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ABSTRACT
The field of econophysics has established that empirical fi-
nancial time series data exhibit several robust scaling laws,
but to date there has been relatively little attempt to explain
these scaling phenomena. In this paper we explore the scal-
ing of the absolute changes in logarithmic price with respect
to the size of the time interval over which they are calcu-
lated. In an efficient market, it is straightforward to show
how this can arise in a rational expectations model when
changes to the fundamental price are driven by a random
walk. However it is now well-known that empirical financial
time series data do not fit well with geometric Brownian mo-
tion at high-frequency time scales. To address this, we model
the financial market using a class of agent-based models in
which agents’ expectations are driven by heuristic forecast-
ing rules (in contrast to the rational expectations models
used in traditional theories of financial markets). We show
that within this framework, social learning results in robust
scaling behaviour.

1. INTRODUCTION
With the advent of algorithmic trading financial exchanges

have become some of the largest and most mission critical
multi-agent systems in existence. However, the recent fi-
nancial crisis highlights the limitations of relying solely on
theoretical models to understand these systems without val-
idating them thoroughly against actual empirical behaviour.
It is now acknowledged that widely adopted theoretical mod-
els, such as the random walk model of geometric Brownian
motion, are not consistent with the data from real-world
financial exchanges [13].

This had led to a resurgent interest in alternatives to mod-
els based on rational expectations models and the efficient
markets hypothesis; [12] proposes the “adaptive markets hy-
pothesis” as an alternative paradigm. The adaptive markets
hypothesis posits that incremental learning processes may
be able to explain phenomena that cannot be explained if
we assume that agents instantaneously adopt a rational so-
lution, and is inspired by models such as the “El Farol Bar
Problem” [2] in which it is not clear that a rational expec-
tations solution is coherent.

Appears in:

The move to electronic trading in today’s markets has
provided researchers with a vast quantity of data which can
be used to study the behaviour of real-world systems com-
prised of heterogeneous autonomous agents interacting with
each other, and thus a recent area of research within the
multi-agent systems community [18, 18, 17, 3] attempts to
take to a reverse-engineering approach in which we build
agent-based models of markets that are able to replicate the
statistical properties that are universally observed in real-
world data sets across different markets and periods of time
— the so called “stylized facts” [4].

A key issue for research in this area is that the way that
agents interact and learn can be critical in explaining certain
phenomena. For example, [11] introduce a model of finan-
cial markets which demonstrates that certain long-memory
characteristics of financial time series data can only be repli-
cated when agents imitate each others’ strategies. When
their model is analysed under a treatment in which learning
does not occur, the corresponding long-memory properties
disappear. [12] posits that many features observed in finan-
cial time series data are the result of adaptation; that is,
heuristic learning methods that iteratively refine solutions.

In this paper, we use a similar model to explore whether
adaptation could be responsible for some of the scaling prop-
erties observed in empirical financial time-series data, which
we describe below.

[15] coined the term coastline paradox and used Britain
as an example to explain that the measured length of the
coastline is highly dependent on the length of the yardstick
that was used for the assessment. A shorter yardstick would
encompass more of the tinier meanders along the coast,
whereas a longer one would simply ignore the finer sinuosi-
ties; therefore, the estimated coastline will increase, possibly
to infinity, as the length of the yardstick decreases.

A similar “fractal” behaviour can be found in economic or
financial times series such as price curves: the “coastline”
of a price curve is the result of all price movements. At
the highest resolution, i.e. the shortest possible interval be-
tween two observations, price changes appear miniscule but
they ultimately form the entire price coastline and, being
the source of price variation, they determine its length. As
[6] pointed out, the sum of all price changes for a given time
interval of measuring can be far longer than one would have
expected when comparing it to low resolution levels.

The main advantage of scaling laws is their universality
and scale invariance, allowing for both flexibility and con-
sistency in modelling. Scaling laws help to detect whether
observed phenomena are to a certain degree similar or even



the same at different scales. The notable feature of this self-
similarity concept is that the characteristics and their im-
plications would apply to both short-term and longer-term
behaviour of price dynamics. [6], for instance, illustrated
on high-frequency foreign exchange data how one one can
exploit the plethora of intra-day data to construct robust
trading models and then simply scale models to address
both short-term shocks and long-term fluctuations in market
movements, benefitting from the scale invariance property of
the scaling law.

The outline of this paper is as follows. In the following
section we describe the agent-based model used for our anal-
ysis. In Section 3 we describe how we test for the presence
of scaling behaviour in this model. We present our findings
in Section 4. Finally, we conclude in Section 5.

2. THE MODEL
We use a class of agent-based model that has been demon-

strated in previous studies by other researchers to replicate
many of the statistical properties observed in empirical data
[10, 11, 18]1. The model simulates not only the detailed
micro-structural operation of a financial market, but also
how agents form their valuations for the asset being traded
based on observations of past prices and the bidding be-
haviour of others; that is, using the terminology of auction-
theory, we model the financial market as an interdependent
values scenario.

The market is modelled as an order-driven exchange, typ-
ical of that used to trade equities in electronic markets such
as the London Stock Exchange (LSE). In an order-driven
exchange, agents can submit limit-orders which are offers to
buy, or sell, at a specified price and quantity. Orders are
matched using a continuous double auction (CDA) [5]. A
buy order can be matched with a sell order if the buy price
is greater than the sell price, and vice versa. When new
orders arrive they are executed immediately at the price of
the earliest order, provided that a corresponding match can
be found. The fulfilled orders are then removed from the ex-
change. If orders cannot be matched immediately, they are
queued on the “order book” until either they are matched or
their expiry time is reached. Buy orders and sell orders each
have their own priority queue and are ranked in descending
and ascending order respectively. The highest outstanding
buy order and the lowest sell order are called the best bid
and the best ask respectively, and the pair of prices corre-
sponding to the best bid and ask is called the market quote.

The expectations model is based on an “adaptive expecta-
tions” framework [12] in which agents make trading decisions
based on forecasts of the next period price, which are then
updated through a social learning process. Agent’s expec-
tations are modelled according to a chartist, fundamentalist
and noise framework [14]. Chartists believe future prices

91Although this is not our model, we devote space to describ-
ing it here, as well as in one of our other submissions [1], in order
to make the paper self-contained, and also because there are some
subtle technical differences between our implementation and exist-
ing models. Firstly, chartist return forecasts are calculated using
logarithmic returns rather than simple returns in order to avoid a
bias towards positive drift. Secondly, learning occurs probabilisti-
cally at every time step rather than being scheduled at every 5000
steps in order to avoid artifacts relating to strong temporal synchro-
nisation of learning. Finally, in line with the learning-classifier sys-
tem literature, we use an exponential moving average of forecast
errors in order to determine fitness rather than a moving window.

can be forecast by extrapolating from past prices, in con-
tradiction to the efficient markets hypothesis. On the other
hand, fundamentalists believe that there is a fair price for
the asset, to which the future price will revert. In a market
in which not every agent is rational, the best class of rule
to use is not necessarily the fundamentalist forecast. For
example, if a significant fraction of the market uses chartist
rules, this may create trends away from the fair price, and an
agent using a fundamentalist rule might do better by switch-
ing to a chartist rule; i.e., chartist expectations can become
self-fulfilling. Finally, noise traders form their expectations
independently at random and trade on this noise believing
that it is a signal.

The model is implemented as a discrete-event simulation
of an entire trading day. The trading day is divided into
2×105 discrete time steps, each of equal duration. This gives
a resolution of approximately 150 milliseconds on a real-time
scale. The unequal spacing of events that are typically ob-
served in empirical market data sampled at high-frequency
is modelled using a Bernoulli process; at each time step, an
randomly chosen agent arrives at the simulation with proba-
bility λ. Inter-arrival times are therefore approximately ex-
ponentially distributed, as per a continuous Poisson arrival
model.

Each agent maintains a single position in the market which
it revises according to its valuation policy. The market is
populated with a total of n agents. When the ith agent
arrives at the simulation it either places a new limit order, or
amends its existing order, based on its valuation v(i,t). The
price of the order is calculated using a strategy similar to the
Zero-Intelligence Constrained (ZI-C) behaviour described in
[7]; every agent maintains a randomly chosen markup δi ∼
U(0, δmax) and the price of the order is set to

ρ(i,t) = v(i,t)(1 + δi) (1)

for a sell order, or

ρ(i,t) = v(i,t)(1− δi) (2)

for a buy order. The direction of the order (buy or sell)
is determined by the agent’s expectation of the next period
price vi compared to the current market price pt: if v(i,t)

> pt then a buy order is placed (the agent takes a long
position), otherwise a sell order (short position).

Agents decide their valuations v(i,t) as a function of the
financial returns of the asset, i.e. the time-series of changes
in the logarithmic prices sampled at a particular frequency:

rj,∆t = log(pj∆t)− log(p(j−1)∆t) (3)

where pt is the market price observed at time t, and ∆t is the
sampling interval. The market price pt is defined as either:
the price of the transaction that occurred at time t, or the
middle of the quote if no transaction occurred.

2.1 Valuations
The valuation v(i,t) of the ith agent is calculated by mak-

ing a forecast of the next period logarithmic return r̂(t,i).
Agents using a chartist policy (r̂c) use a simple moving av-
erage of past returns:

r̂c(i,t) =

t/∆t∑
j=t/∆t−wi

rj,∆t/wi (4)

where wi is the window size used by agent i. Agents using a



fundamentalist forecasting rule (rf) have information about
the fair value of the asset ft and forecast accordingly:

r̂f(i,t) = log(pt)− log(ft). (5)

Agents using a noise-trader rule (rn) make random return
forecasts:

r̂n(i,t) = εt (6)

where εt are i.i.d. random variates drawn from a standard
normal distribution N(0, 1).

As in [10], we allow agents to make forecasts using a linear
combination of all three types of rule in order to estimate
the return over the next time period τi. Let

R(i,t) = (r̂f(i,t), r̂c(i,t), r̂n(i,t)) (7)

denote the vector of return forecasts made according to each
of the fundamentalist, chartist and noise rules respectively.
Let S(i,t) ∈ R3 denote a vector of coefficients which define
the forecasting strategy of agent i at time t. Then the return
forecast r̂(i,t) is given by:

r̂(i,t) = S(i,t) ·R(i,t). (8)

The valuation of agent i is then given by their forecast of
the price at time t+ τ :

v(i,t) = pte
r̂(i,t)/τi . (9)

This can then be substituted into equations 1 and 2 in order
to determine the agent’s limit price.

In order to model the arrival of market news, changes in
the growth rate of the fundamental price follow a random
walk:

dft = µfft + σfft dWt (10)

where σf is the volatility, µf is the drift and dWt is a stan-
dard Wiener process discretised over the time interval ∆t:

dWt ∼
√

∆tN(0, 1) (11)

2.2 Initial conditions
The initial values for agents’ strategy coefficients are ran-

dom variables S(i,0) = (SF, SC, SN) with distributions:

SF ∼ |N(0, σf )|,
CF ∼ N(0, σc),

SN ∼ |N(0, σn)| (12)

where σf , σc and σn are the standard deviations of the fun-
damentalist, chartist and noise components respectively. In
a static experiment treatment these values remain constant
over the course of a simulation run. Under a learning treat-
ment, they evolve over time according to the learning model
specified below.

2.3 Learning
As in [11, 18], we model adaptive expectations [12] by

allowing agents to learn their forecasting strategy S using a
model of social learning implemented in the form of a simple
co-evolutionary genetic algorithm.

Each agent records the exponential moving average of its
forecast error as the market progresses:

η̄(i,t) = α(r̂(i,t) − r(i,t))
2 + (1− α)η̄(i,t−wη). (13)

Symbol Definition

n ∼ U(80, 120) number of traders
σc ∼ U(0.1, 3) Standard deviation of chartist dis-

tribution
σn ∼ U(0.1, 3) Standard deviation of noise-trader

distribution
σf ∼ U(0.1, 3) Standard deviation of fundamental-

ist distribution
δmax ∼ U(0, 1) Maximum value of the markup dis-

tribution
λ ∼ U(0.1, 0.9) Probability of agent arrival per time

step
λr ∼ U(0.1, 0.9) Imitation probability per agent per

time step
λm ∼ U(0.1, 0.2) Mutation probability per agent per

time step
wi ∼ U(1, 100) Chartist window size
wη ∼ U(1, 100) Sampling interval for forecast errors
τi ∼ U(5, 10) Forecast time horizon
σf ∼ U(0, 1.0) Volatility of fundamental price pro-

cess
µf ∼ U(0, 0.1) Drift of fundamental price process
p0 ∼ U(100, 100) Initial price

Table 1: Summary of model parameters and their
associated distributions

The fitness of agent i is then given by

φ(i,t) = 1/(1 + η̄(i,t)). (14)

Imitation occurs with probability λr per time step for
any given agent. When imitation occurs, i imitates another
agent by randomly selecting a partner j from the remainder
of the population with probability proportionate to fitness:

p(agentj 6=i) = φ(j,t)/
∑
k 6=i

φ(k,t), (15)

and then agent i inherits its strategy from agent j; that is,
S(i, t) = S(j,t−1).

Mutation occurs with probability λm per time step for any
given agent. When mutation occurs the agent re-initialises
its strategy by redrawing its coefficients S from the distri-
butions specified in Section 2.2.

3. METHODOLOGY
We analyse the model specified the previous section using

Monte-Carlo simulation under two different treatment con-
ditions: learning versus static. Under the former treatment,
agents’ strategies remain fixed throughout the duration of
the trading day, whereas under the learning treatment the
strategy of each agent Si evolves according to the social-
learning model specified in Section 2.3. For each treatment
we run total of 200 independent simulations with free param-
eters drawn i.i.d. from the distributions specified in Table 3.
We then analyse the scaling properties of the resulting price
time-series as described in the following section.

3.1 Scaling Laws
In its simplest form, a scaling law (or sometimes also re-



ferred to as power law) is a polynomial relationship

f(x) = axb (16)

that satisfies the property of scale invariance

f(cx) ∝ f(x) (17)

for a, b, c ∈ R. A rescaling of the argument x only changes
the factor of proportionality but not the functional relation-
ship itself

f(cx) = a(cx)b = cbaxb = cbf(x) ∝ f(x). (18)

Likewise, changes of x and f(x) are also proportional; this
becomes clearer when looking at their logarithms

log(f(x)) = log(a) + b log(x). (19)

This scale invariance of f(x) is a the main feature of scal-
ing laws, allowing the researcher to model complex phenom-
ena in a very efficient manner [6]. For example, consider a
standard Random Walk

Xt = Xt−1 + εt =

t∑
i=0

εi (20)

with X0 = 0 and Gaussian White Noise innovations εt ∼
N (µε, σ

2
ε). As the innovations εt are i.i.d., the Random

Walk’s mean and variance over a longer horizon, here de-
noted as µX(t) and σ2

X(t), can be straightforwardly calcu-
lated as a multiple of the innovations’ moments

µX(t) = E

(
t∑
i=0

εi

)
=

t∑
i=0

E (εi) = tµε (21)

σ2
X(t) = V ar

(
t∑
i=0

εi

)
=

t∑
i=0

V ar (εi) = tσ2
ε . (22)

This so-called Gaussian scaling law that describes the first
two moments of the Random Walk at time t simply as a
function of multiples of the White Noise’s moments is of-
ten applied in finance, for example, to model volatility by
rewriting eq. (22) as

σX(t) = σε · t1/2 (23)

(similar to eq. (16) with a = σε and b = 1/2).
Many empirical studies have reported that financial as-

set returns do not have Gaussian distributions but exhibit
“stylised facts” [4]. It is well-known that empirical return
innovations are not i.i.d., therefore point forecasts for the
volatility will be biased or noisy. However, the forecast for
the cumulative volatility (22) will become more accurate be-
cause of errors cancellation and volatility mean reversion,
allowing for more robust estimates [16].

Consider the return definition in eq. (3). One popular
scaling law models the size of the average absolute price
change E (|r∆t |) as a linear function of the time interval ∆t
of its occurrence

E (|r∆t |) ∝ ∆tb, (24)

where b refers to the Hurst exponent that is often estimated
in long range dependence analysis. Eq. (24) is particularly
interesting for applied risk management as it suggests that
that the expected absolute price change is proportional to
the elapsed time interval raised to a power b.

Consider eqs. (16) and (24). Now define the absolute re-

turn as

X∆t = |r∆t | (25)

and its mean as

E(X∆t) = 〈X∆t〉 . (26)

Note that 〈X∆t〉 is a random variable itself and depends on
the sampling interval ∆t (see also eqs. (21) and (22)).

The interval ∆t is a continuous variable. To obtain a
range of suitable discrete sampling intervals, which we de-
note as ι, we first arbitrarily choose a base of 1.2 and consider
the series of its powers in increasing order, i.e. 1.21, 1.21.5,
1.22, . . . Calibrating against empirical transaction data ob-
tained from the London Stock Exchange to approximate a
5 minute interval, we determine that the lowest appropriate
value of ∆t is ι1 = 342 =

⌈
1.232

⌉
. The subsequent values

are simply higher powers (rounded) of the same base 1.2, i.e.
ι2 = 374 ≈ 1.232.5, ι3 = 410 ≈ 1.233, ι4 = 449 ≈ 1.233.5, . . .,
yielding ι = {342, 374, 410, . . . , 1225}. These values repre-
sent the number of discrete time steps in the agent-based
models. ιmax is set to 1225 to avoid obtaining too few data
points which would be the case if the time gap between two
observations would be even larger.

We sample the price data in these different discrete time
intervals ιi and then compute the corresponding absolute
price changes and their means. Figures 1 and 2 illustrate
this procedure with ι1 and ι8 as examples. Although ι8
is almost twice as long as ι1, the resulting distributions of
both log-returns (Figure 1) and absolute returns (Figure 2)
do not seem to differ much in their characteristics but rather
similar. It is this notable feature of self-similarity that allows
the researcher to analyse both short-term and longer-term
price dynamics in a consistent manner, because rescaling
the argument ι only changes the factor of proportionality
but not the functional relationship itself.

If the relationship

〈X∆t〉 = a(∆t)b (27)

holds, it would follow that

E(Xc∆t) = cbE(X∆t) ∝ E(X∆t), (28)

implying that a change of ∆t would also result in a pro-
portional change of 〈X∆t〉, relating price changes from both
long-term and short-term time scales.

This remarkable feature of the scaling law approach would
allow us to make more robust forecasts on the magnitude
of expected price changes for multiple time frames, regard-
less of the chosen sample period due to the concept of self-
similarity from fractal theory. The expected price change
〈X∆t〉 for any time horizon can then be estimated by run-
ning standard OLS (Ordinary Least Squares) regressions on
the logarithmic version of eq. (27)

log(〈X∆t〉) = ã+ b log(∆t) (29)

with ã = log(a) (see also eq.(19)).
Here, ã is the intercept (a is not estimated but log(a))

and the slope b represents the scaling exponent (or fractal
dimension). If ã is significant, which can be tested with a
t-test, then exp(ã) = a can be interpreted as the expected
“minimum spread” that a trader has to pay or can receive,
regardless of the elapsed time since the opening of his po-
sition. In contrast, b is in this log-log model measures the
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Figure 1: The top panel shows (an extract of) a ran-
domly chosen sample price series generated by the
learning model. As it can be seen, a very small
sampling interval would yield many zero returns
and induce possibly spurious strong autocorrelation.
The blue dashed and red dotted vertical lines indi-
cate the position of the prices sampled at frequency
ι1 = 342 and ι1 = 647 steps, respectively. The dis-
tribution of the corresponding returns is illustrated
in the histograms in the middle (blue) and bottom
(red) panel. As expected, a higher sampling inter-
val reduces the amount of (close to) zero returns and
increases the amount of extreme returns.

●

●

●

●

●

●
●
●

●●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●●

●

●

●

●

●●●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●●
●

●●

●

●

●

●●
●
●

●
●●

●
●
●
●●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●●●

●

●

●

●
●
●

●

●

●
●●
●

●
●

●●

●

●●

●

●
●

●●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

Sampling Interval ι

A
b

s
o

lu
te

 L
o

g
−

R
e

tu
rn

s

0
.0

0
.1

0
.2

0
.3

0
.4

342 410 492 591 709 851 1021 1225

●
●

● ●

●
●

●
●

●

●

●
●

●

●

●

5.8 6.0 6.2 6.4 6.6 6.8 7.0

−
3

.2
−

3
.0

−
2

.8
−

2
.6

−
2

.4

log(ι)

lo
g

(E
(X

ι)
)

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

5.8 6.0 6.2 6.4 6.6 6.8 7.0

−
1

0
.5

−
9

.5
−

8
.5

−
7

.5

log(ι)

lo
g

(E
(X

ι4
))

●

●

Figure 2: The top panel compares boxplots of
the absolute returns sampled at the different inter-
vals ιi, exhibiting their ‘self-similarity’ at different
timescales. For example, the distributions of the
absolute values of the returns shown in Figure 1 are
represented here in the far left blue boxplot and in
the red boxplot in the center. Now consider only the
means of the absolute returns raised to the power
pow = 1 (y-axis in middle panel) or pow = 4 (y-axis in
bottom panel). The parameters of the correspond-
ing scaling law in eq. (31) are then obtained by re-
gressing these averages against the sampling inter-
vals ιi in the log-log dimension.



percentage change in the average absolute price change with
respect to the percentage change of the considered time in-
terval.

Once, we have calculated 〈Xι〉 for all ιi (see Figure 2 top
panel), we estimate the scaling law parameters according to
eq. (29). The intercept and slope of the green line in the
middle panel in Figure 2 correspond to parameters ã and b
in eq. (29).

As mentioned above, a major advantage of scaling laws
is their universality and scale invariance, allowing for both
flexibility and consistency in modelling. A slightly modi-
fied version of eq. (24) that considers higher (and possibly
non-integer) moments of the absolute price change can be
specified as

(E (|r∆t |
pow)) ∝ ∆tb, (30)

where pow corresponds to the power of the moment. The
popular realised variance measure in the financial literature
can be seen as a special of eq. (30) case with pow = 2,
likewise eq. (23). In contrast to the financial literature which
mostly only consider the special cases pow = 1, 2 [6], we also
consider a generalisation similar to eq. (30), also to assess
the robustness of the scalability of our results.

In particular, we are interested in the relationship

〈Xpow
∆t 〉 = apow(∆t)bpow , (31)

where pow refers to the power of the moment of interest,
e.g.

〈
X2

∆t

〉
= E

(
|r∆t |

2) (see eq. 23). If we were interested
in the kurtosis of the returns distribution, i.e. their fourth
moment, to assess the their “fat tails” and extreme events,
we can consider eq. (31) and estimate the corresponding
parameters ã4 and b4. As it can be seen in the bottom panel
in Figure 2, a scaling law relationship can also be found for
the quartic order.

This demonstrates again that the scale invariance of scal-
ing laws (31) offers great benefits to researchers for their
modelling as it allows them to describe complex phenomena
in a very efficient and consistent manner without changing
or making assumptions depending on the data sample pe-
riod of sampling frequency. In the following, we estimate
the parameter sets (ãpow, bpow) for the scaling law (31) with
pow = {1.0, 1.2, 1.4, . . . , 5}. This procedure is then repeated
for all price series in all agent based models. Our scaling
law methodology is briefly summarised in Listing 1.

4. RESULTS
Our goal is to analyse the which of the agent-based model

parameters listed in Section 3.1 influences the scaling be-
haviour of a particular price building process as described
in eq. (31).

For better comparison reasons, we also include in our anal-
ysis a standard Geometric Brownian Motion (GBM), whose
theoretical scaling exponent can be derived as bpow = pow/2,
as a reference model (see Listing 1). Across all agent-based
models, the vast majority of the simulated time series have
pronounced scaling properties (see example in Figure 2),

because all most all estimated coefficients ( ̂̃akpow, b̂kpow) (see
eqs. (29) and (31)) are different from zero at the 1% signif-
icance level, and the corresponding R2 from the regression
is larger than 95%.

In the following discussion we will not comment on all
12600 individual regressions (3(models)× 200(time series)×
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Figure 3: Comparison of the quality of the scaling
law regression results for pow = 2 across all mod-
els. The boxplots show the distribution of estimated
scaling exponents (slope parameters) bk2 (top left
panel), their corresponding standard errors (bottom
left), the R2 of the regression eq. (29) (top right),
and the standard error of the regression (bottom
right).

Figure 4: Illustration of the combined linear effect
of the agent-based model parameters σn (standard
deviation of the noise trader’s weight distribution)
and λ (probability of agent arrival per time step) on

the estimated scaling exponent b̂k2 in the learning-
network model.



Algorithm 1: Estimate scaling law parameters
(ãpow, bpow)

Data: Log-Price Series log(pt)
Result: (ãkpow, b

k
pow) of all price series for all three data

generating processes
Consider the models:

1. Geometric Brownian Motion

2. learning

3. static

begin
Select model m = {1, 2, 3}
for sample price process k = 1 to k = 200 do

for power pow1 = 1 to powmax = 5 do
for time scale ι1 to ιmax do

Sample pt at t = {0, ι, 2ι, 3ι, ...}
Calculate Xι
Calculate 〈Xpow

ι 〉 = E ((Xι)
p)

Regress log(〈Xpow
ι 〉) = ãpow + bpow log(ι)

Save estimates as (̂̃akp, b̂kp)
end

end

end

end

21(moments)), but rather only focus on the special case
pow = 2, due to its popularity in the finance literature [16].
However, all obtained results are scalable for all considered
timescales and the implications apply to all other moments
in a similar way.

Figure 3 compares the distribution of estimated scaling

exponents (slope parameters) b̂k2 for all agent-based models.
Two major findings are evident. Firstly, the notched box-
plots in the top left panel show that the scaling exponent
from the model involving learning is on average higher than
the corresponding value from the static model. A higher
scaling exponent b2 implies that the expected squared price
change increases for a given ι (see eq. (31)). Compared to
both the GBM and the static models, learning causes more
variation in the returns.

The second major result is that the average scaling expo-

Parameter learning static
n 6.6E-5

(2.760)

∗∗∗ 1.2E-5
(0.037)

σc 1.1E-3
(2.178)

∗∗ 7.2E-3
(0.927)

σn -1.1E-3
(−1.744)

∗ 2.4E-2
(1.160)

λm -1.1E-2
(−1.449)

-2.3E-1
(−2.080)

∗∗

Table 2: Measuring the influence of the four agent-
based model parameters n (number of agents), σc
(standard deviation of the chartist’s weight distri-
bution), σn (standard deviation of the noise trader’s
weight distribution) and λm (mutation probability)
on the obtained R2 of the corresponding scaling re-
gressions. t-statistics are shown in parentheses. The
significance levels are : ‘***’ = 1%, ‘**’ = 5%, ‘*’=
10%.

nent of the static model is not just lower than compared to
the GMB, its range of estimated values is much wider com-
pared the other models, although the fundamental price is
following a GBM price path. This finding is supported by
the fact that the corresponding R2s are lower (Figure 3, top
right panel), and that the standard error of the estimates
(bottom left panel) and the standard error of the regression
(bottom right panel) higher, all indicating a poorer fit in the
scaling property.

It is to be emphasised that the bigger dispersion in the

distribution of the estimates b̂k2 is not due to noise of in-
duced bias but the actual mechanism in the agent-based

model. Regressing b̂k2 against all agent-based model param-
eters (this is not to be confused with eq. (29)) reveals that
particularly two decisive factors are consistently controlling
the price processes’ scaling behaviour in all moments. Fig-
ure 4 illustrates the combined effect of σn (the standard de-
viation of the noise trader’s weight distribution) and λ (the
probability of agent arrival per time step) on the scaling ex-

ponent b̂k2 in the learning network model. In general, both
variables have a negative impact in the scaling exponent,
meaning that the higher two variables are in the agent-based
model’s setting, the lower are the expected price variation at
all timescales. These effect can be explained such that first
a higher standard deviation of the noise traders’ weights will
create a wider dispersion of price expectations around the
midprice, making the more distant prices less likely to be
executed. The remaining prices closer to the midprice are
then more considered much more often, yielding lower price
variation in the long run. Secondly, a higher arrival rate of
agents improves the market’s liquidity in general, but ulti-
mately only the more efficient prices will be accepted by the
market resulting in price fluctuation of smaller magnitudes.

In order to assess which and how certain factors affect the
goodness of fit in the scaling property, we also regress the
obtained R2 against theagent-based model parameters. The
corresponding multiple regressions results are listed in Ta-
ble 2 (for reasons of simplicity, only variables that are influ-
encing the fit of either model are shown in this table). In the
learning model both n (number of agents) and σc (standard
deviation of the chartist’s weight distribution) increases the
fit of the scaling property, whereas σn (standard deviation
of the noise trader’s weight distribution) decreases it. In the
static model however, only λm (mutation probability) has a
statistically negative significant on the obtained R2 of the
corresponding scaling regressions.

5. CONCLUSION
In this paper we investigated whether the scaling char-

acteristics observed in empirical financial time-series data
could be explained by a process of social learning, in accor-
dance with the “adaptive markets hypothesis” [13].

To this end, we used an agent-based model based on ear-
lier models [10, 11] which have been demonstrated to repro-
duce many other stylized facts of financial markets including
volatility-clustering, fat-tailed return distributions and long-
memory properties. Previous work has shown the impor-
tance of learning in reproducing long-memory features of the
price process [11]. In this paper we have shown that learning
also contributes to realistic scaling behaviour. To the best
of our knowledge, this is the first attempt to systematically
analyse which features of of an adaptive-expectations model



contribute to scaling behaviour in financial markets.
We have shown that learning results in more robust scaling

behaviour, as measured by the R2 of the scaling regression,
when compared to a control condition in which learning does
not occur (the static treatment).

Furthermore, we found that two distinct variables, i.e. the
noise trader weight distribution’s standard deviation and the
probability of agent arrival per time step, have a particularly
strong and statistically significant impact on the scaling ex-
ponent. Across all simulated price paths, the higher these
two variables are in the model setting, the lower are the ex-
pected price variation, consistently at all timescales. Whilst
we cannot directly account for these correlations under the
present analysis, we note that both of these parameters play
an important role in the learning process described in Sec-
tion 2.3. Other research has highlighted the importance of
the dynamics of learning [18] in reproducing particular sta-
tistical features observed in empirical data, and [9, 19, 20]
demonstrate the existence of chaotic attractors in strategy
dynamics in several theoretical settings including an expec-
tations framework. Moreover, there is evidence of oscillat-
ing behaviour in the learning dynamics exhibited by human
subjects in laboratory asset-pricing experiments [8]. An in-
teresting research question is whether the scaling proper-
ties exhibited in our current study are the result of similar
chaotic attractors in the co-evolutionary dynamics resulting
from social learning.

The simulated agent based models provide an abundance
of data. In this study, we only considered the scaling be-
haviour of absolute prices changes. Many other variables
such as trading durations, trading volume, number of trades
remain to be analysed. The investigation of these and fur-
ther variables can eventually shed more light on how the
dynamics in the market’s the supply and demand can be
modelled in a universal scale invariant ways. In our future
research we will focus on further scaling laws for other fi-
nancial variables to study their fractal nature and degree of
self-similarity.
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