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Abstract. This paper studies the general multivariate dependence of a random vector using

associated copulas. We extend definitions and results of positive dependence to the general

dependence case. This includes associated tail dependence functions and associated tail de-

pendence coefficients. We derive the relationships among associated copulas and study the

associated copulas of the perfect dependence cases and elliptically contoured distributions. We

present the expression for the associated tail dependence function of the multivariate Student-t

copula, which accounts for all types of tail dependence.

1. Introduction

A great deal of literature has been written on the analysis of the dependence structure

between random variables. There is an increasing interest in the understanding of the depen-

dencies between extreme values in what is known as tail dependence. However, the analysis of

multivariate tail dependence has been exclusively focused on the positive case, leaving a void

in the analysis of dependence structure. In this paper we address this issue by defining the

concepts needed to measure a general type of tail dependence in the multivariate case. We use

a copula approach and base our study on the associated copulas (see Joe (1997), p. 15).

The dependence structure of time series has been studied for a long time, traditionally

through the use of the Pearson’s correlation coefficient. More recently, copula based measures
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such as the Spearman’s ρ and Kendall’s τ have also been used to assess concordance. Due

to drawbacks of these measures when it comes to tail dependence, new methodologies have

been developed. In particular the use of the tail dependence coefficient (TDC) and the tail

dependence function has proven to be the way forward (see Nelsen (1999), Joe (1997) and

McNeil et al. (2005), Chapter 5). In the multivariate case positive tail dependence has been

analysed by the use of the copula C and the survival copula bC and the use of the L (lower) and
U (upper) multivariate tail dependence functions introduced by Nikoloulopoulos et al. (2009).

However it is sometimes important to analyse non-positive tail dependence.

In quantitative finance, for example, the performance of portfolios of multiple stocks is highly

dependent on the stocks being able to hedge extreme movements. If, for instance, during a

crisis the price of ten of the stocks of a portfolio drops it is desirable to have stocks whose

prices rise. In this case the presence of multivariate non-positive tail dependence is desirable.

Knowing the tail dependence structure among several stocks can help determine the weights of

the different stocks of a portfolio.

In order to address non-positive dependence, we introduce the concept of general dependence

D, along with other concepts such as D-probability functions. It is through these functions

that copula theory can be extended to account for non-positive dependence. We prove that

the copulas that link D-probability functions and its marginals are the associated copulas.

We use these copula to define general tail dependence. All the results presented regarding

general dependence are also a contribution of this work. This includes the relationship among

associated copulas, the monotonic copulas, the associated elliptical copulas and the associated

tail dependence functions of the Student-t copula model.

The reminder of this work is divided in three sections: In the second section we present the

corresponding concepts of general dependence. This includes probability functions, copulas, tail

dependence functions and TDCs, mathematical proofs are provided on main results. We present

the equalities connecting all associated copulas and results regarding monotone functions. In

the third section we study the associated copulas of the perfect dependence cases and the

elliptically contoured distributions introduced by Kelker (1970). We present the associated tail
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dependence function of the Student-t copula, which is positive for all types of dependence. In

the fourth section we conclude.

2. Associated Copulas, Tail Dependence Functions and the Tail Dependence

Coefficients

In this section we analyse the dependence structure among random variables using copulas.

Given a random vector X =(X1, ...,Xd), we use the corresponding copula C and its associated

copulas to analyse its dependence structure. For this we introduce a general type of dependence

D, that corresponds to the lower and upper movements of the different variables.

To analyse different dependencies, we introduce the D-probability function and present a

version of Sklar’s theorem that states that an associated copula is the copula that link this

function and its marginals. We present a formula to link all associated copulas and two results

on monotone functions and associated copulas. We then present the associated tail dependence

function and the associated tail dependence coefficient (TDC) for the type of dependence D

(see Joe (1993), Joe (1997) and Nikoloulopoulos et al. (2009)). With the concepts studied in

this section, it is possible to analyse the whole dependence structure among random variables,

this includes non-positive dependence.

2.1. Copulas and Dependence D.

The concept of copula was first introduced by Sklar (1959), and is now a cornerstone topic

in multivariate dependence analysis (see Joe (1997), Nelsen (1999) and McNeil et al. (2005),

Chapter 5). We now present the concepts of copula, general dependence and associated copulas

that are fundamental for the rest of this work.

Definition 1. Amultivariate copula C(u1, ..., ud) is a distribution function on the d-dimensional-

square [0, 1]d with standard uniform marginal distributions.

If C is the distribution function of U = (U1, ..., Ud), we denote as bC the distribution function
of (1 − U1, ..., 1 − Ud). In the multivariate case, C is used to link multivariate distribution

functions with their corresponding marginal distributions, accordingly we refer to C as the

distributional copula. On the other hand, bC is used to link multivariate survival functions

with their corresponding marginal survival functions, this copula is known as the survival



4 YURI SALAZAR FLORES

copula.1 The survival copula bC must not be confused with the survival function C(u1, ..., ud) =bC(1− u1, ..., 1− ud).

Let X = (X1, ...,Xd) be a random vector with joint distribution function

F (x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd),

survival distribution function

F (x1, ..., xd) = P (X1 > x1, ..., Xd > xd),

marginals Fi(xi) = P (Xi ≤ xi) and marginal survival functions Fi(xi) = P (Xi > xi) for all

i ∈ {1, ...d}. Sklar’s theorem guarantees the existence and uniqueness of copulas C and bC such
that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)),

which is equivalent to

C(u1, ..., ud) = F (F←1 (u1), ..., F
←
d (ud)) (2.1)

(see Joe (1997)). Similarly, Sklar’s theorem for survival functions implies

F (x1, ..., xd) = bC(F 1(x1), ..., F d(xd)),

which is equivalent to bC(u1, ..., ud) = F (F1
←
(u1), ..., Fd

←
(ud)) (2.2)

(Georges et al. (2001)).

In the next section we generalise these equations using the concept of a type of dependence

in the general case, which we now define.

Definition 2. In d dimensions, we call the vector D = (D1, ...,Dd) a type of dependence if

each Di is a boolean variable, whose value is either L (lower) or U (upper) for i ∈ {1, ...d}. We
denote by ∆ the set of all 2d types of dependence.

1We use the term distributional for C, to distinguish it from the other associated copulas. The notation for

the survival copula corresponds to the one used in the seminal work of Joe (1997).
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Two well known types of dependence are the lower dependence, which corresponds to the

case Di = L for i ∈ {1, ..., d}, and upper dependence, which corresponds to the case Di = U

for i ∈ {1, ..., d} (see e.g. Joe (1997) and Nelsen (1999)). These are examples of positive
dependence. In the bivariate case the dependencies D = (L,U) and D = (U,L) correspond to

negative dependence, which is often present in financial time series, see Zhang (2007), Embrechts

et al. (2009) and Joe (2011).

Using the concept of dependence, we now present the associated copulas introduced by

Joe (1997), Chapter 1, p.15.

Definition 3. Let X = (X1, ..., Xd) be a random vector with corresponding copula C, which is

the distribution function of the vector (U1, ..., Ud) with uniform marginals. Let ∆ denote the set

of all types of dependences of Definition 2. For D = (D1, ...,Dd) ∈ ∆, let VD = (VD1,1, ..., VDd,d)

with

VDi,i =

⎧⎨⎩ Ui if Di = L

1− Ui if Di = U
.

Note that VD also has uniform marginals. We call the distribution function of VD, which is

also a copula, the associated D-copula and denote it CD. We denote AX = {CD|D ∈ ∆}, the
set of 2d associated copulas of the random vector X.

Note that the distributional and the survival copula are C = C(L,...,L) and bC = C(U,...,U)

respectively.

2.1.1. The D-Probability Function and its Associated D-Copula.

The distributional copula C and the survival copula bC are used to explain the lower and

upper dependence structure of a random vector respectively. We use the associated D-copula

to explain theD-dependence structure of a random vector. For this, we first present the concept

of D-probability function and then prove that the associated copula CD links this function with

its marginals.

Definition 4. Let X = (X1, ..., Xd) be a random vector with marginal distributions Fi for

i ∈ {1, ...d} and D = (D1, ...,Dd) a type of dependence according to Definition 2. Define the
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event Bi(xi) in the following way

Bi(xi) =

⎧⎨⎩ {Xi ≤ xi} if Di = L

{Xi > xi} if Di = U
.

Then the corresponding D-probability function is

FD(x1, ..., xd) = P

µ
d
∩
i=1
Bi(xi)

¶
.

We refer to

FDi,i =

⎧⎨⎩ Fi if Di = L

Fi if Di = U
,

for i ∈ {1, ...d} as the marginal functions of FD (Note that the marginals are either univariate
distribution or survival functions).

The copula we consider to analyse the D-dependence is CD that link the functions in Defin-

ition 4 with their corresponding marginals. Given that by applying decreasing transformations

to a part of the data we can account for negative dependence the copulas of the D-probability

functions correspond to the associated copulas of Definition 3. The following theorem presents

the associated copula CD in terms of the FD and its marginals. We restrict the proof to the

continuous case (see McNeil et al. (2005), p.186, Joe (1997) or Nelsen (1999)).

Theorem 1. Sklar’s theorem for D-probability functions and associated copulas

Let X = (X1, ..., Xd) be a random vector, D = (D1, ..., Dd) a type of dependence, FD its D-

probability function and FDi,i for i ∈ {1, ...d} the marginal functions of FD as in Definition 4.
Let the marginal functions of FD be continuous, then the associated copula CD : [0, 1]d → [0, 1],

satisfies, for all x1, ..., x2 in [−∞,∞],

FD(x1, ..., xd) = CD(FD1,1(x1), ..., FDd,d(xd)), (2.3)

which is equivalent to

CD(u1, ..., ud) = FD(F
←
D1,1

(u1), ..., F
←
Dd,d

(ud)). (2.4)

Conversely, let D = (D1, ..., Dd) be a type of dependence and FDi,i a univariate distribution

function, if Di = L, or a survival function, if Di = U , i ∈ {1, ...d},
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(a) if CD is a copula, then FD in (2.3) defines a D-probability function with marginals

FDi,i, i ∈ {1, ...d}.
(b) if FD is any D-probability function, then CD in (2.4) is a copula.

Proof. The proof of this theorem is analogous to the proof of Sklar’s theorem in the continuous

case. In the continuous case for any distribution function Fi, we have that the events {Xi ≤
xi} P∼ {Fi(Xi) ≤ Fi(xi)} and {Xi > xi} P∼ {F i(Xi) ≤ F i(xi)}. This implies

P (Bi(xi)) = P (FDi,i(Xi) ≤ FDi,i(xi)), (2.5)

for i ∈ {1, ..., d}.
Considering equation (2.5) and Definition 4, we have that for any x1, ..., xd in [−∞,∞]

FD(x1, ..., xd) = P (FD1,1(X1) ≤ FD1,1(x1), ..., FDd,d(Xd) ≤ FDd,d(xd)). (2.6)

Using the continuity of Fi we have that Fi(Xi) is uniformly distributed (see McNeil et al. (2005),

Proposition (5.2 (2)), p.185). Hence, if we define U = (F1(X1), ..., Fd(Xd)), its distribution

function is a copula C. Note that in this case VD, defined as in Definition 3, is equal to

(FD1,1(X1), ..., FDd,d(Xd)). It follows that the distribution function of (FD1,1(X1), ..., FDd,d(Xd))

is the associated copula CD, in which case equation (2.5) implies

CD(FD1,1(x1), ..., FDd,d(xd)) = P (FD1,1(X1) ≤ FD1,1(x1), ..., FDd,d(Xd) ≤ FDd,d(xd)),

and equation (2.3) follows.

If we evaluate FD in (F←D1,1
(u1), ..., F

←
Dd,d

(ud)), we get

CD(u1, ..., ud) = FD(F
←
D1,1

(u1), ..., F
←
Dd,d

(ud)).

This follows from the fact that one of the properties of the generalized inverse is that, when

T is continuous, T ◦ T←(x) = x (see McNeil et al. (2005), Proposition (A.3)). This equation

explicitly represents CD in terms of FD and its marginals implying its uniqueness.

For the converse statement of the theorem, we have

(a) Let U = (U1, ..., Ud) be the random vector with distribution function C. We now define

X = (X1, ..., Xd)

= ((F←D1,1
(U1), ..., F

←
Dd,d

(Ud))),
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and

Bi(xi) =

⎧⎨⎩ {Xi ≤ xi} if Di = L

{Xi > xi} if Di = U
,

for i ∈ {1, ...d}. Considering that F (x) ≤ y ⇐⇒ x ≤ F←(y), we have F
←
(x) ≤ y ⇐⇒

x ≥ F (y). Using these properties, we have

{Ui ≤ FDi,i(xi)}
P∼ Bi(xi),

for i ∈ {1, ...d}. Using this, the D-probability function of X is

P

µ
d
∩
i=1
Bi(xi)

¶
= C(FD1,1(x1), ..., FDd,d(xd)).

This implies that FD defined by (2.3) is the D-probability function of X with marginals

P (Bi(xi)) = P (Ui ≤ FDi,i(xi)) = FDi,i(xi),

for i ∈ {1, ...d}.
(b) Similarly, let (X1, ..., Xd) be the random vector with D-probability function FD. Define

U = (U1, ..., Ud)

= (FD1,1(X1), ..., FDd,d(Xd))

(note that the vector is uniformly distributed). Again, using the properties of the

generalised inverse, we have

{Ui ≤ ui} P∼ Bi(F←Di,i
(ui)),

for i ∈ {1, ...d}. Hence the distribution function of U is FD(F←D1,1
(u1), ..., F

←
Dd,d

(ud)),

which implies that the function is a copula.

¤

For this theorem we refer to generalized inverses rather than inverse functions, as the first

are more general. However throughout this work, whenever we are not proving a general

property, we assume the distribution functions have inverse functions. For the properties of the

generalized inverse function used in this proof, see McNeil et al. (2005), Proposition (A.3).
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Note that this theorem implies that in the continuous case CD is the D-probability function

of (FD1,1(X1), ..., FDd,d(Xd)) characterised in (2.3). This theorem implies the importance of

the associated copulas to analyse dependencies. It also implies the Fréchet bounds for the D-

probability functions of Definition 4. The bounds can also be obtained similarly to Joe (1997),

Theorems 3.1 and 3.5 (p. 58 and 59):

max{0, FD1,1(x1) + ...+ FDd,d(xd)− (d− 1)} ≤ FD(x1, ..., xd) ≤ (2.7)

min {FD1,1(x1), ..., FDd,d(xd)} .

2.1.2. Properties of the Associated D-Copulas.

In the bivariate case, Joe (1997), Chapter 1, p. 15, and Nelsen (1999), Chapter 2, p. 26,

presented the expressions to link the associated copulas with the distributional copula C. In the

multivariate case Joe (2011), Equation 8.1, p. 200, and Georges et al. (2001), Theorem 3, p. 7,

presented the expression between the distributional and the survival copula and Embrechts et

al. (2001), Theorem 2.7, p. 6, proved that is possible to express the associated copulas in terms

of the distributional copula C. We now present a general equation for the relationship between

any two associated copulas CD∗ and CD+ in the multivariate case. The equation is based on

all the subsets of the indices where the D∗ and D+ are different. After this, we prove that the

associated copulas are invariant under strictly increasing transformations and characterise the

copula after strictly monotone transformations.

Proposition 1. Let X = (X1, ...,Xd) be a random vector with associated copulas AX and

D∗ = (D∗
1, ..., D

∗
d) and D

+ = (D+
1 , ..., D

+
d ) any two types of dependence. Consider the following

sets and notations: I = {1, ..., d}; I1 = {i ∈ I|D∗
i = D+

i } and I2 = {i ∈ I|D∗
i 6= D+

i }; d1 = |I1|
and d2 = |I2|; Sj = {the subsets of size j of I2} and Sj,k = {The k-th element of Sj} for
j ∈ {1, ..., d2} and k ∈ {1, ...,

¡
d2
j

¢
}. We define S0 = ∅ and S0,1 = ∅; for each Sj,k define

Wj,k = (Wj,k.1, ...,Wj,k,d) with

Wj,k,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui if i ∈ I1

1− ui if i ∈ Sj,k

1 if i /∈ I1 ∪ Sj,k

,
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for i ∈ {1, ...d}, j ∈ {0, ..., d2} and k ∈ {1, ...,
¡
d2
j

¢
}.

Then the associated D∗-copula CD∗ is expressed in terms of the D+-copula CD+ according to

the following equation

CD∗(u1, ..., ud) =
d2X
j=0

(−1)j
(d2j )X
k=1

CD+(Wj,k). (2.8)

Note that in the cases when at least a 1 appears inWj,k, CD+(Wj,k) becomes a marginal copula

of CD+.

Proof. Throughout this proof, it must be borne in mind that CD∗ is the distribution function

of the random vector VD∗ and CD+ of VD+, defined according to Definition 3. Note that, for

i ∈ I2, VD∗i ,i = 1− VD+
i i
and they are equal otherwise.

In the case d2 = 0, we have D∗ = D+, j ∈ {0} and k ∈ {1}2, hence (2.8) holds. We prove
(2.8) by induction on d, the dimension; it can also be proven by induction on d2, the number

of elements in which D∗
i 6= D+

i . Note that in dimension d = 1, a copula becomes the identity

function. If D∗
1 6= D+

1 , the expression becomes u1 = 1− (1−u1); the case D∗
1 = D+

1 has already

been covered in d2 = 0, and expression (2.8) holds.

Now, suppose we are in dimension d, we prove the formula works provided it works in dimen-

sion d−1. We obtain an expression for CD∗(u1, ..., ud) using the induction hypothesis. Consider
the dependencies, on the (d− 1)-dimension, F∗ = (D∗

1, ...,D
∗
d−1) and F

+ = (D+
1 , ..., D

+
d−1). We

use an apostrophe on the sets and notations of F∗ and F+ to differentiate them from those of

D∗ and D+. It follows that d0 = d− 1 and I 0 = I− {d}. By the induction hypothesis, equation
(2.8) holds to express CF∗ in terms of CF+. In terms of probabilities this is equivalent to

P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1)

=
d2−1P
j=0

(−1)j
(d2−1j )P
k=1

P (VD+
1 ,1
≤W 0

j,k,1, ..., VD+
d−1,d−1

≤W 0
j,k,d−1),

(2.9)

Now there are two cases to consider depending on whether D∗
d is equal to D

+
d or not.

Case 1. D∗
d = D+

d .

2Note that we are using the convention 0! = 1
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In this case, it follows that, I 01 = I1−{d}, I 02 = I2, d
0
2 = d2 and VD∗d,d = VD+

d ,d
. If we intersect

the events in equation (2.9) with the event {VD∗dd ≤ ud} we get

P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1, VD∗dd ≤ ud)

=
d2P
j=0

(−1)j
(d2j )P
k=1

P (VD+
1 ,1
≤W 0

j,k,1, ..., VD+
d−1,d−1

≤W 0
j,k,d−1, VD+

d ,d
≤ ud).

(2.10)

Because I 02 = I2, in this case, for j ∈ {1, ..., d2} and k ∈ {1, ...,
¡
d2
j

¢
}, the events S0j,k are equal

to Sj,k. Considering this, and I 01 = I1 − {d}, we have

(W0
j,k, ud)i =Wj,k,i

for i ∈ {1, ..., d}, so (W0
j,k, ud) =Wj,k for j ∈ {1, ..., d2} and k ∈ {1, ...,

¡
d2
j

¢
}. Equation (2.10)

then implies:

CD∗(u1, ..., ud) =
d2X
j=0

(−1)j
(d2j )X
k=1

CD+(Wj,k).

Case 2. D∗
d 6= D+

d

In this case, it holds that, I 01 = I1, I 02 = I2 − {d}, d
0
2 = d2 − 1. We want to obtain an

expression for CD∗(u1, ..., ud) = P (VD∗i ,1 ≤ u1, ..., VD∗d,d ≤ ud), using the induction hypothesis.

Considering that, in general, P (A) = P (A ∩B) + P (A ∩Bc) we have that

P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1) = P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1, VD∗d,d ≤ ud)

+ P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1, VD∗d,d ≥ ud),

which implies

CD∗(u1, ..., ud) = P (VD∗1 ,1 ≤ u1, ..., V
∗
d−1 ≤ ud−1)− P (VD∗1 ,1 ≤ u1, ..., V

∗
d−1 ≤ ud−1, VD∗d,d ≥ ud).

(2.11)

Note that, in this case VD∗d,d = 1−VD+
d ,d
. This implies that the event {VD∗d,d ≥ ud} is equivalent

to {VD+
d ,d
≤ 1 − ud}. If we intersect the events involved in equation (2.9) with the event

{VD∗d,d ≥ ud} we get

P (VD∗1 ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1, VD∗d,d ≥ ud) =

d2−1P
j=0

(−1)j
(d2−1j )P
k=1

P (VD+
1 ,1
≤W 0

j,k,1, ..., VD+
d−1,d−1

≤W 0
j,k,d−1, VD+

d ,d
≤ 1− ud).

(2.12)
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Combining equations (2.9), (2.11) and (2.12), we obtain

CD∗(u1, ..., ud) =
d2−1X
j=0

(−1)j
(d2−1j )X
k=1

CD+(W0
j,k, 1)−

d2−1X
j=0

(−1)j
(d2−1j )X
k=1

CD+(W0
j,k, 1− ud). (2.13)

Note that, in this case, the sets I2 and I 02 satisfy I2 = I 02 ∪ {d}.

The rest of the proof is based on the fact that for j ∈ {1, ..., d − 1} the elements of size j
of I2 are the elements of size j of I 02 plus the elements of size j − 1 of I 02 attaching them {d}.
Considering our notation, this means

Sj = S0j ∪ S00j−1, (2.14)

with S00j−1 =
©
S00j−1,k = S0j−1,k ∪ {d}

¯̄
k ∈ {1, ...,

¡
d2−1
j−1
¢
}
o
for j ∈ {1, ..., d − 1}. Further to this,

by definition ofWj,k we have the following two equalities

(W0
j,k, 1)i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui if i ∈ I1

1− ui if i ∈ S0j,k

1 if i /∈ I1 ∪ S0j,k

(2.15)

and

(W0
j−1,k, 1− ud)i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui if i ∈ I1

1− ui if i ∈ S00j−1,k

1 if i /∈ I1 ∪ S00j−1,k

, (2.16)

for i ∈ {1, ...d}, j ∈ {1, ..., d− 1} and k ∈ {1, ...,
¡
d2−1
j−1
¢
}.

Given that

Wj,k,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui if i ∈ I1

1− ui if i ∈ Sj−1,k

1 if i /∈ I1 ∪ Sj,k

,

equations (2.14) to (2.16) imply that, for a fixed j, if we sum CD+ evaluated in all of the

(W0
j,k, 1) and (W

0
j,k, 1 − ud) for different k, we get the sum of CD+ evaluated on Wj,k for

different k, that is:

(d2−1j )X
k=1

CD+(W0
j,k, 1) +

(d2−1j−1 )X
k=1

CD+(W0
j−1,k, 1− ud) =

(d2j )X
k=1

CD+(Wj,k), (2.17)
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for j ∈ {1, ..., d− 1}. Also, note that

(W0
0,1, 1)i =W0,1,i, (2.18)

and

(W0
d−1,1, 1− ud)i =Wd,1,i, (2.19)

for i ∈ {1, ...d}; the result is implied by equation (2.13) and equations (2.17) to (2.19). ¤

Note that this expression is mainly dependent on the subsets of I2, the elements in which

D∗
i 6= D+

i . Because of this, the expression is reflexible, meaning that it yields the same formula

to express CD+ in terms of CD∗ . The formula has 2d2 elements (one for every Sj,k). In particular,

equation (2.8) can be used to express any associated copula in terms of the distributional copula

C. This is useful considering that the expression found in literature for copula models is the

one for the distributional copula.

Corollary 1. Let X = (X1, ...,Xd) be a random vector with copula C and D = (D1, ...,Dd) a

type of dependence. Consider the same notations of proposition (1) with I1 = {i ∈ I|Di = L}
and I2 = {i ∈ I|Di = U}. Then the associated D-copula CD is expressed in terms of C

according to

CD(u1, ..., ud) =
d2X
j=0

(−1)j
(d2j )X
k=1

C(Wj,k).

In order to analyse the symmetry and exchangeability of copula models, we use the following

definitions.

Definition 5. Let D = (D1, ..., Dd) be a type of dependence, the complement dependence is

defined as D{ = (D{
1, ...,D

{
d), with

D{
i =

⎧⎨⎩ U if Di = L

L if Di = U
,

for i ∈ {1, ..., d}. We say that the random vector X, with associated copulas AX, is complement
(reflection or radial) symmetric, if there exists D∗ ∈ ∆, such that CD∗ = CD∗{ .
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Definition 6. A random vector X = (X1, ...,Xd) is said to be exchangeable if, for every per-

mutation PR of {1, ..., d}, PR(i) = pi, it holds that (X1, ..., Xd)
d
= (Xp1 , ...,Xpd). A copula C

is said to be exchangeable if it is the distribution function of an exchangeable vector, in which

case, the copula satisfies C(u1, ..., ud) = C(up1, ..., upd) for every permutation.

In the following proposition we obtain equivalences for the exchangeability and equalities

regarding associated copulas. According to proposition (1), the relationship between two asso-

ciated copulas CD∗ and CD+ is determined by the elements in which D∗ and D+ are different.

Such elements are denoted as I2, given that we deal with several types of dependence, we de-

note this set as I2(D∗,D+) to indicate the dependencies to which it refers. We do the same for

I1(D
∗,D+), the elements in which the dependencies are equal.

Proposition 2. Let X be a vector with corresponding associated copulas AX, and let D∗, D+,

D◦ and D× be types of dependencies. Then the following equivalences hold:

(i) If CD∗ ≡ CD+ and I2(D∗,D+) = I2(D
×,D◦) then CD× ≡ CD◦.

In particular CD∗ ≡ CD∗{ , for some D
∗, implies CD ≡ CD{ for all D ∈ ∆.

(ii) If CD◦ is exchangeable, then the following hold:

(a) CD∗ is exchangeable over the elements of I1(D∗,D◦) and over the elements of

I2(D
∗,D◦).

In particular, if CD◦ is exchangeable, then CD◦{ is exchangeable.

(b) If |I2(D∗,D◦)| = |I2(D+,D◦)|, let PR be any permutation of {1, ..., d} that assigns
to each element of I2(D+,D◦), an element of I2(D∗,D◦). Denote i0 = PR(i), then

CD∗(u1, ..., ud) = CD+(u10 , ..., ud0).

(c) If d is even and there exists CD∗ exchangeable, such that |I2(D∗,D◦)| = d
2
then

CD ≡ CD{ for all D ∈ ∆.

Proof. (i) This follows from the fact I2(D∗,D+) = I2(D
×,D◦) =⇒ I2(D

×,D∗) = I2(D
◦,D+),

which is easily verified considering the different cases. From proposition (1), we have
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that the vectorsWj,k are the same in both cases, which implies

CD×(u1, ..., ud) =
d2X
j=0

(−1)j
(d2j )X
k=1

CD∗(Wj,k)

=
d2X
j=0

(−1)j
(d2j )X
k=1

CD+(Wj,k)

= CD◦(u1, ..., ud).

In particular, note that I2(D∗,D∗{) = I2(D,D{) = {1, ..., d} for every D ∈ ∆. Then

CD∗ ≡ CD∗{ implies CD ≡ CD{ for every D ∈ ∆.

(ii) (a) From proposition (1) we have

CD∗(u1, ..., ud) =
d2X
j=0

(−1)j
(d2j )X
k=1

CD◦(Wj,k). (2.20)

Consider j ∈ {0, ..., d2} and k ∈ {1, ...,
¡
d2
j

¢
}. From the way it is defined, Wj,k con-

tains ui for every i ∈ I1(D
∗,D◦). The exchangeability of CD◦ implies that CD◦(Wj,k)

is exchangeable over I1(D∗,D◦). Hence, (2.20) implies that CD∗ is exchangeable over

I1(D
∗,D◦). Now, consider j ∈ {0, ..., d2}. Each Wj,k, k ∈ {1, ...,

¡
d2
j

¢
} considers a

different subset of size j of I2(D∗,D◦). If we consider
(d2j )P
k=1

CD◦(Wj,k), each element

in I2(D
∗,D◦) appears in the same way as the others. Hence, given that CD◦ is ex-

changeable,
(d2j )P
k=1

CD◦(Wj,k) is exchangeable over I2(D∗,D◦). Equation (2.20) then im-

plies that CD∗ is exchangeable over I2(D∗,D◦). In particular CD◦{ is exchangeable over

I2(D
◦,D◦{) = {1, ..., d}.

(ii) (b) Considering proposition (1), to avoid confusion, in this part of the proof, we denote with

a superindex ∗ all the corresponding notations to express CD∗ in terms CD◦ and with
a superindex + all the notations to express CD+ in terms of CD◦ . From the hypothesis

we know d+2 = d∗2, so no superindex is used for this value.
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Let PR be any permutation that satisfies the hypothesis. We denote i0 = PR(i) and

A0 = {PR(i)|i ∈ A} with A ⊆ {1, ..., d}. From proposition (1), we have

CD+(u10 , ..., ud0) =
d2X
j=0

(−1)j
(d2j )X
k=1

CD◦(W
+(1)
j,k ), (2.21)

with

W
+(1)
j,k,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui0 if i ∈ I+1

1− ui0 if i ∈ S+j,k

1 if i /∈ I+1 ∪ S+j,k
i ∈ {1, ..., d}, and S+j,k is the k-th element of size j of I+2 , j ∈ {0, ..., d2} and k ∈
{1, ...,

¡
d2
j

¢
}. Given that CD◦ is exchangeable, we have that

CD◦(W
+(1)
j,k ) = CD◦(W

(2)
j,k), (2.22)

with

W
(2)
j,k,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui if i ∈ I1(D

∗,D◦)

1− ui if i ∈ S+0j,k

1 if i /∈ I1(D
∗,D◦) ∪ S+0j,k

For each k ∈ {1, ...,
¡
d2
j

¢
}, S+0j,k is a different subset of size j of I2(D∗,D◦). Hence,

(d2j )X
k=1

CD◦(W
(2)
j,k) =

(d2j )X
k=1

CD◦(W
∗
j,k), (2.23)

for j ∈ {0, ..., d2}. Proposition (1) and equations (2.21) to (2.23) imply the result.
(ii) (c) Note that |I2(D∗,D◦)| = d

2
=⇒ |I2(D∗,D◦{)| = d

2
. Consider any permutation

of {1, ..., d}, PR(i) = i0, that assigns to each element of I2(D∗,D◦) an element of

I2(D
∗,D◦{). Given that CD∗ is exchangeable we can use (ii)(b)

CD◦{ (u1, ..., ud) = CD◦(u10 , ..., ud0).

Considering that CD◦ is exchangeable, this implies CD◦ ≡ CD◦{ . (i) then implies CD ≡
CD{ for all D ∈ ∆.

¤
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Similar to a distributional copula (see McNeil et al. (2005), Proposition (5.6)), in the continu-

ous case, all the associated copulas are also invariant under strictly increasing transformations.

We state this in the following proposition:

Proposition 3. Let T1,..., Td be strictly increasing functions, X = (X1, ...,Xd) a random vector

with corresponding distribution function and marginals, D a type of dependence and D-copula

CD. Then, in the continuous case,

eX = (T1(X1), ..., Td(Xd))

also has the same corresponding D-copula CD.

Proof. Consider the following properties of inverses of strictly increasing functions, distribution

functions and their inverses (see McNeil et al. (2005) propositions (5.6), and (A.3 vii) and

(viii)).

(a) T←i ◦ Ti(xi) = xi.

(b) G ◦G←(x) = x for any univariate continuous distribution function G.

Let the tilde e denote the probability functions of eX = (T1(X1), ..., Td(Xd)). From (a) it

follows that

eFi(ui) = Fi ◦ T←i (ui), (2.24)

and

eF i(ui) = F i ◦ T←i (ui), (2.25)

for i ∈ {1, ..., d}. Consider the concepts of Definition 4; equations (2.24) and (2.25) imply that
the marginal

eFDi,i(ui) = FDi,i ◦ T←i (ui), (2.26)

for i ∈ {1, ..., d}. Properties (a) and (b) imply that the inverse of the marginal is given by

eF←Di,i
(ui) = Ti ◦ F←Di,i

(ui), (2.27)
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for i ∈ {1, ..., d}. Considering (2.26), (2.27) and (a) the following two events are equivalent in
probability eBi( eF←Di,i

(ui))
P∼ Bi(F←Di,i

(ui)), (2.28)

for i ∈ {1, ..., d}. This and the uniqueness of the copula, implied by theorem (1), implies

fCD(u1, ..., ud) = CD(u1, ..., ud).

¤

The associated copulas can also be used to analyse the dependence structure of random

variables after applying strictly monotone transformations to their variables, for the bivariate

version see Nelsen (1999), Theorem 2.4.4, p.26, and Embrechts et al. (2001), Theorem 2.7, p.6.

Proposition 4. Let T1,..., Td be strictly monotone functions, X = (X1, ...,Xd) a random

vector with corresponding distributional copula C . Then the distributional copula of eX =

(T1(X1), ..., Td(Xd)) is the associated D-copula CD of X, with

Di =

⎧⎨⎩ L if Ti is strictly increasing

U if Ti is strictly decreasing
,

for i ∈ {1, .., d}, whose expression is given by Corollary (1).

Proof. Note that for monotone Ti it holds that T←i ◦ Ti(xi) = xi. Hence, we use (a) and (b)

of the previous proof. Again, we use the tilde e to denote the probability functions ofeX = (T1(X1), ..., Td(Xd)). Just as in (2.24), we have that if Ti is strictly increasing, eFi(ui) =

Fi ◦ T←i (ui). If Ti is strictly decreasing,

eFi(ui) = F i ◦ T←i (ui). (2.29)

Hence

eF←i (ui) =
⎧⎨⎩ Ti ◦ F←i (ui) if Ti is strictly increasing

Ti ◦ F
←
i (ui) if Ti is strictly decreasing

,

for i ∈ {1, ..., d}. Using this, we have:

Ti(Xi) ≤ ( eF←i (ui)) P∼ Bi(F←Di,i
(ui)),
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for i ∈ {1, ..., d}, which implies

eC(u1, ..., ud) = CD(u1, ..., ud).

¤

2.2. Associated Tail Dependence Functions and Tail Dependence Coefficients.

Considering the results obtained so far, it is possible to introduce a general definition of tail

dependence function and tail dependence coefficients considering the dependence D. For the

analysis of the conditions of the existence of the tail dependence function see Mikosch (2006).

The general expression of the tail dependence function is the following (see Nikoloulopoulos et

al. (2009))

Definition 7. Let I = {1, ..., d}, X = (X1, ..., Xd) be a random vector with copula C, D =

(D1, ...,Dd) be a type of dependence and CD be the copula of the random vector VD of Definition

3. For any ∅ 6= S ⊆ I, let D(S) denote the corresponding |S|-dimensional marginal dependence
of D and CD,S the copula of the |S|-dimensional marginal {VDi,i|i ∈ S}. Define the associated
D(S)-tail dependence functions bD,S of CD, ∅ 6= S ⊆ I as

bD,S(wi, i ∈ S) = lim
u↓0

CD,S(uwi, i ∈ S)

u
,∀w = (w1, ..., wd) ∈ Rd

+.

Given that these functions come from the associated copulas, we call the set of all D-tail de-

pendence functions the associated tail dependence functions. When S = {1, ..., d} we omit such
subindex.

The tail dependence functions was introduced by Nikoloulopoulos et al. (2009) as a general-

isation to the tail dependence coefficient introduced by Joe (1993) to determine the existence

of dependence among random variables. With the definition of the general tail dependence

coefficient, that we now present, it is possible to determine the existence of tail dependence for

a general dependence D.

Definition 8. Consider the same conditions of Definition 7. Define the associated D(S)-tail

dependence coefficients λD(S) of CD, ∅ 6= S ⊆ I as

λD,S(wi, i ∈ S) = lim
u↓0

CD,S(u, .., u)

u
.
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We say that (D, S)-tail dependence exists whenever λD,S > 0.

3. Modelling General Dependence

In this section we analyse dependence in copula models. We analyse two examples, the perfect

dependence cases and the elliptically contoured distributions. With this analysis, it is possible

to know the general dependence and tail dependence structure implied by the use of these

models. For the perfect dependence case we obtain the associated copulas of the perfect positive

dependence model. We then prove that these copulas correspond to the use of strictly monotone

transformations on a random variable, so we call this copulas the monotonic copulas. For the

elliptically contoured distributions we prove a proposition that chacaterises their corresponding

associated copulas. We then present the associated tail dependence functions of the Student-t

copula model. This model accounts for all 2d types of tail dependencies. The analysis of general

dependence presented in this section complements the analysis of only positive tail dependence

for these models.

3.1. Perfect Dependence Cases.

We now analyse the most basic examples of copula models. They correspond to all the variables

being either independent or perfectly dependent. We first present the independent copula. We

then present the associated copulas of the perfect positive dependence model and prove that

they correspond to the use of strictly monotone transformations on a random variable. It

follows that these are the copulas of the perfect dependence models.

Let U = (U1, ..., Ud) be a random vector with {Ui}di=1 independent uniformly distributed

random variables. The distribution function of U is the copula C(u1, ..., ud) =
dY

i=1

ui, which is

known as the independence copula. It follows that the associated copula are also equal to the

independence copula. This is the copula of any random vector X = (X1, ...,Xd) with {Xi}di=1
independent random variables.

Let U be the d-dimensional vector U = (W, ...,W ) with W a uniform random variable. The

distribution function of U is the copula

C(u1, ..., ud) = min{ui}di=1. (3.1)
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We now analyse the general associated copula CD for this example. Let D be a type of

dependence and I = {1, ..., d}. Define IL = {i ∈ I|Di = L} and IU = {i ∈ I|Di = L}. From
Definition 3, the associated D-copula CD is the distribution function of the vector VD. Let us

assume that neither IL nor IU are empty (the other two cases have just been analysed), then

the associated D-copula is

CD(u1, ..., ud) = P ((W ≤ min{ui}i∈IL) ∩W ≥ max{1− ui}i∈IU ).

It follows that, for min{ui}i∈IL > max{1− ui}i∈IU , this probability is equal to zero; in another
case we have

CD(u1, ..., ud) = min{ui}i∈IL +min{ui}i∈IU − 1.

Therefore, a general expression is

CD(u1, ..., ud) = max{0,min{ui}i∈IL +min{ui}i∈IU − 1}. (3.2)

Note that CD = CD{ . Hence, the d-dimensional vector U = (W, ...,W ) is complement sym-

metric, according to Definition 5. There are 2d−1 different associated copulas of this vector. In

the bivariate case the associated (L,U)-copula CLU is equal to the Fréchet lower bound copula,

also known as the countermonotonicity copula.

The copulas obtained in (3.1) and (3.2) are a generalisation of the comonotonicity and the

countermonotonicity copulas of the bivariate case. In the bivariate case, they are the Fréchet

bounds for copula and correspond to the use of strictly monotone transformations on a random

variable. In the following proposition we prove that, in d dimensions, the copulas of (3.1) and

(3.2) also correspond to the use of strictly monotone transformations on a random variable.

Because of this, we call these copulas the monotonic copulas.

Proposition 5. Let Z be a random variable, and let {Ti}di=1 be strictly monotone functions,
then the distributional copula of the vector X = (T1(Z), ...Td(Z)) is one of the monotonic

copulas of equations (3.1) or (3.2) with D = (D1, ...,Dd),

Di =

⎧⎨⎩ L if Ti is strictly increasing

U if Ti is strictly decreasing
.
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Conversely, consider a random vector X = (X1, ...,Xd) whose distributional copula is a

monotonic copula of equation (3.1) or (3.2) for certain D. Then there exist monotone functions

{Ti}di=1 and a random variable Z such that

(X1, ..., Xd)
d
= (T1(Z), ..., Td(Z)), (3.3)

the {Ti}di=1 satisfy that Ti is strictly increasing if Di = L and strictly decreasing if Di = U for

i ∈ {1, ..., d}. In both cases the vector X is complement symmetric.

Proof. Let F be the distribution function of Z. Considering the uniform random variable F (Z)

it is clear that the copula of the d-dimensional vector (Z, ..., Z) is the Fréchet upper bound

copula min{ui}di=1of equation (3.1). The result is then implied by proposition (4).
The converse statement is a generalisation of Embrechts et al. (2001), Theorem 3.1, p.10.

We have that the distributional copula of X is a monotonic copula for certain D. Note that

the associated D-copula of X is the Fréchet upper bound copula. Let {αi}di=1 be any invertible
monotone functions that satisfy αi is strictly increasing if Di = L and strictly decreasing if

Di = U for i ∈ {1, ..., d}. Proposition (4) implies that the copula of A = (α1(X1), ..., αd(Xd))

is the Fréchet upper bound copula. According to Fréchet (1951) and Embrechts et al. (2002),

there exists a random variable Z and strictly increasing {βi}di=1 such that

(α1(X1), ..., αd(Xd))
d
= (β1(Z), ..., βd(Z)).

By defining Ti = α−1i ◦ βi for i ∈ {1, ..., d} we get the result.
In both cases the associated copulas of X are the monotonic copulas implying that the vector

is complement symmetric. ¤

This means that the copula of a perfect dependent model, where all variables have perfect

positive or negative dependence, is a monotonic copula.

3.2. Elliptically Contoured Distributions.

We now anlayse the dependence structure of elliptically contoured distributions. We first

present the definition of this model. Then we present its corresponding associated copulas.

Finally we present the associated tail dependence functions of the Student-t copula model.
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Elliptically contoured distributions, or elliptical distributions, were introduced by Kelker

(1970) and have been analysed by several authors (see for example Fang and Ng (1990), Gupta

and Varga (1993)). They have the following form.

Definition 9. The random vector X = (X1, ...,Xd) has a multivariate elliptical distribution,

denoted as X ∼ Eld(μ,Σ, ψ), if for x = (x1, ..., xd)0 its characteristic function has the form

ϕ(x;μ,Σ) = exp(ix0μ)ψd(
1

2
x0Σx),

with μ a vector, Σ = (σij)1≤i,j≤d a symmetric positive-definite matrix and ψd(t) a function

called the characteristic generator.

They encompass a large number of distributions, see Valdez and Chernih (2003), Appendix.

Several properties have been developed in the case when the joint density exists, see Gupta

and Varga (1993) and Das Gupta et al. (1972). If it exists, the joint density f(x;μ,Σ) has the

following form:

f(x;μ,Σ) = cd|Σ|−
1
2gd

µ
1

2
(x− μ)0Σ−1(x− μ)

¶
, (3.4)

with gd(·) a function called the density generator and cd a normalising constant dependent of

gd (see Landsman and Valdez (2002)).

Elliptical distributions have been used in several areas including financial data analysis. In

particular the Student-t distribution has been known to account for fat tails and tail dependence.

3.2.1. The Associated Elliptically Contoured Copula.

The copula of an elliptically contoured distribution is referred to as elliptically contoured

copula or elliptical copula. This copula has been subject to numerous analysis, see for instance

Fang et al. (2002), Abdous et al. (2005), Embrechts et al. (2001) or Demarta and McNeil (2005).

One of the characteristics of elliptically contoured distributions is that their marginals Fi(x) are

also elliptically contoured with the same characteristic or density generator. If the d-dimensional

copula density c exists the joint density f , the marginal densities fi, the marginals Fi and the

corresponding copula density satisfy the following relationship (see Fang et al. (2002)):

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))×
dY

i=1

fn(xn).
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Note that the process of standardising the marginal distributions of X uses strictly increasing

transformations. As stated in proposition (3), copulas are invariant under such transformations.

This implies that the copulas associated to X ∼ Eld(μ,Σ, ψ) are the same as the copulas asso-

ciated to X∗ ∼ Eld(0, R, ψ). Here R = (ρij =
σij√
σiIσjJ

)1≤i,j≤d is the corresponding “correlation”

matrix implied by the positive-definite matrix Σ = (σij)1≤i,j≤d (see Embrechts et al. (2001),

Theorem 5.2, p.23, Fang et al. (2002) and Demarta and McNeil (2005)). Because of this, for

our study of elliptical copulas we assume X ∼ Eld(R,ψ) with R = (ρij)1≤i,j≤d, which covers

the more general case X ∼ Eld(μ,Σ, ψ).

Equations (2.1) and (2.4) imply that the associated copulas of X are determined by the joint

distribution and the inverse of the marginal distributions. In general, there is no closed-form

expression for the elliptical copula but it can be expressed in terms of multidimensional integrals

of the joint density f(x;R). This case covers a wide variety of distributions, see Valdez and

Chernih (2003), Appendix. In the following proposition we prove an identity for the associated

copula for this general case.

Proposition 6. LetX = (X1, ...,Xd) be a random vector with multivariate elliptical distribution

of Definition 9, with correlation matrix R = (ρij)1≤i,j≤d, that is X ∼ Eld(R,ψ) and let D be a

type of dependence. Then the associated D-copula of X is the same as the distributional copula

of X+ ∼ Eld(℘R℘,ψ), with ℘ a diagonal matrix (all values in it are zero except for the values

in its diagonal) ℘ ∈ Md×d, whose diagonal is p = (p1, ..., pd) with

pi =

⎧⎨⎩ 1 if Di = L

−1 if Di = U
,

for i ∈ {1, ..., d}.

Proof. The vector ℘X is equal to (T1(X1), ..., Td(Xd)) with Ti(x) = pix, i ∈ {1, ..., d}. Using
Proposition (4), the distributional copula of ℘X is the associated D-copula of X. From the

stochastic representation of X (see Fang and Ng (1990)), it follows that ℘X ∼ Eld(℘R℘
0, ψ)

(see Embrechts et al. (2001), Theorem 5.2). ¤

The symmetric nature of the elliptically contoured distributions and copula is well known.

It follows from proposition (6) that elliptical copulas are complement symmetric.
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Corollary 2. Let X = (X1, ..., Xd) be a random vector with multivariate elliptical distribution

of Definition 9, X ∼ Eld(R,ψ). Then X is complement symmetric according to Definition 5.

Proof. Let D be a type of dependence and D{ the complement dependence of Definition 5.

Denote ℘D and ℘D{ the corresponding diagonal matrices of proposition (6).

It is clear that ℘D{ = −℘D, which implies

℘D{ ·R · ℘D{ = ℘D ·R · ℘D.

Hence, both CD and CD{ are equal to the distributional copula of X+ ∼ Eld(℘DR℘D, ψ). ¤

Proposition (6) makes possible to use the results regarding elliptical copulas in associated

copulas. This also includes the analysis of tail dependence. In the bivariate case Klüppelberg et

al. (2008) obtained an expression for the lower tail dependence function under regular variation

conditions. The Gaussian copula does not account for lower tail dependence, proposition (6)

implies that it does not account for tail dependence for all D. In contrast the Student-t copula

does account for tail dependence (see Joe (2011) and Nikoloulopoulos et al. (2009)). We now

analyse this copula into more detail.

3.2.2. The Multivariate Student-t Associated Tail Dependence Function.

The Student-t copula is well known for accounting for stylised facts such as fat tail and the

presence of tail dependence (see McNeil et al. (2005) and Demarta and McNeil (2005)). The

Student-t copula with ν degrees of freedom and correlation matrix R is expressed in terms of

integrals of its corresponding density tν,R.

C(u) =

t−1ν (u1)Z
−∞

...

t−1ν (ud)Z
−∞

Γ
¡
ν+d
2

¢
Γ
¡
ν
2

¢p
(πν)d|R|

µ
1 +

x0R−1x

ν

¶− ν+d
2

dx,

with u = (u1, ..., ud) and x = (x1, ..., xd)0.

Unlike the multivariate Gaussian distribution, the case of R = I does not correspond to the

independence case, see (Hult and Lindskog (2002)). Another interesting example is to consider

perfect dependence. That is, the case when R = (ρij)1≤i,j≤d satisfies ρij = 1 if i, j ∈ S1 or

i, j ∈ S2, and ρij = −1 if i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1, with S1 and S2 disjoint sets that
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satisfy S1 ∪ S2 = {1, ..., d}. In this case R = (ρij)1≤i,j≤d can be expressed as

R = ℘

⎛⎜⎜⎜⎝
1 · · · 1
...
. . .

...

1 · · · 1

⎞⎟⎟⎟⎠℘

with ℘ ∈ Md×d a diagonal matrix, whose values in the diagonal are1 if i ∈ S1 and −1 if
i ∈ S2, i ∈ {1, ..., d}. Inductively on d, it is straightforward to prove that the determinant

of a matrix of ones is zero. It follows that |R| = 0, and hence the copula is not defined in

this case. The Student-t copula is known for accounting for several types of tail dependence.

McNeil et al. (2005) proved that, in the bivariate case, regardless of the value of the correlation

coefficient ρ, the lower and upper tail dependence coefficients are positive. Nikoloulopoulos

et al. (2009) analysed in full detail the extreme value properties of this copula and obtained

an expression of the lower tail dependence function among other results. More recently, in

the bivariate case, Joe (2011), p. 199, obtained an expression for the D = (L,U) and the

D = (U,L) tail dependence coefficients proving that this copula accounts for negative tail

dependence. In this subsection we present the expression for the associated D-tail dependence

function of the multivariate Student-t copula. Given that this function is positive for |R| 6= 0
and for all D, the Student-t copula accounts for all types of tail dependence. This result follows

from Nikoloulopoulos et al. (2009), Theorem 2.3, p.135 and proposition (6).

Proposition 7. Let X = (X1, ...,Xd) have multivariate t distribution with ν degrees of freedom,

and correlation matrix R = (ρij)1≤i,j≤d, that is X ∼ Td,ν,R. Let D = (D1, ...,Dd) be a type of

dependence. Then the associated D-tail dependence function bD is given by

bD(w) =
dX

j=1

wjTd−1,ν+1,R0j

Ãs
ν + 1

1− ρ2ij

"
−
µ
wi

wj

¶− 1
ν

+ pipjρij

#
, i ∈ Ij

!
,



GENERAL MULTIVARIATE DEPENDENCE USING ASSOCIATED COPULAS 27

with

R∗j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · ρ∗1,j−1;j ρ∗1,j+1;j · · · ρ∗1,d;j
...

. . .
...

...
...

...

ρ∗j−1,1;j · · · 1 ρ∗j−1,j+1;j · · · ρ∗j−1,d;j

ρ∗j+1,1;j · · · ρ∗j+1,j−1;j 1 · · · ρ∗j+1,j−1;j
...

...
...

...
. . .

...

ρ∗d,1;j · · · ρ∗d,j−1;j ρ∗d,j+1;j · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

ρ∗i,k;j = pipk
ρik−ρijρkj√
1−ρ2ij
√
1−ρ2kj

, the modified partial correlations; Ij = I − {j} and

pj =

⎧⎨⎩ 1 if Dj = L

−1 if Dj = U
,

for j ∈ {1, ..., d}.

Proof. The definition presented in this work for the tail dependence functions has the same form

for different dependencies. The only difference is the underlying associated copula. Proposition

(6) then implies that the associatedD-tail dependence function of the random vectorX ∼ Td,ν,R

is the lower tail dependence function of the vector X+ ∼ Td,ν,℘R℘. ℘ is the diagonal matrix,

whose diagonal is p = (p1, ..., pd) with

pi =

⎧⎨⎩ 1 if Di = L

−1 if Di = U

for i ∈ {1, ..., d}.
The modified correlation matrix is ℘R℘ = R∗ = (ρ∗ij)1≤i,j≤d, it follows that

(ρ∗ij)1≤i,j≤d = (pipjρij)1≤i,j≤d.

Hence (ρ∗ij)
2 = p2ip

2
jρij = 1 · 1 · ρ2ij = ρ2ij Under this change, the partial correlations are modified

as follows

ρ∗i,k;j = pipk
ρik − ρijρkjq
1− ρ2ij

q
1− ρ2kj

.

The result is then implied by Nikoloulopoulos et al. (2009), Theorem 2.3, p.135. ¤
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4. Conclusions and Future Work

In this paper we introduce the concepts to analyse, in the multivariate case, the whole de-

pendence structure among random variables. For this, we present the D-probability functions,

associated tail dependence functions and associated TDCs. This complements the use of the

distributional and survival copulas C and bC and the lower and upper tail dependence functions
and TDCs to analyse positive dependence.

We first obtain a number of theoretical results regarding the associated copulas introduced

by Joe (1997). We present a version of Sklar theorem that links D-probability functions with

the associated copulas. Together with the distributional and the survival copulas, the other

associated copulas characterise the dependence structure among random variables. With them

it is possible to analyse all types of dependence and tail dependence. In the bivariate case,

this includes positive and negative dependence. If general dependence is not considered, the

analysis of dependence structure among random variables is not complete.

We present an expression to link all the associated copulas of a random vector. After this

we prove that they are invariant under strictly increasing transformations and characterise the

copula of a vector after using monotone transformations. We then introduce the associated tail

dependence functions and associated tail dependence coefficients of a random vector to analyse

its general tail dependence.

We use the concepts and results obtained in the first part of the paper to analyse two ex-

amples of copula models. The first example corresponds to the perfect dependence cases. The

corresponding copulas are a generalisation of the Fréchet copula bounds of the bivariate case,

they correspond to the use of strictly monotone transformations on a random variable. Accord-

ingly, we name these copulas the monotonic copulas. These copulas are all radial symmetric.

The second example corresponds to the elliptical contoured distributions. For this example,

we also obtain an expression for the corresponding associated copulas and prove that they are

radial symmetric. As expected the Gaussian copula does not account for any type of tail de-

pendence, regardless of the correlation matrix. Using a result by Nikoloulopoulos et al. (2009),

we present an expression for the associated tail dependence function of the Student-t copula.
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This result proves that this copula model accounts for all types of tail dependence, as long as

its correlation matrix is non-singular.

The results obtained in this work allow us to understand better the dependence structure of

a multivariate random vector. It is then possible to know more about the underlying assump-

tions of different copula models. Without analysing general dependence, the analysis of tail

dependence in these models is therefore incomplete.

The Student-t has proven to be a better copula model than the Gaussian when modelling

financial data. It is well known that this data has heavy tails and extreme dependencies and the

assumption of only positive tail dependence has proven to be unrealistic. It is not surprising,

but yet interesting that the Student-t copula accounts for extreme dependencies of all types. An

application of non-positive tail dependence analysis appears in the context of hedging strategies.

This tail dependence will minimise the risks and variability of the portfolio in times of economic

crisis when extreme values are likely to appear.

With the formulas presented for the associated copulas, it is possible to extend the analy-

sis to other copula models with closed-form expressions. This includes copulas such as the

Archimedean, the Marshall-Ollkin and other models based on Laplace transforms. It must be

borne in mind that the fact that a particular model does not account for a type of tail de-

pendence does not mean it can not be used to model it. As long as a model accounts for one

type of tail dependence, it can be used to model an arbitrary type of dependence. For example

the multivariate Marshall-Olkin copula accounts only for lower tail dependence. However, if

we want to model D-tail dependence we can assume that the D-copula is the Marshall-Olkin

copula. Other interesting examples of copula models are the Vine copulas, the use of these cop-

ulas has proven to provide a flexible approach to tail dependence and account for asymmetric

positive tail dependence (see for instance Nikoloulopoulos et al. (2012) or Joe et al. (2010)).

These examples of the uses of the general dependence D are worth being studied in future

research.
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