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Valuation of American Options with Meshfree Methods

Abstract

In this paper, we price American options using the radial basis function (RBF)

interpolation method. Two processes for the volatility are assumed: local volatility

and stochastic volatility. In particular, we focus on the constant elasticity of variance

(CEV) model (Cox and Ross (1976)) and the Heston model (Heston (1993)). Several

experiments are performed to evaluate the pricing accuracy and the computational

efficiency of the RBF method. The results are compared against solutions obtained

by two traditional techniques in finance, namely the standard finite difference method

(FDM) and the Monte Carlo simulation (MCS). The option prices approximated by

the RBF interpolation are also contrasted with the results reported in other recent

studies. The findings show that the RBF interpolation provides accurate and efficient

option prices under the two volatility processes under investigation. In particular,

the gains of using the meshfree method are observed in the Heston model due to its

two-dimensional setting. Under the CEV model, the performance of the RBF method

is similar to the FDM, but superior compared with the MCS. Under the Heston model

specification, the RBF method outperforms both the FDM and the MCS.

Keywords: Meshfree Methods, Radial Basis Function Interpolation, American Op-

tions, Option Pricing, Heston Model, CEV Model.

JEL Codes: C63, C65, G12, G13
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1 Introduction

The popular Black-Scholes (BS) model establishes the basis of modern option pricing

theory (Black and Scholes (1973) and Merton (1973)). However, this model assumes that

the volatility of the underlying asset returns is constant, which is not consistent with the

empirical evidence (see Rubinstein (1994), Fouque et al. (2000) and Cont (2001)). In fact,

the volatility is a function of the strike price (volatility smile) and the time to maturity of

the contract (Dell’Era (2010)). In addition, the BS model does not capture the volatility

clustering and the leverage effect (Fatone et al. (2009) and Mitra (2010)).

In order to relax the constant volatility assumption, researchers have proposed local

and stochastic volatility models, combinations of them and other new features such as

stochastic interest rates and stochastic jumps (Bakshi et al. (1997) and AitSahlia et al.

(2010)). Local and stochastic volatility models have provided a valuable improvement in

the option pricing theory and represent a useful instrument for practitioners in finance. In

particular, stochastic volatility models have shown their ability to describe the observed

data in the market and overcome the drawbacks exhibited in the BS model (Mitra (2010)).

They use sophisticated processes to describe the dynamics of both the underlying asset

and its variance (Fatone et al. (2009)).

However, in many cases closed-form solutions do not exist, or have to be approximated

(Zhang and Lim (2006) and Chang et al. (2007)), or they become cumbersome, time-

consuming or difficult to compute (Mitra (2010) and Park and Kim (2011)). Another

important topic in option pricing is the valuation of American options, whose early exercise

feature requires special treatment. In this case, it is not possible to compute the solution by

an exact formula (Ikonen and Toivanen (2008), Vidal (2009) and O’Sullivan and O’Sullivan

(2010)).

Researchers have dealt with the issues highlighted above using numerical schemes based

on the Monte-Carlo simulations (MCS), the finite difference methods (FDM) and other

mesh-based techniques. Recent examples include Boyle et al. (2003), Ikonen and Toivanen

(2007), Ikonen and Toivanen (2008), Persson and Sydow (2010), AitSahlia et al. (2010),

Düring and Fournié (2010) and O’Sullivan and O’Sullivan (2010). However, the MCS

method is time-consuming and its application to price American options is not direct (see

also Duck et al. (2005), Dutt and Welke (2008), and Liu (2010)). On the other hand,

mesh-based methods such trees (Chen et al. (2002), Widdicks et al. (2002) and Beliaeva
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and Nawalkha (2010)) or FDM (Koc et al. (2003), Daum and Krichman (2006) and Duffy

(2006)) face difficulties in complex and high-dimensional applications.

As a first contribution in this paper, we employ the radial basis function (RBF) interpo-

lation from meshfree methods to obtain accurate, robust and efficient prices for American

options under two specifications for the volatility, namely the constant elasticity of variance

(CEV) model and the Heston model. Hence, we deal with the two problems highlighted

above: first, the pricing of options under stochastic volatility, and second, the pricing of

American options.

Meshfree methods arise as novel numerical approximation techniques that overcome

some weaknesses faced by mesh-based methods (Duffy (2006)). They have been employed

in fields such as computer graphics, non-uniform sampling, artificial intelligence, neural

networks, data mining, signal processing, optimization and nanotechnology (see Liu (2003)

and Fasshauer (2007) for more details). Mei and Cheng (2008) and Kelly (2009) reported

that although the RBF methods have been applied successfully in many areas, there are

only a handful of applications in finance, mainly in option pricing and usually only in a BS

setting (e.g Hon and Mao (1999), Hon (2002), Koc et al. (2003), Fasshauer et al. (2004),

Pettersson et al. (2008), Fasshauer et al. (2008) and Larsson et al. (2008)). This study

extends the findings in the existing literature on the RBF methods in option pricing by

concentrating on the CEV and Heston model.

As a second contribution, we perform several experiments to compare the option prices

computed by the RBF interpolation with those obtained from the MCS and the FDM.

American option prices under the Heston model are also compared with results reported in

recent studies in the literature. The performance of the numerical techniques is evaluated

in terms of accuracy and computational efficiency.

The results show that the RBF interpolation is a robust and efficient method for pricing

American options. The method provides accurate option prices with small computation

time in comparison with the other techniques and recent references in the literature. In

addition, under this approach, few steps for discretization over time are required to obtain

solutions converging to the benchmark. For the CEV model, a one-dimensional speci-

fication, the meshfree method outperforms the MCS and its performance is similar to

the FDM. For the Heston model, a two-dimensional specification, the RBF interpolation

method provides superior results compared with the FDM and the MCS.

The structure of the paper is organized as follows. Section 2 first reviews the selected
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option pricing models. In Section 3, we introduce the meshfree methods and illustrate the

use of the RBF interpolation to compute the option prices under the CEV and Heston

models. Section 4 reports and compares the results of the numerical experiments. Finally,

Section 5 concludes.

2 Option Pricing Models

This section introduces the CEV model (Section 2.1) and the Heston model (Section 2.2).

In particular, we discuss the stochastic process, the partial differential equation (PDE),

and the boundaries conditions for each model.

2.1 The CEV Model

The CEV model is proposed in Cox and Ross (1976). It is a local volatility model, which

assumes that the volatility is a function of the stock price and the time. It is able to fit

implied volatility surfaces and account for the existence of the leverage effect (Boyle and

Tian (1999), Vidal (2009) and Mitra (2010)). However, the volatility is assumed to be

perfectly correlated with the stock price S and the model is not able to capture volatility

clustering (Mitra (2010)).

Recent applications of the CEV model include the pricing of European, barrier and

lookback options (Park and Kim (2011)), American options in defaultable equity (Vidal

(2009)), and options on the S&P 500 index (Chen et al. (2009)).

The CEV model assumes that the dynamics of the underlying stock price S (t) at time

t under the Q-measure is modelled by a stochastic differential equation (SDE)

dS (t) = (r− q)S (t) dt+ σ̃S (t)
β

2 dW (t) , (1)

where r, q, σ̃ and β are parameters for the risk-free interest rate, the dividend yield, the

volatility, and the elasticity of variance with respect to the stock price, respectively. The

variable W (t) denotes a Wiener process.

For different values of β the CEV model can be reduced to a number of popular option

pricing models. For instance, if β = 2, the CEV model becomes the BS model; if β = 1,

the CEV model is transformed into the square-root model (see Chen et al. (2009) and Choi

et al. (2010)).

Consider U = U (S, t) as the option price under the CEV model with stock price S and
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time left to maturity t. The latter is defined as t = T − t, where T is the maturity date

and t is the current time. The option price U (S, t) satisfies the PDE

∂U

∂t
+

1

2
σ̃2Sβ ∂

2U

∂S2
+ (r− q)S

∂U

∂S
− rU = 0. (2)

The American put option is subject to the conditions (Wong and Zhao (2008))

U (S, 0) = max (E − S, 0) , 0 < S < ∞, (3a)

U (S, t) = E exp −(r−q)t, S = 0, t > 0, (3b)

U (S, t) → 0, S → ∞, t > 0, (3c)

U(S, t) ≥ max (E − S, 0) , 0 < S < ∞, t > 0, (3d)

where E is the strike price (i.e. exercise price). For American call options, the set of

constraints is defined as

U (S, 0) = max (S − E, 0) , 0 < S < ∞, (4a)

U (S, t) = 0, S = 0, t > 0, (4b)

U (S, t) → S, S → ∞, t > 0, (4c)

U(S, t) ≥ max (S − E, 0) , 0 < S < ∞, t > 0. (4d)

For a put option, equation (3a) corresponds to the payoff at the maturity date. Equa-

tions (3b-3c) define the boundary conditions of the problem. This set of constraints estab-

lishes the European option pricing problem. Equation (3d) is the early exercise condition.

It means that the exercise is permitted at any time t > 0 during the life of the option [0,T].

This condition must be added to the previous constraints for pricing American options.

The same definitions apply to equations (4a-4d) in the case of a call option.

Special Case : the CEV Model with β = 2

With β = 2, the CEV model becomes the BS model. In this particular case the underlying

asset price S (t) at time t under the Q-measure follows the stochastic differential equation

dS (t) = (r− q)S (t) dt+ σ̃S (t) dW (t) , (5)
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where r is the risk-free interest rate, q is the dividend yield, σ̃ is the constant volatility,

and W (t) is a Wiener process.

Under this framework, the option price U (S, t) satisfies the time-dependent linear PDE

∂U

∂t
+

1

2
σ̃2S2∂

2U

∂S2
+ (r− q)S

∂U

∂S
− rU = 0. (6)

The American put option is subject to the conditions (3a-3d). For American call

options, the set of constraints is given by equations (4a-4d). The pricing of European put

and call options does not consider the early exercise condition (3d) and (4d), respectively.

2.2 The Heston Model

Heston (1993) proposes a stochastic volatility model, which has been widely adopted in

the option pricing literature. Stochastic volatility models allow for more flexible dynamics

for the volatility process. Nevertheless, these models tend to be analytically less tractable.

In fact, it is common that they have no closed-form solution to compute option prices.

Therefore, numerical methods are required to evaluate the options.

Literature on applications of the Heston model in option pricing includes to Zhang

and Shu (2003) who value S&P 500 index options. In addition, Ikonen and Toivanen

(2007), Ikonen and Toivanen (2008) and O’Sullivan and O’Sullivan (2010) price American

options and compare a number of numerical methods. Moreover, Fatone et al. (2009) price

European vanilla options using a multi-scale model and AitSahlia et al. (2010) perform

pricing and hedging on S&P 100 index option data.

The Heston model under the Q-measure is given by

dS (t) = (r− q)S (t) dt+
√

V (t)S (t) dW1 (t) , (7)

dV (t) = κ (θ − V (t)) dt+ σ
√

V (t)dW2 (t) , (8)

and

Corr [dW1 (t) , dW2 (t)] = ̺dt, (9)

where S (t) and V (t) are the asset price and variance at time t, respectively. The parameter

r is the risk-free rate and q is the dividend yield. The variance V (t) is modelled as a square-

root mean reverting process (Cox et al. (1985)), where κ is mean reversion speed, θ is the

long-run mean and σ is the volatility of the variance. The variables Wi (t) for i = 1, 2 are
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Wiener processes with correlation ̺.

Consider U = U (S, V, t) as the option price under Heston model at current time t,

stock price S and variance V . Heston (1993) shows that U = U (S, V, t) can be obtained

by solving a two-dimensional parabolic PDE

∂U

∂t
+

1

2
S2V

∂2U

∂S2
+ ̺σV S

∂2U

∂S∂V
+

1

2
σ2V

∂2U

∂V 2
+ (r− q)S

∂U

∂S

+ [κ (θ − V )− ζV ]
∂U

∂V
− rU = 0, (10)

subject to a final condition and boundary conditions. The constant parameter ζ is the

market price of risk. Similar to Oosterlee (2003), Ikonen and Toivanen (2007), Ikonen and

Toivanen (2008) and Persson and Sydow (2010), it is assumed that ζ = 0.

Under the transformation of variables X = ln (S/E), Ũ = Ũ (X , V, t) and t = T − t,

where E is the strike price, t is the remaining time to maturity and T is the maturity date,

the PDE (10) can be written as

∂Ũ

∂t
+

1

2
V
∂2Ũ

∂X 2
+ ̺σV

∂2Ũ

∂X∂V
+

1

2
σ2V

∂2Ũ

∂V 2
+

(

(r− q)−
1

2
V

)

∂Ũ

∂X

+ [κ (θ − V )]
∂Ũ

∂V
− rŨ = 0, (11)

to be solved on R× R
+.

The price of an American put option is given by the solution of the PDE (11) subject

to the set of constraints (Düring and Fournié (2010))

Ũ (X , V, 0) = max
(

1− expX , 0
)

, X ∈ R, V > 0, (12a)

Ũ (X , V, t) → 1, X → −∞, V > 0, t > 0, (12b)

∂Ũ (X , V, t)

∂V
→ 0, X ∈ R, V → ∞, t > 0, (12c)

Ũ (X , V, t) → 0, X → +∞, V > 0, t > 0, (12d)

∂Ũ (X , V, t)

∂V
→ 0, X ∈ R, V → 0, t > 0, (12e)

Ũ(X , V, t) ≥ max
(

1− expX , 0
)

, X ∈ R, V > 0, t > 0, (12f)

8



In the case of American call options, the set of constraints is given by

Ũ (X , V, 0) = max
(

expX −1, 0
)

, X ∈ R, V > 0, (13a)

Ũ (X , V, t) → 0, X → −∞, V > 0, t > 0, (13b)

∂Ũ (X , V, t)

∂V
→ 0, X ∈ R, V → ∞, t > 0, (13c)

Ũ (X , V, t) → 1, X → +∞, V > 0, t > 0, (13d)

∂Ũ (X , V, t)

∂V
→ 0, X ∈ R, V → 0, t > 0, (13e)

Ũ(X , V, t) ≥ max
(

expX −1, 0
)

, X ∈ R, V > 0, t > 0. (13f)

Equations (12a) and (13a) correspond to the payoff at the maturity date, while equa-

tions (12b-12e) and (13b-13e) define the boundary conditions for the put and call options,

respectively.

The pricing of American options includes an additional feature of early exercise con-

dition. It means that the exercise is permitted at any time t > 0 during the life of the

option [0,T]. There is no exact formula when the early exercise condition is involved. So

it is necessary to impose the constraints defined in equations (12f) and (13f) for put and

call options, respectively.

3 Meshfree Methods

In this section, we introduce meshfree approximation methods and in particular the radial

basis function (RBF) interpolation method.

Mesh-based methods are the traditional approach in finance to deal with the numerical

approximation of PDEs. These methods discretize the spatial domain using an underlying

computational mesh or grid with nodes providing a predefined relationship between them

(Liu (2003)). These methods are applied mostly to one- and two-dimensional applica-

tions (Fasshauer (2007)). Within these techniques, the finite difference method (FDM) is

the most common numerical tool used by practitioners in finance (Duffy (2006)). They

work well in simple and low-dimensional cases. However, mesh-based methods face diffi-

culties in more complex applications. The drawbacks are associated with the building of

the underlying mesh, the discretization, its regularity conditions and the time-consuming

requirement to implement it in multi-dimensional problems (Fasshauer (2007)). In fact,

the computational complexity in the construction of a fixed grid grows exponentially with
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the dimension, becoming a difficult task in two or more dimensions (Duffy (2006), Daum

(2005) and Daum and Krichman (2006)). Besides, the FDM achieves low-order polynomial

accuracy and suffers from oscillation problems (Koc et al. (2003) and Duffy (2006)).

Unlike mesh-based approaches, meshfree methods do not require the use of an under-

lying grid with connectivity among its knots. Instead, these methods are based on a set of

independent nodes, which are scattered on the domain of the problem (Liu (2003) and Li

and Liu (2004)). Although there is no relationship among nodes, these are used to establish

a system of equations for the whole domain. Hence, meshfree techniques are able to deal

with issues where the use of fixed and regular meshes are a drawback (Liu (2003) and Liu

and Gu (2005)). Meshfree methods are adaptive and versatile approximation techniques

for the study of problems with complex geometries and irregular discretization (Liu (2003)

and Fasshauer (2007)). In fact, as there is no mesh, these methods are relatively easy to

implement in multi-dimensional problems (Duffy (2006)).

Liu (2003) points out that the accuracy and efficiency in the numerical approximation

will depend on the number of points and their distribution on the space of the problem.

Nevertheless, these two elements can be modified to improve the results. As there is no

predefined relationship between the nodes, they can be added on or removed from different

areas depending on the needs of the study. Liu (2003) also states that the allocation of

points can be generated automatically such that the implicit costs in the creation of the

mesh are eliminated.

The most popular meshfree techniques include the RBF interpolation method, the

moving least squares (MLS) approximation method, the smooth particle hydrodynamics

method, the element-free Galerkin method, the meshless local Petrov-Galerkin method, the

reproducing kernel particle method, the diffuse element method and the partition of unity

finite element method. Iske (2004) and Fasshauer (2006, 2007) are excellent references on

the RBF interpolation and the MLS approximation. Liu (2003) and Li and Liu (2004)

provide a very good introduction to the other techniques. Liu and Liu (2003) present a

historical review on the meshfree methods in general, while Fasshauer (2007) focuses on

the RBF techniques.

In this paper, we focus on the RBF interpolation. There exist in engineering many

applications of the RBF interpolation method addressed to the solution of PDEs (see Liu

(2003) and Fasshauer (2007)). However, in finance the number of RBF applications is

rather small. They are concentrated in the solution of time-dependent PDEs for pricing
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options under the Black-Scholes (BS) model. For example, Hon and Mao (1999), Koc

et al. (2003) and Kelly (2009) apply the RBF interpolation to solve the BS PDE for

pricing European and American options (see also Goto et al. (2007), who considered Asian

Options, also in a BS setting). Fasshauer et al. (2004) employ the RBF approach to

evaluate multi-asset American options. Pettersson et al. (2008) derive a RBF method to

price European basket call options. Fasshauer et al. (2008) consider the RBF approach

for pricing options with non-smooth payoffs, in particular American digital options. Hon

(2002) and Mei and Cheng (2008) perform quasi-interpolation and RBF approximation

for pricing American and European options, respectively. Larsson et al. (2008) use the

generalized Fourier transform along with RBF method for pricing multi-asset options.

In the following, we first introduce the RBF interpolation method (Section 3.1). We

then explain the approximation of option prices using the RBF method under the CEV

model (Section 3.2) and the Heston model (Section 3.3)

3.1 Radial Basis Function Interpolation

The RBF interpolation deals with univariate basis functions and a specific norm (com-

monly the Euclidean norm) to reduce a multi-dimensional problem into a one-dimensional

issue (Fasshauer (2006, 2007)). In fact, Koc et al. (2003) and Duffy (2006) state that the

RBF method is independent of the dimension of the problem. Hence, the approach deals

with high-dimensional data with relative ease and its numerical results offer an efficient,

highly accurate and versatile spatial approximation to the true solution (Duffy (2006)). In

addition, the technique accounts for correlation terms without requiring special develop-

ment (Fasshauer et al. (2004)). This feature is of crucial importance in the growing market

of multi-asset derivative products.

Fasshauer (2006, 2007) explain that the RBF interpolation method approximates the

value of a function as the weighted sum of RBFs. These functions are evaluated on a set of

points called centers, which are quasi-randomly scattered over the domain of the problem.

The weights are found by matching the approximated and observed values of the function.

Once the interpolation weights are computed, they are used to estimate the value of the

function at any point over entire domain.

Following Fasshauer (2007), we consider the set of centers Z = [z1, . . . , zK ]′ with zk ∈
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R
d, d ≥ 1 and the data values gk ∈ R. We assume that

gk = f (zk, t) , k = 1, . . . ,K,

where f is an unknown function and t is the time. We also define f (Z, t) as a linear

combination of K certain basic functions

f (Z, t) ≃
K
∑

k=1

δk (t)ϕ (‖ Z− zk ‖) , k = 1, . . . ,K, (14)

where the coefficients δk (t) are the unknown weights, ϕ (·) is the chosen radial basis func-

tion and ‖ · ‖ is the Euclidean norm. Fasshauer (2007) shows that equation (14) is basically

a system of linear equations

















f (z1, t)

f (z2, t)
...

f (zK , t)

















≃

















ϕ (‖ z1 − z1 ‖) ϕ (‖ z1 − z2 ‖) . . . ϕ (‖ z1 − zK ‖)

ϕ (‖ z2 − z1 ‖) ϕ (‖ z2 − z2 ‖) . . . ϕ (‖ z2 − zK ‖)
...

...
. . .

...

ϕ (‖ zK − z1 ‖) ϕ (‖ zK − z2 ‖) . . . ϕ (‖ zK − zK ‖)

































δ1 (t)

δ2 (t)
...

δK (t)

















which must be solved to obtain the interpolation coefficients δk (t). Once these weights are

found, the value of the function f can be estimated at any set of points Z̃ = [z̃1, . . . , z̃L]
′

with z̃l ∈ R
d for l = 1, . . . , L and time t as

f
(

Z̃, t
)

≃
K
∑

k=1

δk (t)ϕ
(

‖ Z̃− zk ‖
)

.

Table 1 states the basic function of four RBFs often used in engineering applications,

namely the Gaussian RBF, the MQ RBF, the cubic RBF and the TPS RBF (see Koc et al.

(2003)).

In the next section we illustrate the application of the RBF interpolation method for

approximating put option prices under the CEV and Heston models.

3.2 The CEV Option Prices: Approximation by the RBF Interpolation Method

The solution for American put option prices under the CEV framework is given by the

PDE (2) subject to the conditions provided in equations (3a-3d). Following Koc et al.
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(2003), we use the Crank-Nicolson averaging to discretize equation (2) in time such that

U (S, t)− U (S, t+∆t)

∆t
+

1

2
σ̃2Sβ ∂

2U
(

S, t+ ∆t

2

)

∂S2
+ (r− q)S

∂U
(

S, t+ ∆t

2

)

∂S

− rU

(

S, t+
∆t

2

)

= 0, (15)

where ∆t is the time step and U
(

S, t+ ∆t

2

)

= 1
2 [U (S, t) + U (S, t+∆t)]. Next, we separate

the variables at time t and t+∆t on each side of the equation, so that equation (15) can

be rewritten as

HCEV
+ U (S, t+∆t) = HCEV

− U (S, t) , (16)

where HCEV
+ and HCEV

− are the operators

HCEV
+ = 1−

∆t

2

[

1

2
σ̃2Sβ ∂2

∂S2
+ (r− q)S

∂

∂S
− r

]

HCEV
− = 1 +

∆t

2

[

1

2
σ̃2Sβ ∂2

∂S2
+ (r− q)S

∂

∂S
− r

]

.

Now we replace the variable U in equation (16) by the linear combination of RBFs

U (S, t) ≃
K
∑

k=1

δCEV
k (t)ϕ (‖ S − Sk ‖) , k = 1, . . . ,K, (17)

where the option price U is evaluated for K values of the stock price (i.e. K centers) such

that S = [S1, . . . , SK ]′; the coefficients δCEV
k (t) for k = 1, . . . ,K at time t are the weights

and ϕ (‖ · ‖) is the chosen RBF.

Finally, we obtain the system

K
∑

k=1

δCEV
k (t+∆t)HCEV

+ ϕ (‖ S − Sk ‖) =
K
∑

k=1

δCEV
k (t)HCEV

− ϕ (‖ S − Sk ‖) . (18)

To compute the solution δCEV
k (t+∆t), we have to solve the linear system (18) itera-

tively given the values δCEV
k (t) from the previous step. The initial value for δCEV

k (t) is

derived from equation (17) and the initial condition (3a). The boundary conditions must

be satisfied through the iterative solution of the system.

The results presented in equation (18) can be easily modified for the pricing of options
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under the BS model. In this setting, the system of linear equations to be solved is

K
∑

k=1

δBS
k (t+∆t)HBS

+ ϕ (‖ S − Sk ‖) =

K
∑

k=1

δBS
k (t)HBS

− ϕ (‖ S − Sk ‖) , (19)

where HBS
+ and HBS

− are the operators

HBS
+ = 1−

∆t

2

[

1

2
σ̃2S2 ∂2

∂S2
+ (r− q)S

∂

∂S
− r

]

,

HBS
− = 1 +

∆t

2

[

1

2
σ̃2S2 ∂2

∂S2
+ (r− q)S

∂

∂S
− r

]

.

3.3 The Heston Option Prices: Approximation by the RBF Interpolation

Method

The solution for American put option prices under the Heston framework is given by the

PDE (11) subject to the set of conditions in equations (12a-12f). We follow the same

procedure outlined above to approximate the option prices. Following Koc et al. (2003),

we use the Crank-Nicolson approach to discretize in time equation (11), yielding

Ũ (X , V ; t)− Ũ (X , V ; t+∆t)

∆t
+

1

2
V
∂2Ũ t+∆t

2

∂X 2
+ ̺σV

∂2Ũ t+∆t

2

∂X∂V
+

1

2
σ2V

∂2Ũ t+∆t

2

∂V 2
+

(

(r− q)−
1

2
V

)

∂Ũ t+∆t

2

∂X
+ [κ (θ − V )]

∂Ũ t+∆t

2

∂V
− rŨ t+∆t

2 = 0, (20)

where ∆t is the time step and Ũ t+∆t

2 = 1
2

[

Ũ (X , V ; t) + Ũ (X , V ; t+∆t)
]

.

The variable Ũ in equation (20) is replaced by the linear combination of RBFs

Ũ (Y; t) ≃

K
∑

k=1

δHeston
k (t)ϕ (‖ Y − Yk ‖) , k = 1, . . . ,K, (21)

where Y =[Y1, . . . ,YK ]′ is a two-dimensional vector with K observations (i.e. centers)

to be evaluated. Each center is defined as the pair Yk = [Xk, Vk]. After separating the

elements at time t and t+∆t on each side of the equation we obtain the linear system

K
∑

k=1

δHeston
k (t+∆t)HHeston

+ ϕ (‖ Y − Yk ‖) =

K
∑

k=1

δHeston
k (t)HHeston

− ϕ (‖ Y − Yk ‖) , (22)
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where HHeston
+ and HHeston

− are the operators

HHeston
+ = 1−

∆t

2
[

1

2
V

∂2

∂X 2
+ ̺σV

∂2

∂X∂V
+

1

2
σ2V

∂2

∂V 2
+

(

(r− q)−
1

2
V

)

∂

∂X
+ [κ (θ − V )]

∂

∂V
− r

]

HHeston
− = 1 +

∆t

2
[

1

2
V

∂2

∂X 2
+ ̺σV

∂2

∂X∂V
+

1

2
σ2V

∂2

∂V 2
+

(

(r− q)−
1

2
V

)

∂

∂X
+ [κ (θ − V )]

∂

∂V
− r

]

.

The coefficients δHeston
k (t) for k = 1, . . . ,K at time t are the weights and ϕ (‖ · ‖) is

the chosen RBF. To find the weights δHeston
k (t+∆t), we have to solve the linear system

(22) iteratively given the values δHeston
k (t) from the previous step. The initial value for

δHeston
k (t) is obtained from equation (21) and the final condition (12a). The boundary

conditions must be satisfied through the iterative solution of the system.

In general, the option pricing problem is solved by the RBF interpolation method

through the iterative solution of a linear system of equations. This solution is based on

the operators H+ and H− which depend on the assumed model. In addition, the solution

of the system must satisfy a set of constraints that are intrinsic to each option type.

4 Numerical Experiments

This section applies the RBF interpolation method to compute the prices of American put

options written on a non-dividend-paying stock. We consider two schemes for the volatility,

namely the CEV model and the Heston model. The option prices under the BS model are

also calculated as a special case of the CEV model with β = 2. Some results for European

options are reported to illustrate the accuracy of the method.

Figure 1 shows the location of the centers employed by the RBF interpolation method

in this study. This distribution of points is used in the pricing of options under the CEV

model (Panel A) and the Heston model (Panel B). Each plot in this figure contains 200

centers. The Halton sequence is used to place the centers on the areas of interest in the

problem. The largest amount of points is added over the space requiring the highest level

of accuracy. In the CEV model, the centers are concentrated close to the moneyness S
E

. In

the Heston model, most points are located close to the logarithm of the moneyness ln
(

S
E

)
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and the boundary V = 0.

Regarding the RBF method, we employ the TPS-RBF stated in equation (28). This

particular RBF is chosen for two reasons. First, it does not require the calibration of

additional parameters as some RBFs do (e.g. the Gaussian- and MQ-RBF defined in

equations (25) and (26), respectively). Second, a previous study in option pricing by

Koc et al. (2003) shows the outstanding performance of the TPS-RBF compared with the

Cubic-, Gaussian- and MQ-RBF.

The accuracy of the RBF method and its comparison against other numerical techniques

is assessed using the following statistical measures: the approximation error and the root-

mean-square error (RMSE) (see for example Fasshauer et al. (2004) and Fasshauer (2007)).

The distance
(

Ôh −Oh

)

, (23)

is defined as the approximation error, where Oh and Ôh are the h-th observation of the

benchmark values vector and the approximated values vector, respectively. The RMSE is

computed as

RMSE =

√

√

√

√

1

H

H
∑

h=1

(

Ôh −Oh

)2
, (24)

where H is the total number of observations evaluated.

The numerical computations are performed on a DELL machine with a Intel Core 2

DuoE8500 processor, 3.17 GHz CPU speed, 4.00 GB internal memory, 160 GB hard drive

disk and operating system Windows 7.

The RBF interpolation results are compared with alternative solutions, including the

analytical (or semi-analytical) formula if it is available and two numerical techniques,

the FDM and the MCS. In particular, for the CEV model we use a standard FDM with a

NS×Nt grid, whereas for the Heston model, a two-dimensional problem, we use an operator

splitting FDM with a fixed NX ×NV ×Nt grid. On the other hand, the MCS method makes

use of the antithetic variables and moment matching techniques. For American options,

the MCS employes the simulation-based technique introduced in Longstaff and Schwartz

(2001). The time is discretized using the Crank-Nicolson averaging.

The option prices, stock prices, strike prices and statistical measures used in this paper

are defined in terms of one monetary unit (e.g. one $ US dollar). In the following, we first

discuss the simulation results for the CEV model (Section 4.1), and then for the Heston

model (Section 4.2).
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4.1 Option Pricing under the CEV Model

In this set of experiments, we consider the pricing of put options under the CEV model.

The option parameters are: strike price E = 10, time to maturity t = 0.25 years, risk-

free interest rate r = 10%, and volatility σ̃ = 25%. We assume the elasticity β = 1

and hence, a square-root process. The results are presented for a small sample of stock

prices S = [8, 9, 10, 11, 12]. This sample considers out-of-the-money, at-the-money and

in-the-money options.

The option prices are computed in the following way. For American options, the RBF

interpolation and the FDM solve the PDE (2) subject to the final and boundary conditions

(3a-3d) (i.e. the iterative solution of the system (18) using the RBF method). The solution

by the MCS is based on the Euler discretization of the SDE (1). For European contracts,

we follow the closed-form solution in Wong and Zhao (2008, pg. 2186, equations (2.2),

(2.3) and (2.4)). The pricing of these options by numerical methods requires to run the

same procedure employed for American options without the early exercise condition (3d).

The FDM and the RBF interpolation assume the spatial domain [0, 3E] to approxi-

mate the semi-infinite domain of the problem [0,∞). For American options, we use the

approximation by the FDM with a 500 × 500 grid as benchmark. For European options,

the benchmark is the closed-form solution.

Table 2 reports the American (Panel A) and European (Panel B) option prices com-

puted by the RBF interpolation method using different numbers of centers. The discretiza-

tion over time is run with 100 steps. The results are compared with the benchmark. The

RMSE and CPU time in seconds are reported. The results show that the RBF method is

a robust technique to price options under the CEV model. This method provides highly

accurate option prices with a small number of centers that demand low CPU time. For

instance, in this experiment the RMSE of the approximation of American option prices

fall below 1.4E-4 with just 50 centers and takes 0.12 second. With the same number of

centers and similar CPU time, the RMSE for European options is 7.1E-5.

Based on American option prices, Table 3 reports the computed RMSE (Panel A)

and CPU time (Panel B) of the approximation for each pair formed by the number of

centers over the space and steps for time discretization. The results show the accuracy and

efficiency of the RBF interpolation to obtain accurate option prices. For instance, with 100

centers and 200 time steps, the computed option prices achieve a RMSE equal to 9.1E-5

in just 0.24 second.
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There exists a trade-off between the level of precision and the efficiency of the method.

Lower values of the RMSE can be achieved by increasing the number of centers or the time

steps at the cost of higher CPU time. The findings also show that for a very small number

of centers, an increase in the amount of time steps does not have a significant effect on the

accuracy of the solution, but the CPU time goes up.

Figure 2 plots the RMSE of the approximated American option prices for different

values of the elasticity of variance β. The RBF interpolation method is performed with

200 centers and 200 time steps. This figure illustrates the level of accuracy of the numerical

method for alternative specifications of the CEV model. We consider values of β ∈ [0, 3].

For all values tested, the RMSE is below 7 × 10E-4. The lowest errors are obtained for

values of β close or greater than 1.

In the next set of experiments, we compare the results of the RBF interpolation against

traditional numerical methods in finance. Table 4 reports the prices of American (Panel

A) and European (Panel B) put options computed by the RBF interpolation method, the

FDM and the MCS. The benchmark, approximation errors, RMSE and CPU time are

reported. The RBF interpolation is performed with 100 centers and 100 time steps while

the MCS uses 10, 000 paths. For European options, the approximation by the FDM is

carried out with a 400 × 100 grid. Hence, the number of time steps is comparable for the

RBF interpolation and the FDM.

The findings show that the differences in accuracy between the FDM and the RBF

interpolation are very small. Nevertheless, both methods achieve higher levels of precision

and less time than the MCS technique. For instance, for American options the RBF

method yields a RMSE of 1.4E-4 with respect to the FDM. This RMSE is smaller than

the same statistic for the MCS technique, 1.8E-3. However, the CPU time used for the

latter is considerably higher. On the other hand, with similar CPU time the results in

the pricing of European options show that the FDM and the RBF method obtain RMSEs

equal to 1.6E-4 and 7.1E-5, respectively.

The MCS method is particularly time-consuming in the pricing of American options

due to the Longstaff and Schwartz (2001) algorithm. Moreover, it is important to note

that the CPU time reported by the RBF interpolation and the FDM correspond to the

solution for the whole domain of the problem. In contrast, the MCS reports a CPU time

that considers just the computation of the sample of this experiment. So, this technique

would require more time if the whole domain is considered.
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The next experiment is an extension to the previous analysis. Figure 3 compares the

RMSE and the CPU time of the approximations of the three numerical methods. They are

performed using several configurations of the grid size for the FDM, the number of paths for

the MCS, and the number of centers and the time steps for the RBF interpolation. Figure

3 confirms the initial conclusion obtained from Table 4. The RBF interpolation and the

FDM achieve similar levels of accuracy with low CPU time. Nevertheless, the performance

of these techniques depends on the specific configuration. For small grid sizes, the FDM

is the fastest method. However, in those cases the mesh-based technique does not achieve

the same accuracy as the RBF interpolation. Both methods require similar CPU time

to achieve the highest levels of accuracy. On the other hand, the MCS exhibits results

with lower accuracy than the RBF interpolation and the FDM, whereas the CPU time to

compute the option prices is higher. Moreover, an increase of the number of paths for the

MCS only improves marginally the levels of precision in the pricing of American options

at the cost of more CPU time.

Special case : The CEV Model with β = 2.

The BS model is a particular case of the CEV model when the elasticity β = 2. Table 5

reports the American (Panel A) and European (Panel B) put option prices computed by

the RBF interpolation, the FDM and the MCS. The approximation errors, the RMSE and

the CPU time are also presented. For American options, the RBF interpolation method

and the FDM solve the PDE (6) subject to the final and boundary conditions (3a-3d) (i.e.

the iterative solution of the system (19) using the RBF method). The solution by MCS is

based on the Euler discretization of the SDE (5). For European options, the closed-form

solution is computed following the well-known BS formula given by Black and Scholes

(1973, equations (13) and (27) on pages 644 and 647). The pricing of the same contracts

by numerical methods requires removing the early exercise condition (3d) of the American

option pricing problem.

The conclusions from the general CEV model still hold for this particular case. The

RBF interpolation method provides highly accurate option prices with respect to the bench-

mark for both American and European options. The RBF method and the FDM provide

similar levels of accuracy. The MCS is not only the least accurate but also the most time-

consuming among the evaluated numerical methods. In particular, this technique becomes

very expensive in terms of CPU time for the pricing of American options.
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4.2 Option Pricing under the Heston Model

In this set of experiments, we consider the pricing of put options under the Heston model.

We specify the following option information: strike price E = 10, time to maturity t = 0.25

years and risk-free interest rate r = 10%. The Heston model assumes that the variance

V follows a stochastic process with mean reversion speed κ = 5, long-run mean θ = 0.16,

volatility of the volatility σ = 0.9. The correlation ̺ = 0.1 and the market price of risk

ζ = 0. The option prices are computed for the stock price S = [8, 9, 10, 11, 12] and initial

value of the variance V0 = 6.25% and V0 = 25%. This configuration has been used in the

literature on the pricing of American options by Oosterlee (2003), Ikonen and Toivanen

(2004), Ikonen and Toivanen (2007), Ikonen and Toivanen (2008) and Persson and Sydow

(2010). We keep the same specification to compare the RBF interpolation results with

those computed in those studies.

Option prices are computed in the following way. For American contracts, the RBF

interpolation and the FDM solve the PDE (11) subject to the final and boundary conditions

in equations (12a-12f) (i.e. the iterative solution of the system (22) using the RBF method).

The solution by the MCS is based on the Euler discretization of the SDE (7-9). The Heston

model does not have a closed-form solution. Nevertheless, we use the semi-analytical

solution provided by Heston (1993, equations (17) and (18) on page 331) for European call

options and use the put-call parity condition to obtain the put option prices. The pricing

of European options by numerical methods implies performing the same routine described

for American contracts without considering the early condition (12f).

The FDM and the RBF interpolation assume the spatial domain [Smin, Smax]×[Vmin, Vmax]

as [0, 3E] × [0, 1] to approximate the semi-infinite domain of the problem [0,∞) × [0,∞).

We consider the solutions given by Ikonen and Toivanen (2008), using the componentwise

splitting method with a 5120×2048×2050 grid, and Heston (1993) with a semi-analytical

formula as the benchmark for American and European options, respectively.

Table 6 reports the American (Panel A) and European (Panel B) option prices com-

puted by the RBF interpolation using different number of centers. The discretization over

time is implemented with 100 steps. The approximated option prices are compared with

the benchmark. The RMSE and the CPU time of the approach are reported. Similar to

the findings in Section 4.1 for the CEV model, Table 6 shows that the RBF interpolation is

an useful technique in the pricing of options under the Heston model. The method achieves

very accurate, reliable and efficient results. For example, with 100 centers and 100 time
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steps the RBF interpolation yields American option prices with a RMSE of 5.2E-3 in just

0.094 second. In addition, the accuracy of the approximation improves as the number of

points increases at the cost of higher CPU time. For instance, with 300 points and the

same number of time steps, the RMSE falls below 6.04E-4 but the time goes up quickly to

0.92 second. Similar conclusions can be drawn from the approximation of the European

option prices.

Table 7 reports the RMSE (Panel A) and the CPU time (Panel B) of the approximation

for each pair formed by an increasing number of centers over the space and steps for time

discretization. The results confirm the robustness and precision of the RBF interpolation.

The method is able to compute option prices with small RMSE and demands low CPU

time. For instance, with just 200 centers and 50 time steps, the RMSE of the approximation

is 1.2E-3 and takes 0.20 second. Using 100 time steps, the RMSE falls to 9.9E-4. It is

clear that higher levels of accuracy are achieved with larger values for the number of points

and time steps. However, increasing time steps could lead to longer CPU time without a

significant improvement in accuracy. For example, the RMSE of approximation with 150

centers and 100 time steps is 2.0E-3 and takes around 0.2 second. With the same number

of centers and 400 time steps the RMSE falls to1.9E-3 but the CPU time increases almost

4 times.

It is important to note that the level of accuracy for the RBF method depends in

great part on the distribution of centers. The precision of the approximation can also be

enhanced using a more efficient distribution of points on the areas of most interest.

In the next experiment, we compare the results of the RBF interpolation against those

computed by the operator splitting FDM and the MCS method. Table 8 reports both

American (Panel A) and European (Panel B) option prices under the Heston model. This

table includes the approximation errors, the RMSE of the option prices and the CPU time.

The RBF method uses 200 centers. The time is discretized with 100 steps. The operator

splitting FDM is performed with a 160×64×64 grid. This grid size is considered in Ikonen

and Toivanen (2004) to deal with the Heston model using the same FDM. The MCS is

carried out with 10, 000 paths.

The results show that the RBF interpolation method achieves higher levels of accuracy

and lower CPU time than the FDM and the MCS. For instance, for American options, the

approximation by the RBF method reports a RMSE of 9.9E-4 while the statistic for the

MCS is 7.9E-3. However, the latter requires a CPU time considerably higher than the one

21



needed by the meshfree method. Similar results are obtained for European options. Both

the FDM and the MCS provide results with less accuracy and longer CPU time than the

RBF interpolation.

In order to extend the previous analysis, the next experiment compares the efficiency

of the methods. Figure 4 scatters the RMSE of the approximation against the CPU time

required to compute the option prices for both American (Panel A) and European (Panel

B) contracts. The comparison is carried out using different grid sizes for the operator

splitting FDM, the number of paths for the MCS and the number of centers and time

steps for the RBF interpolation method.

The results show that the RBF method achieves more accurate and clearly faster ap-

proximations for option prices than the operator splitting FDM and the traditional MCS.

In this two-dimensional problem, the FDM is no longer the faster method. On the contrary,

this approach requires finer grids to achieve similar levels of accuracy compared with the

RBF method, becoming a time-consuming approach. The high CPU time required by the

operator splitting FDM is consistent with the findings in Ikonen and Toivanen (2004). The

MCS method provides the least accurate results. This technique is also time-consuming.

Therefore, the RBF interpolation proves to be superior in this application to the other two

methods.

Finally, Table 9 compares the approximated American option prices by the RBF inter-

polation with the results of recent studies in the literature, including Zvan et al. (1998),

Oosterlee (2003), Ikonen and Toivanen (2004), Ikonen and Toivanen (2008) and Persson

and Sydow (2010). These references use novel techniques based on mesh-based methods

and the MCS. The option prices are compared in terms of the RMSE. This statistic is

computed assuming that the benchmark is the solution by the RBF interpolation with

1000 centers and 100 time steps. The prices and the RMSE are presented for values of

the variance V0 = 6.25% (Panel A) and V0 = 25% (Panel B). The results show that the

RBF method computes option prices very close to those provided in the references. In

fact, the differences between the reported approaches are very small. In particular, the

RBF interpolation results are in good agreement with the option prices reported in Ikonen

and Toivanen (2004) and Ikonen and Toivanen (2008). The findings offer evidence of the

accuracy of the RBF interpolation method to solve the option pricing problem under the

Heston model.
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5 Conclusion

In this paper, we propose the RBF interpolation method for pricing American options. In

particular, we consider two processes for the volatility, the CEV model and the Heston

model. They correspond to processes for modelling the local and stochastic volatility,

respectively. The CEV model is performed with a parameter β = 1, hence a square-root

process. The BS prices are calculated as a special case of the CEV model with β = 2.

In general, the option prices are computed as the solution of PDEs subject to a set of

conditions associated with the features of the option. Additional results for European

options are also reported.

The results achieved by the RBF interpolation method are compared with those com-

puted by alternative solutions, namely the analytical formula if available, the FDM and

the MCS method. The option prices are also compared with results in recent studies. For

the CEV model, a one-dimensional problem, the RBF method is superior in accuracy and

efficiency to the MCS, and shows similar performance to the FDM. The gains of using the

meshfree method are evident in the Heston model. In this two-dimensional problem, the

results show that the RBF method achieves more accurate and faster option prices than

both the operator splitting FDM and the traditional MCS.

There exists a trade-off between the levels of precision and the computational efficiency

of the method. The accuracy of the approximation improves as the number of centers

increases at the cost of higher CPU time. Moreover, the level of accuracy in the RBF

interpolation depends critically on the distribution of centers. Higher levels of precision

can be obtained using a more efficient distribution of points on the areas of most interest.

In general, the findings show that the RBF interpolation is a robust, reliable and

effective technique to price options under the CEV and Heston models. The method

requires few time steps to obtain solutions converging to accurate option prices. The RBF

method provides highly accurate and efficient approximations of American option prices,

often outperforming the chosen benchmark, the other two numerical methods and the

recent results in the literature.
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Table 1. Some Examples of Popular RBFs

Gaussian RBF: ϕ (ck) = exp−ε2c2
k (25)

MQ-RBF: ϕ (ck) =
√

ε2 + c2k (26)

Cubic RBF: ϕ (ck) = c
3

k (27)

TPS-RBF: ϕ (ck) = c
4

k ln (ck) (28)

where ck =‖ Z− zk ‖.

ϕ (ck) is the basic function of the RBF Φk centered on ck. The latter is defined as ck =‖ Z − zk ‖ where ‖ · ‖ is

the Euclidean norm, Z is the set of centers [z1, . . . , zK ]
′

, and zk∈ R
d is the k-th center. The constant ε is a shape

parameter.
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Table 2. CEV Option Prices by the RBF Interpolation Method

(A) American Options

Stock FDM RBF Interpolation (Number of Centers)

Price Benchmark 30 50 80 100 150 200

8 2.0000 1.9999 2.0000 2.0000 2.0000 2.0000 2.0000

9 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.0864 0.0771 0.0861 0.0862 0.0862 0.0862 0.0862

11 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RMSE 4.2E-03 1.4E-04 1.1E-04 1.1E-04 9.2E-05 7.9E-05

CPU Time 1.46 0.03 0.12 0.47 1.67 3.46 7.21

(B) European Options

Stock Analytical RBF Interpolation (Number of Centers)

Price Solution 30 50 80 100 150 200

8 1.7531 1.7532 1.7531 1.7531 1.7531 1.7531 1.7531

9 0.7565 0.7564 0.7565 0.7565 0.7565 0.7565 0.7565

10 0.0624 0.0660 0.0626 0.0626 0.0624 0.0624 0.0625

11 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RMSE 1.6E-03 7.1E-05 6.5E-05 1.6E-05 1.3E-05 1.4E-05

CPU Time 0.04 0.13 0.55 1.57 3.60 7.37

This table reports the American (Panel A) and European (Panel B) put option prices under the CEV model for a
sample of stock values S = [8, 9, 10, 11, 12]. The option parameters are: E = 10, t = 0.25 years, r = 10%, σ̃ = 25%
and β = 1. The option prices are computed by the RBF interpolation method for several configurations of the
number of centers. The discretization over time considers 100 steps. The table also reports the RMSE and the CPU
time of the solution. The benchmark for American options is the approximation by the FDM with a 500× 500 grid.
In the case of European options, the benchmark is the analytical solution given by Wong and Zhao (2008, p. 2186,
equations (2.2), (2.3) and (2.4)). The stock prices, option prices and the RMSE are defined in terms of a monetary
unit (e.g. $ US dollar). The CPU time is reported in seconds.
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Table 3. CEV Option Prices: Accuracy and Efficiency Analysis

(A) RMSE

Time RBF Interpolation (Number of Centers)

Steps 30 50 100 200 500 700 1000

20 1.3E-02 4.9E-03 7.0E-04 5.4E-04 5.1E-04 6.5E-04 6.4E-04

50 1.3E-02 4.4E-03 2.8E-04 2.4E-04 2.0E-04 1.9E-04 2.1E-04

100 1.3E-02 4.2E-03 1.4E-04 1.1E-04 9.2E-05 7.9E-05 1.1E-04

200 1.3E-02 4.1E-03 9.1E-05 5.8E-05 5.0E-05 4.1E-05 5.4E-05

300 1.3E-02 4.1E-03 7.6E-05 5.8E-05 4.7E-05 3.9E-05 4.6E-05

400 1.3E-02 4.1E-03 7.2E-05 5.5E-05 5.6E-05 4.7E-05 3.9E-05

500 1.3E-02 4.1E-03 6.5E-05 5.1E-05 5.6E-05 5.5E-05 4.5E-05

(B) CPU Time

Time RBF Interpolation (Number of Centers)

Steps 30 50 100 200 500 700 1000

20 0.00 0.01 0.03 0.10 0.75 1.66 4.19

50 0.01 0.02 0.07 0.25 1.72 3.75 10.18

100 0.02 0.04 0.12 0.49 3.67 7.19 19.60

200 0.04 0.09 0.24 0.91 7.30 14.31 38.20

300 0.06 0.13 0.36 1.22 10.97 21.68 54.76

400 0.09 0.17 0.47 1.63 14.15 28.74 75.61

500 0.10 0.21 0.54 2.19 17.86 35.88 96.11

This table reports the RMSE (Panel A) and the CPU time (Panel B) in the approximation of American put
options prices under the CEV model. The approximation is performed by the RBF interpolation method for several
configurations of the number of centers and time steps. The option parameters are: E = 10, t = 0.25 years,
r = 10%, σ̃ = 25% and β = 1. The RMSE is computed with the option prices that correspond to stock values
S = [8, 9, 10, 11, 12]. The benchmark for American options is the approximation by the FDM with a 500× 500 grid.
The RMSE is defined in terms of a monetary unit (e.g. $ US dollar). The CPU time is reported in seconds.
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Table 4. CEV Option Prices: A Comparison of Numerical Methods

(A) American Options

Method Approximation Error

Stock FDM
MC RBF MC RBF

Price Benchmark

8.0 2.0000 1.9972 2.0000 -2.8E-03 3.8E-06

9.0 1.0000 0.9972 1.0000 -2.8E-03 4.1E-06

10.0 0.0864 0.0861 0.0861 -2.9E-04 -3.1E-04

11.0 0.0001 0.0002 0.0001 5.6E-05 -5.4E-05

12.0 0.0000 0.0000 0.0000 -2.2E-09 -7.1E-10

RMSE 1.8E-03 1.4E-04

CPU Time 1.36 1.67 0.11

(B) European Options

Stock Analytical Method Approximation Error

Price Solution FDM MC RBF FDM MC RBF

8.0 1.7531 1.7531 1.7531 1.7531 1.7E-07 4.9E-05 3.6E-05

9.0 0.7565 0.7568 0.7566 0.7565 2.7E-04 1.2E-04 1.5E-05

10.0 0.0624 0.0627 0.0634 0.0626 2.2E-04 9.7E-04 1.5E-04

11.0 0.0001 0.0001 0.0001 0.0000 7.4E-06 2.2E-05 -5.2E-05

12.0 0.0000 0.0000 0.0000 0.0000 1.1E-09 -1.4E-09 9.2E-09

RMSE 1.6E-04 4.4E-04 7.1E-05

CPU Time 0.13 0.41 0.10

This table reports the prices, the approximation errors, the RMSE and the CPU time of the pricing of American
(Panel A) and European (Panel B) put options under the CEV model. The option prices are computed by the
FDM, the MCS and the RBF interpolation. The option parameters are: E = 10, t = 0.25 years, r = 10%, σ̃ = 25%
and β = 1. The benchmark for American options is the approximation by the FDM with a 500 × 500 grid. For
European options the benchmark is the analytical solution in Wong and Zhao (2008, p. 2186, equations (2.2), (2.3)
and (2.4)). The RBF interpolation is performed with 100 centers and 100 time steps while the MCS uses 10, 000
paths. For European options, the approximation by the FDM is carried out with a 400 × 100 grid. The option
prices, the approximation errors and the RMSE are defined in terms of a monetary unit (e.g. $ US dollar). The
CPU time is reported in seconds.
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Table 5. BS Option Prices: A Comparison of Numerical Methods

(A) American Options

Numerical Methods Approximation Error

Stock FDM
MC RBF MC RBF

Price Benchmark

8.0 2.0000 1.9975 2.0000 -2.5E-03 4.4E-06

9.0 1.0303 1.0255 1.0300 -4.7E-03 -3.1E-04

10.0 0.4024 0.4068 0.4021 4.3E-03 -3.3E-04

11.0 0.1207 0.1227 0.1205 2.0E-03 -1.8E-04

12.0 0.0282 0.0305 0.0281 2.3E-03 -6.8E-05

RMSE 3.4E-03 2.2E-04

CPU Time 1.30 1.69 0.10

(B) European Options

Stock Analytical Numerical Methods Approximation Error

Price Solution FDM MC RBF FDM MC RBF

8.0 1.7796 1.7798 1.7801 1.7795 1.4E-04 4.8E-04 -9.4E-05

9.0 0.9370 0.9370 0.9376 0.9370 1.9E-05 5.9E-04 -1.5E-05

10.0 0.3785 0.3787 0.3841 0.3785 1.6E-04 5.5E-03 -2.4E-05

11.0 0.1157 0.1158 0.1161 0.1156 1.1E-04 4.6E-04 -3.8E-05

12.0 0.0273 0.0273 0.0286 0.0273 2.7E-05 1.3E-03 -3.0E-05

RMSE 1.1E-04 2.6E-03 4.9E-05

CPU Time 0.14 0.27 0.10

This table reports the prices and the approximation errors of American (Panel A) and European (Panel B) put
options under the BS model. The option prices are computed by the FDM, the MCS and the RBF interpolation. The
option parameters are: E = 10, t = 0.25 years, r = 10%, σ̃ = 25% and β = 2. The benchmark for American options
is the approximation by the FDM with a 500 × 500 grid. For European options the benchmark is the analytical
solution given by Black and Scholes (1973, p. 644 and 647, equations (13) and (27)). The RBF interpolation
is performed with 100 centers and 100 time steps while the MCS uses 10, 000 paths. For European options, the
approximation by the FDM is carried out with a 400 × 100 grid. The option prices, the approximation errors and
the RMSE are defined in terms of a monetary unit ($ US dollar). The CPU time is reported in seconds.
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Table 6. Heston Option Prices by the RBF Interpolation Method

(A) American Options

Stock Var. Benchmark RBF Interpolation (Number of Centers)

Price % FDM 50 100 200 300 500 1000

8.0 6.25 2.0000 2.0025 2.0056 1.9983 1.9992 1.9986 2.0000

9.0 6.25 1.1076 1.0954 1.1055 1.1063 1.1065 1.1065 1.1070

10.0 6.25 0.5200 0.4985 0.5204 0.5205 0.5195 0.5196 0.5199

11.0 6.25 0.2137 0.1810 0.2112 0.2140 0.2134 0.2138 0.2137

12.0 6.25 0.0820 0.0580 0.0838 0.0811 0.0819 0.0820 0.0819

8.0 25 2.0784 2.0388 2.0697 2.0770 2.0778 2.0781 2.0780

9.0 25 1.3336 1.2974 1.3307 1.3325 1.3330 1.3331 1.3332

10.0 25 0.7960 0.7590 0.7900 0.7953 0.7954 0.7957 0.7957

11.0 25 0.4483 0.4119 0.4412 0.4480 0.4478 0.4483 0.4481

12.0 25 0.2428 0.2132 0.2357 0.2425 0.2426 0.2431 0.2427

RMSE 3.0E-02 5.2E-03 9.9E-04 6.0E-04 6.3E-04 2.9E-04

CPU Time 0.031 0.094 0.359 0.921 2.870 14.819

(B) European Options

Stock Var. Benchmark RBF Interpolation (Number of Centers)

Price % SA. Sol 50 100 200 300 500 1000

8.0 6.25 1.8389 1.8439 1.8449 1.8411 1.8382 1.8385 1.8388

9.0 6.25 1.0483 1.0247 1.0470 1.0494 1.0485 1.0486 1.0485

10.0 6.25 0.5015 0.4746 0.5010 0.5026 0.5014 0.5019 0.5017

11.0 6.25 0.2082 0.1737 0.2051 0.2086 0.2081 0.2085 0.2083

12.0 6.25 0.0804 0.0559 0.0814 0.0795 0.0804 0.0804 0.0803

8.0 25 1.9773 1.9072 1.9724 1.9768 1.9768 1.9774 1.9773

9.0 25 1.2800 1.2350 1.2751 1.2800 1.2798 1.2803 1.2800

10.0 25 0.7697 0.7300 0.7630 0.7699 0.7696 0.7701 0.7698

11.0 25 0.4360 0.3983 0.4286 0.4362 0.4360 0.4365 0.4361

12.0 25 0.2373 0.2065 0.2298 0.2371 0.2373 0.2378 0.2373

RMSE 3.7E-02 5.0E-03 9.4E-04 2.8E-04 3.5E-04 1.1E-04

CPU Time 0.031 0.109 0.406 1.029 2.932 14.944

This table reports the American (Panel A) and European (Panel B) put option prices under the Heston model.
The option parameters are: E = 10, t = 0.25 years and r = 10%. The Heston model assumes that κ = 5,
θ = 0.16, σ = 0.9. and ̺ = 0.1. The market price of risk ζ = 0. The option prices are computed for stock prices
S = [8, 9, 10, 11, 12] and initial values of the variance V0 = 6.25% and V0 = 25%. The option prices are approximated
by the RBF interpolation method for several configurations of the number of centers. The benchmark for American
options is given by Ikonen and Toivanen (2008), using the componentwise splitting method with a 5120×2048×2050
grid. In the case of European options, the benchmark is computed with the semi-analytical formula given in Heston
(1993, equations (17) and (18) on page 331) plus the put-call parity condition. The discretization over time considers
100 steps. The option prices and the RMSE are defined in terms of a monetary unit ($ US dollar). The CPU time
is reported in seconds.
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Table 7. Heston Option Prices: Accuracy and Efficiency Analysis

(A) RMSE

Time RBF Interpolation (Number of Centers)

Steps 80 100 150 200 300 600 1000

10 9.1E-03 6.9E-03 3.8E-03 3.0E-03 3.6E-03 4.1E-03 5.3E-03

20 8.2E-03 6.0E-03 2.9E-03 2.1E-03 1.6E-03 1.6E-03 1.8E-03

40 7.5E-03 5.4E-03 2.3E-03 1.3E-03 1.0E-03 1.0E-03 7.6E-04

50 7.4E-03 5.3E-03 2.2E-03 1.2E-03 8.7E-04 8.6E-04 6.0E-04

100 7.2E-03 5.2E-03 2.0E-03 9.9E-04 6.0E-04 5.6E-04 2.9E-04

200 7.0E-03 5.1E-03 2.0E-03 9.2E-04 5.0E-04 4.7E-04 1.8E-04

300 7.0E-03 5.1E-03 1.9E-03 9.0E-04 4.8E-04 4.5E-04 1.8E-04

400 7.0E-03 5.0E-03 1.9E-03 8.9E-04 4.6E-04 4.5E-04 1.8E-04

(B) CPU Time

Time RBF Interpolation (Number of Centers)

Steps 80 100 150 200 300 600 1000

10 0.02 0.02 0.03 0.06 0.16 0.77 2.34

20 0.02 0.03 0.06 0.09 0.25 1.12 3.79

40 0.03 0.03 0.09 0.17 0.41 1.97 6.66

50 0.03 0.06 0.11 0.20 0.48 2.34 8.15

100 0.06 0.08 0.20 0.34 0.91 4.29 15.43

200 0.13 0.17 0.39 0.66 1.73 8.46 29.87

300 0.19 0.26 0.58 0.98 2.56 12.32 44.46

400 0.25 0.36 0.78 1.31 3.39 16.41 58.72

This table reports the RMSE (Panel A) and the CPU time (Panel B) of the approximation of American put
options prices under the Heston model. The approach is performed by the RBF interpolation method for several
configurations of the number of centers and time steps. The option parameters are: E = 10, t = 0.25 years and
r = 10%. The Heston model assumes that κ = 5, θ = 0.16, σ = 0.9 and ̺ = 0.1. The market price of risk ζ = 0. The
option prices are computed for stock values S = [8, 9, 10, 11, 12] and initial values of the variance V0 = 6.25% and
V0 = 25%. The benchmark for American options is given by Ikonen and Toivanen (2008), using the componentwise
splitting method with a 5120 × 2048 × 2050 grid. The RMSE is defined in terms of a monetary unit (e.g. $ US
dollar). The CPU time is reported in seconds.

35



Table 8. Heston Option Prices: A Comparison of Numerical Methods

(A) American Options

Numerical Methods Approximation Error

Stock Var. FDM
MC RBF MC RBF

Price % Benchmark

8.0 6.25 2.0000 1.9977 1.9983 -2.3E-03 -1.7E-03

9.0 6.25 1.1076 1.0914 1.1063 -1.6E-02 -1.3E-03

10.0 6.25 0.5200 0.5115 0.5205 -8.5E-03 5.2E-04

11.0 6.25 0.2137 0.2124 0.2140 -1.3E-03 3.4E-04

12.0 6.25 0.0820 0.0820 0.0811 -1.4E-05 -9.7E-04

8.0 25 2.0784 2.0742 2.0770 -4.2E-03 -1.4E-03

9.0 25 1.3336 1.3216 1.3325 -1.2E-02 -1.1E-03

10.0 25 0.7960 0.7852 0.7953 -1.1E-02 -6.5E-04

11.0 25 0.4483 0.4457 0.4480 -2.5E-03 -2.6E-04

12.0 25 0.2428 0.2427 0.2425 -1.0E-04 -3.1E-04

RMSE 7.9E-03 9.9E-04

CPU 6.50 0.57

(B) European Options

Stock Var. Analytical Numerical Methods Approximation Error

Price % Solution FDM MC RBF FDM MC RBF

8.0 6.25 1.8389 1.8357 1.8373 1.8411 -3.2E-03 -1.5E-03 2.3E-03

9.0 6.25 1.0483 1.0476 1.0478 1.0494 -7.6E-04 -5.4E-04 1.0E-03

10.0 6.25 0.5015 0.5019 0.5001 0.5026 4.7E-04 -1.4E-03 1.2E-03

11.0 6.25 0.2082 0.2097 0.2079 0.2086 1.5E-03 -3.4E-04 4.6E-04

12.0 6.25 0.0804 0.0825 0.0807 0.0795 2.1E-03 2.8E-04 -9.2E-04

8.0 25 1.9773 1.9756 1.9797 1.9768 -1.8E-03 2.3E-03 -4.7E-04

9.0 25 1.2800 1.2787 1.2807 1.2800 -1.3E-03 7.3E-04 2.4E-05

10.0 25 0.7697 0.7681 0.7655 0.7699 -1.6E-03 -4.2E-03 2.1E-04

11.0 25 0.4360 0.4348 0.4344 0.4362 -1.2E-03 -1.7E-03 1.6E-04

12.0 25 0.2373 0.2375 0.2379 0.2371 2.0E-04 6.7E-04 -1.1E-04

RMSE 1.6E-03 1.8E-03 9.4E-04

CPU 0.0610 2.47 2.70 0.57

This table reports the option prices, the approximation errors, the RMSE and the CPU time in the pricing of
American (Panel A) and European (Panel B) put options under the Heston model. The option prices are computed
by the FDM, the MCS and the RBF interpolation method. The option parameters are: E = 10, t = 0.25 years and
r = 10%. The Heston model assumes that κ = 5, θ = 0.16, σ = 0.9 and ̺ = 0.1. The market price of risk ζ = 0. The
option prices are computed for stock prices S = [8, 9, 10, 11, 12] and initial values of the variance V0 = 6.25% and
V0 = 25%. The benchmark for American options is given by Ikonen and Toivanen (2008), using the componentwise
splitting method with a 5120× 2048× 2050 grid. In the case of European options, the benchmark is computed with
the semi-analytical formula given by Heston (1993, equations (17) and (18) on page 331) plus the put-call parity
condition. The RBF interpolation is performed with 200 centers and 100 time steps while the MCS uses 10, 000
paths. For European options, the approximation by the operator splitting FDM is carried out with a 160× 64× 64
grid. The option prices, the approximation errors and the RMSE are defined in terms of a monetary unit (e.g. $
US dollar). The CPU time is reported in seconds.
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Table 9. Heston Model: Comparison of Option Prices of Recent Studies

(A) American Options Prices with V=0.0625

Reference Stock Prices

8 9 10 11 12 RMSE

RBF Interpolation 1.99999 1.10701 0.51992 0.21367 0.08190

Zvan et al. (1998) 2.00000 1.10760 0.52020 0.21380 0.08210 3.1E-04

Oosterlee (2003) 2.00000 1.10700 0.51700 0.21200 0.08150 1.5E-03

Ikonen and Toivanen (2004) 2.00000 1.10751 0.51904 0.21294 0.08181 5.6E-04

Ikonen and Toivanen (2008) 2.00000 1.10764 0.52003 0.21367 0.08204 2.9E-04

Persson and Sydow (2010) 1.99976 1.10768 0.51873 0.21424 0.08193 6.7E-04

(B) American Options Prices with V=0.25

Reference Stock Prices

8 9 10 11 12 RMSE

RBF Interpolation 2.07803 1.33321 0.79570 0.44812 0.24274

Zvan et al. (1998) 2.07840 1.33370 0.79610 0.44830 0.24280 3.4E-04

Oosterlee (2003) 2.07900 1.33400 0.79600 0.44900 0.24300 7.1E-04

Ikonen and Toivanen (2004) 2.07846 1.33360 0.79585 0.44813 0.24271 2.7E-04

Ikonen and Toivanen (2008) 2.07838 1.33365 0.79598 0.44828 0.24282 2.9E-04

Persson and Sydow (2010) 2.07770 1.33219 0.79378 0.44621 0.24170 1.4E-03

This table presents the prices of American put options reported by recent studies in the literature. These prices
are compared with the results of the RBF interpolation. The option prices are reported for S = [8, 9, 10, 11, 12] and
the initial values of the variance V0 = 6.25% (Panel A) and V0 = 25% (Panel B). The RMSE is computed taken as
benchmark the solution by the RBF interpolation with 1000 centers and 100 time steps. The option prices and the
RMSE are defined in terms of a monetary unit (e.g. $ US dollar).
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Figure 1. Centers used by the RBF Interpolation Method

(A) CEV Model (B) Heston Model

This figure shows the location of the centers used by the RBF interpolation method in the pricing of options under
the CEV model (Panel A) and the Heston model (Panel B). Each plot contains 200 centers. The Halton sequence is
used to allocate the points on the areas of interest. The centers in the (one-dimensional) CEV model are displayed
in the domain [0, 3]. Most of the points are concentrated close to the moneyness S

E
= 1. In the Heston model,

we consider the domain
[

ln Smin
E

, ln Smax
E

]

× [VMin, VMax] with [ln (1E-2) , ln (3)] × [0, 1]. Most of the points are

allocated close to the logarithm of the moneyness ln
(

S
E

)

= 0 and the boundary V = 0.

Figure 2. Accuracy of the CEV Option Prices for Different Values of β

This figure plots the RMSE of the approximation of American options by the RBF interpolation. The experiment
is carried out for values of the elasticity of variance β in the interval [0, 3]. The benchmark is the approximation
by the FDM with a 500 × 500 grid. The RMSE is computed with option prices that correspond to stock values
S = [8, 9, 10, 11, 12]. The RBF interpolation method is performed with 200 centers and 200 time steps. The RMSE
is defined in terms of a monetary unit (e.g. $ US dollar).
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Figure 3. CEV Option Prices: Accuracy vs. Efficiency

(A) European Option (B) American Option

This figure compares the RMSE and the CPU time of the approximation of European (Panel A) and American
(Panel B) put option prices by the FDM, the MCS and the RBF interpolation method. The option parameters
are: E = 10, t = 0.25 years, r = 10%, σ̃ = 25% and β = 1. The experiment considers several configurations of the
grid size for the FDM, the number of paths for the MCS, and the number of centers and time steps for the RBF
interpolation. The benchmark for American options is the approximation by the FDM with a 500 × 500 grid. For
European options, the benchmark is the analytical solution given in Wong and Zhao (2008, pg. 2186, equations
(2.2), (2.3) and (2.4)). The RMSE is presented in terms of a monetary unit (e.g. $ US dollar). The CPU time is
reported in seconds.

Figure 4. Heston Option Prices: Accuracy vs. Efficiency

(A) European Option (B) American Option

This figure shows the pairs RMSE and CPU time employed in the pricing of European (Panel A) and American
(Panel B) put options by the FDM, the MCS and the RBF interpolation. The option parameters are: E = 10,
t = 0.25 years and r = 10%. The Heston model assumes that κ = 5, θ = 0.16, σ = 0.9. and ̺ = 0.1. The market
price of risk ζ = 0. The option prices are computed for stock prices S = [8, 9, 10, 11, 12] and initial values of the
variance V0 = 6.25% and V0 = 25%. The experiment considers several configurations of the grid size for the FDM,
the number of paths for the MCS, and the number of centers and time steps for the RBF interpolation method.
The benchmark for American options is given by Ikonen and Toivanen (2008) using the componentwise splitting
method with a 5120 × 2048 × 2050 grid. In the case of European options, the benchmark is computed with the
semi-analytical formula given by Heston (1993, p. 331, equations (17) and (18)) plus the put-call parity condition.
The RMSE is presented in terms of a monetary unit (e.g. $ US dollar). The CPU time is reported in seconds.
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