)− 1

(1− l2)2
(9)

From the Eq. (9), it can be viewed that the function GMk(l) is concave

on l, hence it is able to be maximized. Furthermore, solving the Eq. (8), the

result is that the optimal level of leverage is l∗ = p− q.

3.2 Rotando and Thorp Model

The Kelly criterion cannot be directly used on investments. The main reason

is that with games like coin tossing there are a discrete number of possible

outcomes; whereas with investments, the number of possible outcomes is

continuous under certain distribution. In order to use the Kelly criterion

in financial markets, the original model proposed on the Eq. (7) should be

modified and adapted to represent continuous outcomes. This modification is

proposed by Rotando and Thorp (1992). They propose a new model consid-
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ering continuous outcome, but respecting the Kelly insight behind his original

proposition, the definition of the optimal level of leverage in order to maxi-

mize the end of period wealth or the end of period return, E[log(Xn/X0)].

According to Rotando and Thorp (1992), trading financial securities can

be considered a continuous game. Thus, in order to model the possible out-

comes, they assume that financial returns is Normally distributed. However,

the simple use of unaltered normal curve of probability distribution is inad-

equate because this distribution allows an infinite range of possible returns.

Therefore, they modify the standard normal curve using a correction term

for ”chopping off the tails”. It results in new parameters, h and α, which

serves to maintain the mean and the standard deviation similar to standard

normal curve.

Similar to binomial games, the objective in this model is to find out the

level of leverage that maximizes function G(l), which in this case is:

GMrt(l) =

∫ B

A

log(1 + rl)dN(r) (10)

GMrt(l) =

∫ B

A

log(1 + rl)[h+
1√

2πα2
e−(r−µ)

2/2α2

] (11)

where A = µ− 3σ and B = µ+ 3σ.

The demonstration of first-order and the second order conditions of the

Eq. (11) is complicated, however numerical methods can be used to obtain

the value of l that maximizes the function GMrt(l). For example, simulating

the model proposed for 59 year period from 1926 to 1984, with the µ = 0.058

and σ = 0.216; using numerical methods, (Rotando and Thorp 1992) found
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that the optimal level of leverage is l∗ = 1.7.

3.3 Geometric Brownian Motion

Assuming that price follows a geometric Brownian motion, Peters(2009) pro-

poses a different model to optimize the level of leverage. Let’s suppose that

the price process is:

p(t) = p0 exp (µ− σ2

2
)t+ σ ∗W (t) (12)

where the Wiener process W(t) is Gaussian-distributed.

Introducing the leverage, the estimated leveraged return and leveraged

variance are respectively:

µl = lµ (13)

σ2
l = l2σ2 (14)

where l is the level of leverage.

The log-returned estimated of the levered investment to the next period

is:

GMp(l) = E[log(pt+1)]− log(pt) = (µl −
σ2

2
) (15)

Substituting Eq. (13) and Eq. (14) on Eq. (15):

GMp(l) = (lµ− l2σ2

2
) (16)
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In order to obtain the optimal level of leverage, the Eq. (16) is differen-

tiated with respect to l and the result is set to zero:

l∗ =
µ

σ2
(17)

where the optimal level of leverage l∗ is obtained simply dividing the esti-

mated return per its variance.

4 Numerical Methods

Similar to previous models, the model described on Eq. (17) ignores the

presence of fat tails which is not ignored in the original approach of geometric

mean proposed in the Eq. (5). It occurs because on the Taylor approximation

used to get a model to calculate the geometric mean analytically, only the

first two moments of the distribution are considered (Markowitz, 1991).

In general, every model presented above basically demonstrates the fol-

lowing characteristics about leverage: Firstly, geometric mean is concave in

leverage, and consequently, there is an optimal level of leverage. Secondly,

the optimal level of leverage is achieved analytically using those models.

The proposal of this paper is, instead of using analytical methods to ob-

tain the optimal level of leverage, to return to the original model of geometric

mean as demonstrated in the Eq. (5) and, to use a numerical method, in

this case line-search, in order to obtain the optimal level of leverage.

In the line-search method, we randomly select two levels of leverage, l1

and l2, in which each point is on a different side of the maximum value.
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Next, we select two new levels of leverage, l3 and l4. This will increase the

geometric mean value. This procedure is performed up to get the specific

level of leverage that no other level of leverage implies in higher geometric

mean, which is considered the optimal level.

In order to use the numerical method, we transform the Eq. (5) and

implement the term leverage on the geometric mean formula:

GMnm(l) = [
n∏
t=1

(1 + lrt)]
1
n − 1 (18)

Where lrt is the leveraged return at the time t. Sequentially, we use

numerical method in order to obtain the value of l that maximizes the Eq.

(18):

Max
l
GMnm(l) = [

n∏
t=1

(1 + lrt)]
1
n − 1 (19)

Numerical methods have three advantages. Firstly, it is not necessary to

make any assumptions about the statistical characteristics of the data which

helps us to avoid any further discussion about the realistic assumption of the

distribution selected to represent the data. Secondly, the method is free of

approximations or simplification, which also helps to make the methods the

more realistic as possible. Finally, it is easy to be tested using real data.

14



5 Experiment

5.1 Description

In this section, we describe an experiment in which we test the ability of nu-

merical methods to achieve the level of leverage that optimizes the geometric

mean of the series of returns. As an empirical evidence, we use the series of

daily return of the components of the Dow Jones index between 2003 and

2010. The data series contain 1024 days of 30 different stocks. We assume

that our empirical data is sufficient to represent financial returns. Thus, due

to the fact that financial series present common stylized fact, we agree that

similar test could be made using different securities and periods of time, for

example, the use of exchange rates between 1970 and 1985.

The experiment consists of a random selection of a window of a series

of price for 104 rounds. In order to obtain the most representative data

series during different periods of time, per round, we randomly select three

parameters: the stock, the length of the series, and the period. For example,

we randomly select the series of returns of GE between 01/02/2005 and

19/04/2007, as well as the series of returns of PFE between 23/08/2008 and

30/11/2010.

In every round, we calculated two different parameters: the optimal level

of leverage and the optimal leveraged geometric mean using two different

methods: the optimal level of leverage formula, as described in the on the

Eq. (17), and the numerical methods as described on the Eq. (19). It

generates four different data series content of 104 data each series: 1) the

series of optimal level of leverage based on the geometric Brownian motion,
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Item GMNM −GMGBM

Confidence Interval
(P≤95%)

[1.66e−04;2.16e−04]

Null Hypothesis Rejected

Table 1: Comparision between geometric Brownian motion approach and
numerical methods of the geometric mean using the optimal level of leverage
.

2) the series of optimal level of leverage using numerical method, 3) the op-

timal leveraged geometric mean using numerical method, and 4) the optimal

leveraged geometric mean based on the geometric Brownian motion.

5.2 Results

In order to compare the methods and its results, we test two different null

hypotheses. Firstly, we test the null hypothesis that the optimal level of

leverage using numerical method is similar to the optimal level of leverage

based on geometric Brownian motion. Secondly, we test the null hypothesis

that the leveraged geometric mean using numerical methods is similar to the

leveraged geometric mean based on geometric Brownian motion.

From the Table 1, we can see that the confidence interval of the difference

between the series of geometric means calculated using the numerical meth-

ods and the series of geometric means using the geometric Brownian motion

is positive. It demonstrates that numerical methods yield to a higher value

of geometric mean than the geometric Brownian motion with a probability

of 97.5%.

Furthermore, from the Table 2, similar to the Table 1, we can see that the

confidence interval of the difference between the series of the level of leverage
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Item LNM − LGBM
Confidence Interval
(P≤95%)

[0.1934; 0.2428]

Null Hypothesis Rejected

Table 2: Comparision between geometric Brownian motion approach and
numerical methods of the optimal level of leverage.

that were calculated using numerical methods and the series using geometric

Brownian motion is positive. It demonstrates that the numerical methods

yield to higher value of level of leverage than the geometric Brownian with

a probability of 97.5%.

6 Conclusion

Advances in computer software allow the use of numerical methods directly

on the formula, thus eliminating restrictions that used to be necessary in

order to optimize it. In this paper, we propose a numerical method in order

to find the level of leverage which maximizes the geometric mean formula.

Furthermore, we demonstrate that numerical methods are more appropriate

than analytical methods to calculate the optimal level of leverage because it

leads to a superior geometric mean.

For future work, there are two different fields which our research can draw

upon. The first field is the back-testing of the ability of the optimal level of

leverage to improve the investment performance; and the second field is the

use of numerical method to determine the ideal level of leverage of a portfolio

of investments instead of an isolated security.
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