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1. INTRODUCTION

A great deal of literature has been written on the analysis of the depen-
dence structure between random variables. There is an increasing interest in the
understanding of the dependencies between extreme values in what is known as
tail dependence. However, the analysis of multivariate tail dependence in copula
models has been exclusively focused on the positive case. Only the lower and
upper tail dependence have been considered, leaving a void in the analysis of
dependence structure implied by the use of these models. In this paper we tackle
this issue by considering the dependence in the 2d different orthants of dimension
d for a random vector.

We define the necessary concepts to measure a general type of tail depen-
dence in the multivariate case. We use a copula approach and base our study on
the associated copulas (see [14], p. 15).

The dependence structure of time series has been studied for a long time,
traditionally through the use of the Pearson’s correlation coefficient. More re-
cently, copula based measures such as the Spearman’s ρ and Kendall’s τ have also
been used to assess concordance. Due to drawbacks of these measures when it
comes to tail dependence, new methodologies have been developed. In particular
the use of the tail dependence coefficient (TDC) and the tail dependence function
has proven to be the way forward (see [22], [14] and [20], Chapter 5).

In the multivariate case positive tail dependence in copula models and
random vectors has been analysed via the L (lower) and U (upper) TDCs and
tail dependence functions, see e.g. [14], [22] or [23]. The concepts introduced
in this paper are used to analyse the whole dependence structure (and not only
positive) implied by the perfect dependence models and elliptical copulas.

In order to address non-positive dependence, we introduce the concept of
general dependence D and its corresponding D-probability function. It is through
these functions that copula theory can be extended to account for non-positive
dependence. We prove that the copulas that link D-probability functions and its
marginals are the associated copulas. All the results presented regarding general
dependence are also a contribution of this work. This includes the relationship
among associated copulas, the monotonic copulas, the associated elliptical copu-
las and the associated tail dependence function of the Student’s t copula model.

The reminder of this work is divided in four sections: In the second section
we present a motivation for the use of the associated copulas for non-positive
dependence analysis. In the third section we present the concepts we use to study
dependence in all the orthants. This includes general dependence, probability
functions, associated copulas, tail dependence functions and TDCs. We obtain
an equation for the relationship among all associated copulas and present three
propositions regarding these copulas. In the fourth section we study the whole
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dependence and tail dependence structure implied by perfect dependence models
and the elliptical copulas. We then obtain an expression for the associated tail
dependence functions of the Student’s t copula model. This model accounts for
all 2d types of tail dependence simultaneously. Finally, in the fifth section, we
conclude and discuss future lines of research for general dependence.

2. MOTIVATION

The study of the associated copulas to analyse non-positive tail dependence
comes as a generalisation of the use of the copula and the survival copula for lower
and upper tail dependence respectively. We know briefly discuss the history of
the use of the survival copula to analyse upper tail dependence. In the context of
nonparametric statistics, it is possible to measure upper tail dependence by using
negative transformations on all of the time series and a measure for lower tail
dependence. However, presenting a formal definition of upper tail dependence in
the multivariate case and analysing it in copula models can not be achieved by the
use of transformations. In the bivariate case it is possible to define the upper tail
dependence coefficient in terms of the copula, see e.g. [22]. In higher dimensions
this definition becomes more and more cumbersome, this is simplified by the use
of the survival copula, see e.g. [16]. By using the survival copula, the results and
analysis of lower tail dependence via the copula have been generalised to upper
tail dependence. Hence, the use of the survival copula makes the definition and
study of upper tail dependence analogous to lower tail dependence. In particular,
this simplifies the analysis of the upper tail dependence implied by symmetric
copula models, see [23]. Similarly, in the case of nonparametric estimation of
upper tail dependence, the empirical survival copula is used, see e.g. [26]. This
approach avoids the use of negative transformations on the data and makes use of
the theory on empirical copulas. Because of all of this, the definition and study
of upper tail dependence has been derived via the use of the survival copula,
see [15], [16], [20] and [26]. A whole theory on survival copulas can be found in
statistical literature, see [10].

The copula and survival copula are used to analyse positive tail depen-
dence. The study of non-positive tail dependence is also relevant when dealing
with empirical data and in copula models analysis. Negative tail dependence can
be found in statistical literature, particularly in the study of financial time series,
see e.g. [30] and [4]. In the case of copula models, the study of tail dependence
helps in the understanding of the underlying assumptions implied by the use of
these models. This study has often been restricted to the positive case with the
analysis of the lower and upper tail dependence coefficients. The non-positive
dependence structure implied by the use of these models is hence overlooked.
Failing to account for the whole dependence structure in these models can lead
to undesirable consequences. For example, the Student’s t copula is often used
to model data with only positive tail dependence. However, although this model
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accounts for the positive tail dependence, it also assumes the existence of neg-
ative tail dependence. Similarly, portfolios often have stocks with positive tail
dependence to maximise revenue. Simultaneously negative tail dependence is also
present between these stocks in order to absorb shocks and hedge extreme falls
of prices. The use of negative transformations before fitting a model with only
positive tail dependence would not account for the whole tail dependence struc-
ture in the portfolio. Before choosing a copula model in these two examples it is
fundamental to know the dependence structure of the data and the one implied
by the model.

Associated copulas have already been used to analyse non-positive trans-
formations (although the name is not mentioned therein), see [22] and [5]. [28]
considered these copulas and concordance measures to analyse multivariate non-
positive dependence. In this work we use associated copulas to define and analyse
non-positive types of dependence and tail dependence. The reasoning behind this
is the same as for the use of the survival copula for upper tail dependence analysis.
Similarly to that case, the definition and study of non-positive tail dependence
is simplified by the use of associated copulas. With the concepts introduced in
this work it is possible to analyse non-positive tail dependence in parametric and
nonparametric contexts. We obtain several results for general dependence and
associated copulas. In the case of copula models we analyse the perfect depen-
dence models and elliptical copulas. This can be extended to other copula models
such as the Archimedean and vine copulas and to the analysis of nonparametric
models for empirical data.

3. ASSOCIATED COPULAS, TAIL DEPENDENCE FUNCTIONS
AND TAIL DEPENDENCE COEFFICIENTS

In this section we analyse the dependence structure among random vari-
ables using copulas. Given a random vector X =(X1, ..., Xd), we use the corre-
sponding copula C and its associated copulas to analyse its dependence structure.
For this we introduce a general type of dependence D, one for each of the 2d differ-
ent orthants. This corresponds to the lower and upper movements of the different
variables.

To analyse different dependencies, we introduce the D-probability function
and present a version of Sklar’s theorem that states that an associated copula is
the copula that links this function and its marginals. We present a formula to link
all associated copulas and three results on monotone functions and associated
copulas. We then introduce the associated tail dependence function and the
associated tail dependence coefficient (TDC) for the type of dependence D. These
functions generalise the positive (lower and upper) cases (extensively studied in
[13, 14, 23]). With the concepts studied in this section, we aim to provide the tools
to analyse the whole dependence structure among random variables, including
non-positive dependence.
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3.1. Copulas and dependence

The concept of copula was first introduced by Sklar [27], and is now a
cornerstone topic in multivariate dependence analysis (see [14, 22, 20]). We now
present the concepts of copula, general dependence and associated copulas that
are fundamental for the rest of this work.

Definition 3.1. A multivariate copula C(u1, ..., ud) is a distribution func-
tion on the d-dimensional-square [0, 1]d with standard uniform marginal distri-
butions.

If C is the distribution function of U = (U1, ..., Ud), we denote as Ĉ the
distribution function of (1 − U1, ..., 1 − Ud). In the multivariate case, C is used
to link multivariate distribution functions with their corresponding marginal
distributions, accordingly we refer to C as the distributional copula. On the
other hand, Ĉ is used to link multivariate survival functions with their corre-
sponding marginal survival functions, this copula is known as the survival cop-
ula.1 The survival copula Ĉ must not be confused with the survival function
C(u1, ..., ud) = Ĉ(1 − u1, ..., 1 − ud). Let X = (X1, ..., Xd) be a random vec-
tor with joint distribution function F and marginals Fi for i ∈ {1, ...d}. Sklar’s
theorem guarantees the existence and uniqueness of a copula C

(3.1) F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)),

(see [14]). Similarly, if X has joint survival function F , and marginal survival
functions Fi for i ∈ {1, ...d}. Sklar’s theorem for survival functions implies the
existence and uniqueness of Ĉ

(3.2) F (x1, ..., xd) = Ĉ(F 1(x1), ..., F d(xd)),

(see [22]). In the next section we generalise these equations using the concept of
general dependence, which we now define.

Definition 3.2. In d dimensions, we call the vector D = (D1, ..., Dd)
a type of dependence if each Di is a boolean variable, whose value is either L
(lower) or U (upper) for i ∈ {1, ...d}. We denote by ∆ the set of all 2d types of
dependence.

Each type of dependence corresponds to the variables going up or down
simultaneously. Tail dependence, which we define later, refers to the case when
the variables go extremely up or down simultaneously. Two well known types of
dependence are lower and upper dependence. Lower dependence refers to the case
when all variables go down at the same time (Di = L for i ∈ {1, ..., d}). Upper

1We use the term distributional for C, to distinguish it from the other associated copulas.
The notation for the survival copula corresponds to the one used in the seminal work of Joe.[14]
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dependence refers to the case when all variables go up at the same time (Di = U
for i ∈ {1, ..., d}). These two cases are examples of positive dependence and they
have been extensively studied for tail dependence analysis, see e.g. [14, 22]. In
the bivariate case the dependencies D = (L,U) and D = (U,L) correspond to
one variable going up while the other one goes down. These are examples of
negative dependence. Negative tail dependence is often present in financial time
series, see [30, 4, 15]. Hence, in dimension 2 there are four types of dependence
that correspond to the four quadrants. Note that, in dimension d, for each of the
2d orthants we define a dependence D.

Using the concept of dependence, we now present the associated copulas,
see [14, Chapter 1, p. 15].

Definition 3.3. Let X = (X1, ..., Xd) be a random vector with corre-
sponding copula C, which is the distribution function of the vector (U1, ..., Ud)
with uniform marginals. Let ∆ denote the set of all types of dependences of
Definition 3.2. For D = (D1, ..., Dd) ∈ ∆, let VD = (VD1,1, ..., VDd,d) with

VDi,i =

{
Ui if Di = L
1− Ui if Di = U

.

Note that VD also has uniform marginals. We call the distribution function of
VD, which is also a copula, the associated D-copula and denote it CD. We denote
AX = {CD|D ∈ ∆}, the set of 2d associated copulas of the random vector X.

Note that the distributional and the survival copula are C = C(L,...,L) and

Ĉ = C(U,...,U) respectively.

3.1.1. The D-Probability function and its associated D-Copula

The distributional copula C and the survival copula Ĉ are used to explain
the lower and upper dependence structure of a random vector respectively. We
use the associated D-copula to explain the D-dependence structure of a random
vector. For this, we first present the D-probability functions, which generalise
the joint distribution and survival functions.

Definition 3.4. Let X = (X1, ..., Xd) be a random vector with marginal
distributions Fi for i ∈ {1, ...d} and D = (D1, ..., Dd) a type of dependence
according to Definition 3.2. Define the event Bi(xi) in the following way

Bi(xi) =

{
{Xi ≤ xi} if Di = L
{Xi > xi} if Di = U

.

Then the corresponding D-probability function is

FD(x1, ..., xd) = P

(
d
∩
i=1
Bi(xi)

)
.
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We refer to

FDi,i =

{
Fi if Di = L

Fi if Di = U
,

for i ∈ {1, ...d} as the marginal functions of FD (Note that the marginals are
either univariate distribution or survival functions).

In the bivariate case for example, there are four D-probability functions:
F (x1, x2), F (x1, x2), FLU (x1, x2) = P (X1 ≤ x1, X2 > x2) and FUL(x1, x2) =
P (X1 > x1, X2 ≤ x2). In general, these functions complement the use of the
joint distribution and survival functions in our analysis of dependence in the 2d

orthants.

The copula we consider to analyse the D-dependence is CD that links the
functions in Definition 3.4 with their corresponding marginals. Given that by
applying decreasing transformations to a part of the data we can account for
negative dependence the copulas of the D-probability functions correspond to
the associated copulas of Definition 3.3. The following theorem presents the
associated copula CD in terms of the FD and its marginals. We restrict the
proof to the continuous case (for Sklar’s theorem for distribution functions see
[20, 14, 22].

Theorem 3.1. Sklar’s theorem for D-probability functions and
associated copulas

Let X = (X1, ..., Xd) be a random vector, D = (D1, ..., Dd) a type of de-
pendence, FD its D-probability function and FDi,i for i ∈ {1, ...d} the marginal
functions of FD as in Definition 3.4. Let the marginal functions of FD be contin-
uous, then the associated copula CD : [0, 1]d → [0, 1], satisfies, for all x1, ..., x2 in
[−∞,∞],

(3.3) FD(x1, ..., xd) = CD(FD1,1(x1), ..., FDd,d(xd)),

which is equivalent to

(3.4) CD(u1, ..., ud) = FD(F←D1,1(u1), ..., F
←
Dd,d

(ud)).

Conversely, let D = (D1, ..., Dd) be a type of dependence and FDi,i a univariate
distribution function, if Di = L, or a survival function, if Di = U , i ∈ {1, ...d},

(a) if CD is a copula, then FD in (3.3) defines a D-probability function with
marginals FDi,i, i ∈ {1, ...d}.

(b) if FD is any D-probability function, then CD in (3.4) is a copula.

Proof: The proof of this theorem is analogous to the proof of Sklar’s
theorem in the continuous case. In this case for any distribution function Fi, we
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have that the events {Xi ≤ xi}
P∼ {Fi(Xi) ≤ Fi(xi)} and {Xi > xi}

P∼ {F i(Xi) ≤
F i(xi)}. This implies

(3.5) P (Bi(xi)) = P (FDi,i(Xi) ≤ FDi,i(xi)),

for i ∈ {1, ..., d}.

Considering equation (3.5) and Definition 3.4, we have that for any x1, ..., xd
in [−∞,∞]

(3.6) FD(x1, ..., xd) = P (FD1,1(X1) ≤ FD1,1(x1), ..., FDd,d(Xd) ≤ FDd,d(xd)).

Using the continuity of Fi we have that Fi(Xi) is uniformly distributed (see [20,
Proposition (5.2 (2))]). Hence, if we define U = (F1(X1), ..., Fd(Xd)), its distri-
bution function is a copula C. Note that in this case VD, defined as in Definition
3.3, is equal to (FD1,1(X1), ..., FDd,d(Xd)). It follows that the distribution function
of (FD1,1(X1), ..., FDd,d(Xd)) is the associated copula CD, in which case equation
(3.5) implies

CD(FD1,1(x1), ..., FDd,d(xd)) = P (FD1,1(X1) ≤ FD1,1(x1), ..., FDd,d(Xd) ≤ FDd,d(xd)),

and equation (3.3) follows.

If we evaluate FD in (F←D1,1
(u1), ..., F

←
Dd,d

(ud)), we get

CD(u1, ..., ud) = FD(F←D1,1(u1), ..., F
←
Dd,d

(ud)).

This follows from the fact that one of the properties of the generalised inverse is
that, when T is continuous, T ◦ T←(x) = x (see [20, Proposition (A.3)]). This
equation explicitly represents CD in terms of FD and its marginals implying its
uniqueness.

For the converse statement of the theorem, we have

(a) Let U = (U1, ..., Ud) be the random vector with distribution function C.
We now define

X = (X1, ..., Xd)

= ((F←D1,1(U1), ..., F
←
Dd,d

(Ud))),

and

Bi(xi) =

{
{Xi ≤ xi} if Di = L
{Xi > xi} if Di = U

,

for i ∈ {1, ...d}. Considering that F (x) ≤ y ⇐⇒ x ≤ F←(y), we have
F
←

(x) ≤ y ⇐⇒ x ≥ F (y). Using these properties, we have

{Ui ≤ FDi,i(xi)}
P∼ Bi(xi),
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for i ∈ {1, ...d}. Using this, the D-probability function of X is

P

(
d
∩
i=1
Bi(xi)

)
= C(FD1,1(x1), ..., FDd,d(xd)).

This implies that FD defined by (3.3) is the D-probability function of X
with marginals

P (Bi(xi)) = P (Ui ≤ FDi,i(xi)) = FDi,i(xi),

for i ∈ {1, ...d}.

(b) Similarly, let (X1, ..., Xd) be the random vector with D-probability function
FD. Define

U = (U1, ..., Ud)

= (FD1,1(X1), ..., FDd,d(Xd))

(note that the vector is uniformly distributed). Again, using the properties
of the generalised inverse, we have

{Ui ≤ ui}
P∼ Bi(F←Di,i(ui)),

for i ∈ {1, ...d}. Hence the distribution function of U is
FD(F←D1,1

(u1), ..., F
←
Dd,d

(ud)), which implies that the function is a copula.

For the properties of the generalised inverse function used in this proof, see
[20, Proposition (A.3)].

For this theorem we referred to generalised inverses rather than inverse functions,
as the first are more general. However throughout this work, whenever we are
not proving a general property, we assume the distribution functions have inverse
functions.

Note that this theorem implies that in the continuous case CD is the D-
probability function of (FD1,1(X1), ..., FDd,d(Xd)) characterised in (3.3). This
theorem implies the importance of the associated copulas to analyse dependencies.
It also implies the Fréchet bounds for the D-probability functions of Definition
3.4. The bounds can also be obtained similarly to [14, Theorems 3.1 and 3.5],

max{0, FD1,1(x1) + ...+ FDd,d(xd)− (d− 1)} ≤ FD(x1, ..., xd) ≤
min {FD1,1(x1), ..., FDd,d(xd)} .(3.7)
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3.1.2. Properties of the associated copulas

In the bivariate case, Joe [14, Chapter 1], and Nelsen[22, Chapter 2], pre-
sented the expressions to link the associated copulas with the distributional cop-
ula C. In the multivariate case Joe [15, Equation 8.1] and Georges et al. [10,
Theorem 3], presented the expression between the distributional and the survival
copula and Embrechts et al. [5, Theorem 2.7] proved that is possible to express
the associated copulas in terms of the distributional copula C. We now present a
general equation for the relationship between any two associated copulas CD∗ and
CD+ in the multivariate case. The equation is based on all the subsets of the in-
dices where the D∗ and D+ are different. We then prove a property of associated
copulas regarding exchangeability. After that, we show that the associated cop-
ulas are invariant under strictly increasing transformations and characterise the
distributional copula of a random vector after strictly monotone transformations.

Proposition 3.1. Let X = (X1, ..., Xd) be a random vector with as-
sociated copulas AX and D∗ = (D∗1, ..., D

∗
d) and D+ = (D+

1 , ..., D
+
d ) any two

types of dependence. Consider the following sets and notations: I = {1, ..., d};
I1 = {i ∈ I|D∗i = D+

i } and I2 = {i ∈ I|D∗i 6= D+
i }; d1 = |I1| and d2 = |I2|;

Sj = {the subsets of size j of I2} and Sj,k = {The k-th element of Sj} for

j ∈ {1, ..., d2} and k ∈
{

1, ...,
(
d2
j

)}
. We define S0 = ∅ and S0,1 = ∅; for each Sj,k

define Wj,k = (Wj,k.1, ...,Wj,k,d) with

Wj,k,i =


ui if i ∈ I1
1− ui if i ∈ Sj,k
1 if i /∈ I1 ∪ Sj,k

,

for i ∈ {1, ...d}, j ∈ {0, ..., d2} and k ∈
{

1, ...,
(
d2
j

)}
.

Then the associated D∗-copula CD∗ is expressed in terms of the D+-copula
CD+ according to the following equation

(3.8) CD∗(u1, ..., ud) =

d2∑
j=0

(−1)j
(d2j )∑
k=1

CD+(Wj,k).

Note that in the cases when at least a 1 appears in Wj,k, CD+(Wj,k) becomes a
marginal copula of CD+ .

Proof: Throughout this proof, it must be borne in mind that CD∗ is
the distribution function of the random vector VD∗ and CD+ of VD+ , defined
according to Definition 3.3. Note that, for i ∈ I2, VD∗i ,i = 1− VD+

i i
and they are

equal otherwise.
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In the case d2 = 0, we have D∗ = D+, j ∈ {0} and k ∈ {1}2, hence
(3.8) holds. We prove (3.8) by induction on d, the dimension; it can also be
proven by induction on d2, the number of elements in which D∗i 6= D+

i . Note
that in dimension d = 1, a copula becomes the identity function. If D∗1 6= D+

1 ,
the expression becomes u1 = 1 − (1 − u1); the case D∗1 = D+

1 has already been
covered in d2 = 0, and expression (3.8) holds.

Now, suppose we are in dimension d, we prove the formula works provided
it works in dimension d − 1. We obtain an expression for CD∗(u1, ..., ud) using
the induction hypothesis. Consider the dependencies, on the (d − 1)-dimension,
F∗ = (D∗1, ..., D

∗
d−1) and F+ = (D+

1 , ..., D
+
d−1). We use an apostrophe on the sets

and notations of F∗ and F+ to differentiate them from those of D∗ and D+. It
follows that d′ = d− 1 and I ′ = I − {d}. By the induction hypothesis, equation
(3.8) holds to express CF∗ in terms of CF+ . In terms of probabilities this is
equivalent to

(3.9)

P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1)

=
d2−1∑
j=0

(−1)j
(d2−1

j )∑
k=1

P (VD+
1 ,1
≤W ′j,k,1, ..., VD+

d−1,d−1
≤W ′j,k,d−1),

Now there are two cases to consider depending on whether D∗d is equal to D+
d or

not.

Case 1. D∗d = D+
d .

In this case, it follows that, I ′1 = I1 − {d}, I ′2 = I2, d
′
2 = d2 and VD∗d ,d = VD+

d ,d
.

If we intersect the events in equation (3.9) with the event {VD∗dd ≤ ud} we get
(3.10)

P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1, VD∗dd ≤ ud)

=
d2∑
j=0

(−1)j
(d2j )∑
k=1

P (VD+
1 ,1
≤W ′j,k,1, ..., VD+

d−1,d−1
≤W ′j,k,d−1, VD+

d ,d
≤ ud).

Because I ′2 = I2, in this case, for j ∈ {1, ..., d2} and k ∈
{

1, ...,
(
d2
j

)}
, the events

S′j,k are equal to Sj,k. Considering this, and I ′1 = I1 − {d}, we have

(W′
j,k, ud)i = Wj,k,i

for i ∈ {1, ..., d}, so (W′
j,k, ud) = Wj,k for j ∈ {1, ..., d2} and k ∈

{
1, ...,

(
d2
j

)}
.

Equation (3.10) then implies:

CD∗(u1, ..., ud) =

d2∑
j=0

(−1)j
(d2j )∑
k=1

CD+(Wj,k).

Case 2. D∗d 6= D+
d

In this case, it holds that, I ′1 = I1, I
′
2 = I2−{d}, d

′
2 = d2− 1. We want to obtain

2Note that we are using the convention 0! = 1
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an expression for CD∗(u1, ..., ud) = P (VD∗i ,1 ≤ u1, ..., VD∗d ,d ≤ ud), using the
induction hypothesis. Considering that, in general, P (A) = P (A∩B)+P (A∩Bc)
we have that

P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1) = P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1, VD∗d ,d ≤ ud)

+P (VD∗i ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1, VD∗d ,d ≥ ud),

which implies
(3.11)
CD∗(u1, ..., ud) = P (VD∗1 ,1 ≤ u1, ..., V

∗
d−1 ≤ ud−1)−P (VD∗1 ,1 ≤ u1, ..., V

∗
d−1 ≤ ud−1, VD∗d ,d ≥ ud).

Note that, in this case VD∗d ,d = 1−VD+
d ,d

. This implies that the event {VD∗d ,d ≥ ud}
is equivalent to {VD+

d ,d
≤ 1− ud}. If we intersect the events involved in equation

(3.9) with the event {VD∗d ,d ≥ ud} we get
(3.12)
P (VD∗1 ,1 ≤ u1, ..., VD∗d−1,d−1 ≤ ud−1, VD∗d ,d ≥ ud) =

d2−1∑
j=0

(−1)j
(d2−1

j )∑
k=1

P (VD+
1 ,1
≤W ′j,k,1, ..., VD+

d−1,d−1
≤W ′j,k,d−1, VD+

d ,d
≤ 1− ud).

Combining equations (3.9), (3.11) and (3.12), we obtain
(3.13)

CD∗(u1, ..., ud) =

d2−1∑
j=0

(−1)j
(d2−1

j )∑
k=1

CD+(W′
j,k, 1)−

d2−1∑
j=0

(−1)j
(d2−1

j )∑
k=1

CD+(W′
j,k, 1−ud).

Note that, in this case, the sets I2 and I ′2 satisfy I2 = I ′2 ∪ {d}.

The rest of the proof is based on the fact that for j ∈ {1, ..., d − 1} the
elements of size j of I2 are the elements of size j of I ′2 plus the elements of size
j − 1 of I ′2 attaching them {d}. Considering our notation, this means

(3.14) Sj = S′j ∪ S′′j−1,

with S′′j−1 =
{
S′′j−1,k = S′j−1,k ∪ {d}

∣∣∣ k ∈ {1, ...,
(
d2
j

)}}
for j ∈ {1, ..., d−1}. Fur-

ther to this, by definition of Wj,k we have the following three equalities

(W′
j,k, 1)i =


ui if i ∈ I1
1− ui if i ∈ S′j,k
1 if i /∈ I1 ∪ S′j,k

, Wj,k,i =


ui if i ∈ I1
1− ui if i ∈ Sj−1,k
1 if i /∈ I1 ∪ Sj,k

and (W′
j−1,k, 1− ud)i =


ui if i ∈ I1
1− ui if i ∈ S′′j−1,k
1 if i /∈ I1 ∪ S′′j−1,k

,

for i ∈ {1, ...d}, j ∈ {1, ..., d − 1} and k ∈
{

1, ...,
(
d2
j

)}
. These three equalities

and equation (3.14) imply that, for a fixed j, if we sum CD+ evaluated in all of
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the (W′
j,k, 1) and (W′

j,k, 1−ud) for different k, we get the sum of CD+ evaluated
on Wj,k for different k, that is:

(3.15)

(d2−1
j )∑

k=1

CD+(W′
j,k, 1) +

(d2−1
j−1 )∑
k=1

CD+(W′
j−1,k, 1− ud) =

(d2j )∑
k=1

CD+(Wj,k),

for j ∈ {1, ..., d− 1}. Also, the equalities

(W′
0,1, 1)i = W0,1,i and (W′

d−1,1, 1− ud)i = Wd,1,i,

hold for i ∈ {1, ...d}; the result is implied by these two equalities and equations
(3.13) and (3.15).

Note that this expression is mainly dependent on the subsets of I2, the elements
in which D∗i 6= D+

i . Because of this, the expression is reflexible, meaning that
it yields the same formula to express CD+ in terms of CD∗ . The formula has
2d2 elements (one for every Sj,k). In particular, equation (3.8) can be used to
express any associated copula in terms of the distributional copula C. This is
useful considering that the expression found in literature for copula models is the
one for the distributional copula.

Corollary 3.1. Let X = (X1, ..., Xd) be a random vector with copula
C and D = (D1, ..., Dd) a type of dependence. Consider the same notations of
proposition (3.1) with I1 = {i ∈ I|Di = L} and I2 = {i ∈ I|Di = U}. Then the
associated D-copula CD is expressed in terms of C according to

CD(u1, ..., ud) =

d2∑
j=0

(−1)j
(d2j )∑
k=1

C(Wj,k).

It must be borne in mind that the fact that a particular model does not
account for a type of tail dependence does not mean it can not be used to model
it. Using the relationship among associated copulas, as long as a model accounts
for one type of tail dependence, it can be used to model an arbitrary type of
dependence. For example consider a copula C that accounts only for lower tail
dependence. If we want to model D-tail dependence we can assume that C is the
associated D-copula.

In order to analyse the symmetry and exchangeability of copula models,
we use the following definitions.

Definition 3.5. Let D = (D1, ..., Dd) be a type of dependence, the com-
plement dependence is defined as D{ = (D{

1, ..., D
{
d), with

D{
i =

{
U if Di = L
L if Di = U

,
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for i ∈ {1, ..., d}. We say that the random vector X, with associated copulas
AX, is complement (reflection or radial) symmetric, if there exists D∗ ∈ ∆, such
that CD∗ = CD∗{ .

Definition 3.6. A random vector X = (X1, ..., Xd) is said to be ex-
changeable if, for every permutation PR of {1, ..., d}, PR(i) = pi, it holds that

(X1, ..., Xd)
d
= (Xp1 , ..., Xpd). A copula C is said to be exchangeable if it is the

distribution function of an exchangeable vector, in which case, the copula satis-
fies C(u1, ..., ud) = C(up1 , ..., upd) for every permutation. The term permutation
symmetric is also used for this property.

In the following proposition we obtain equivalences for the exchangeability
and equalities regarding associated copulas. Note that in Definition 3.5 we defined
complement symmetry when there exists D∗, such that CD∗ = CD∗{ . The reason
for this, as we now prove, is that if it holds for one dependence it holds for them
all. Also, we prove that if CD◦ is exchangeable, then CD◦{ is exchangeable among
other general properties.

According to proposition (3.1), the relationship between two associated
copulas CD∗ and CD+ is determined by the elements in which D∗ and D+ are
different. Such elements are denoted as I2, given that we deal with several types
of dependence, we denote this set as I2(D

∗,D+) to indicate the dependencies
to which it refers. We do the same for I1(D

∗,D+), the elements in which the
dependencies are equal.

Proposition 3.2. Let X be a vector with corresponding associated cop-
ulas AX, and let D∗, D+, D◦ and D× be types of dependencies. Then the
following equivalences hold:

(i) If CD∗ ≡ CD+ and I2(D
∗,D+) = I2(D

×,D◦) then CD× ≡ CD◦ .

In particular CD∗ ≡ CD∗{ , for some D∗, implies CD ≡ CD{ for all D ∈ ∆.

(ii) If CD◦ is exchangeable, then the following hold:

(a) CD∗ is exchangeable over the elements of I1(D
∗,D◦) and over the

elements of I2(D
∗,D◦).

In particular, if CD◦ is exchangeable, then CD◦{ is exchangeable.

(b) If |I2(D∗,D◦)| = |I2(D+,D◦)|, let PR be any permutation of {1, ..., d}
that assigns to each element of I2(D

+,D◦), an element of I2(D
∗,D◦).

Denote i′ = PR(i), then

CD∗(u1, ..., ud) = CD+(u1′ , ..., ud′).
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(c) If d is even and there exists CD∗ exchangeable, such that |I2(D∗,D◦)| =
d
2 then CD ≡ CD{ for all D ∈ ∆.

Proof: (i) This follows from the fact I2(D
∗,D+) = I2(D

×,D◦) =⇒
I2(D

×,D∗) = I2(D
◦,D+), which is easily verified considering the different

cases. From proposition (3.1), we have that the vectors Wj,k are the same
in both cases, which implies

CD×(u1, ..., ud) =

d2∑
j=0

(−1)j
(d2j )∑
k=1

CD∗(Wj,k)

=

d2∑
j=0

(−1)j
(d2j )∑
k=1

CD+(Wj,k)

= CD◦(u1, ..., ud).

In particular, note that I2(D
∗,D∗{) = I2(D,D

{) = {1, ..., d} for every
D ∈ ∆. Then CD∗ ≡ CD∗{ implies CD ≡ CD{ for every D ∈ ∆.

(ii) (a) From proposition (3.1) we have

(3.16) CD∗(u1, ..., ud) =

d2∑
j=0

(−1)j
(d2j )∑
k=1

CD◦(Wj,k).

Consider j ∈ {0, ..., d2} and k ∈
{

1, ...,
(
d2
j

)}
, from the way it is defined,

Wj,k,i = ui for every i ∈ I1(D∗,D◦). The exchangeability of CD◦ implies
that CD◦(Wj,k) is exchangeable over I1(D

∗,D◦). Hence, equation (3.16)
implies that CD∗ is exchangeable over I1(D

∗,D◦). Now, let j ∈ {0, ..., d2}
be fixed, note that each Wj,k, k ∈

{
1, ...,

(
d2
j

)}
, is based on a different subset

of size j of I2(D
∗,D◦). Consider the sum

(d2j )∑
k=1

CD◦(Wj,k) as a function, given

that CD◦ is exchangeable and that the sum considers all the subsets of size j
of I2(D

∗,D◦), it follows that that function is exchangeable over I2(D
∗,D◦).

Equation (3.16) then implies that CD∗ is exchangeable over I2(D
∗,D◦). In

particular CD◦{ is exchangeable over I2(D
◦,D◦{) = {1, ..., d}.

(ii) (b) Considering proposition (3.1), to avoid confusion, in this part of the proof,
we denote with a superindex ∗ all the corresponding notations to express
CD∗ in terms CD◦ and with a superindex + all the notations to express CD+

in terms of CD◦ . From the hypothesis we know d+2 = d∗2, so no superindex
is used for this value.

Let PR be any permutation that satisfies the hypothesis. We denote i′ =
PR(i) and A′ = {PR(i)|i ∈ A} with A ⊆ {1, ..., d}. From proposition (3.1),
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we have

(3.17) CD+(u1′ , ..., ud′) =

d2∑
j=0

(−1)j
(d2j )∑
k=1

CD◦(W
+(1)
j,k )

with

W
+(1)
j,k,i =


ui′ if i ∈ I+1
1− ui′ if i ∈ S+

j,k

1 if i /∈ I+1 ∪ S
+
j,k

i ∈ {1, ..., d}, and S+
j,k is the k-th element of size j of I+2 , j ∈ {0, ..., d2} and

k ∈
{

1, ...,
(
d2
j

)}
. Given that CD◦ is exchangeable, we have that

(3.18) CD◦(W
+(1)
j,k ) = CD◦(W

(2)
j,k ),

with

W
(2)
j,k,i =


ui if i ∈ I1(D∗,D◦)
1− ui if i ∈ S+′

j,k

1 if i /∈ I1(D∗,D◦) ∪ S+′
j,k

For each k ∈
{

1, ...,
(
d2
j

)}
, S+′

j,k is a different subset of size j of I2(D
∗,D◦).

Hence,

(3.19)

(d2j )∑
k=1

CD◦(W
(2)
j,k ) =

(d2j )∑
k=1

CD◦(W
∗
j,k),

for j ∈ {0, ..., d2}. Proposition (3.1) and equations (3.17) to (3.19) imply
the result.

(ii) (c) Note that |I2(D∗,D◦)| = d
2 =⇒ |I2(D∗,D◦{)| = d

2 . Consider any permu-
tation of {1, ..., d}, PR(i) = i′, that assigns to each element of I2(D

∗,D◦)
an element of I2(D

∗,D◦{). Given that CD∗ is exchangeable we can use
(ii)(b)

CD◦{(u1, ..., ud) = CD◦(u1′ , ..., ud′).

Considering that CD◦ is exchangeable, this implies CD◦ ≡ CD◦{ . (i) then
implies CD ≡ CD{ for all D ∈ ∆.

Similar to a distributional copula, in the continuous case, all the associated
copulas are also invariant under strictly increasing transformations. We state this
in the following proposition:
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Proposition 3.3. Let T1,..., Td be strictly increasing functions and X =
(X1, ..., Xd) a random vector with corresponding distribution function and marginals,
D a type of dependence and D-copula CD. Then, in the continuous case,

X̃ = (T1(X1), ..., Td(Xd))

also has the same corresponding D-copula CD.

Proof: This result follows straightforwardly from the fact that the dis-
tributional copula is invariant under strictly increasing transfromations (see [20,
Proposition (5.6)]) as all associated copulas are implied by this copula using
Corollary 3.1.

In the bivariate case, Nelsen [22, Theorem 2.4.4] and Embrechts et al.
[5, Theorem 2.7], characterised the copula after the use of strictly monotone
functions on random variables. In the multivariate case, this can be done using
the associated copulas as we show in the following proposition.

Proposition 3.4. Let T1,..., Td be strictly monotone functions and X =
(X1, ..., Xd) a random vector with corresponding distributional copula C . Then
the distributional copula of X̃ = (T1(X1), ..., Td(Xd)) is the associated D-copula
CD of X, with

Di =

{
L if Ti is strictly increasing
U if Ti is strictly decreasing

,

for i ∈ {1, .., d}, whose expression is given by Corollary (3.1).

Proof: By using the inverse functions of Ti and Fi, i ∈ {1, ..., d} we
have:

Ti(Xi) ≤ (F̃←i (ui))
P∼ Bi(F←Di,i(ui)),

for i ∈ {1, ..., d}, with Bi as in Definition 3.4, which implies that the distributional
copula of X̃ is CD.

3.2. Associated tail dependence functions and tail dependence coeffi-
cients

Considering the results obtained so far, it is possible to introduce a general
definition of tail dependence function and tail dependence coefficients considering
the dependence D. For the analysis of the conditions of the existence of the tail
dependence function see [21]. The general expression of the tail dependence
function is the following (for the positive case, see [23])
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Definition 3.7. Let I = {1, ..., d}, X = (X1, ..., Xd) be a random vector
with copula C, D = (D1, ..., Dd) be a type of dependence and CD be the copula of
the random vector VD of Definition 3.3. For any ∅ 6= S ⊆ I, let D(S) denote the
corresponding |S|-dimensional marginal dependence of D and CD(S) the copula
of the |S|-dimensional marginal {VDi,i|i ∈ S}. Define the associated D(S)-tail
dependence functions bD(S) of CD, ∅ 6= S ⊆ I as

bD(S)(wi, i ∈ S) = lim
u↓0

CD(S)(uwi, i ∈ S)

u
,∀w = (w1, ..., wd) ∈ Rd+.

Given that these functions come from the associated copulas, we call the set of
all D-tail dependence functions the associated tail dependence functions. When
S = {1, ..., d} we omit such subindex.

The tail dependence functions was introduced as a generalisation to the
tail dependence coefficient to determine the existence of dependence among ran-
dom variables, see [23, 13]. With the definition of the general tail dependence
coefficient, that we now present, it is possible to determine the existence of tail
dependence for a general dependence D.

Definition 3.8. Consider the same conditions of Definition 3.7. Define
the associated D(S)-tail dependence coefficients λD(S) of CD, ∅ 6= S ⊆ I as

λD(S) = lim
u↓0

CD(S)(u, .., u)

u
.

We say that D(S)-tail dependence exists whenever λD(S) > 0.

Note that

CD(S)(u, .., u) = CD(u1, .., ud) ≥ CD(u, .., u),

with ui =

{
u if i ∈ S
1 if i /∈ S i ∈ {1, ..., d}. Because of this, λD(S) ≥ λD, so D-tail

dependence implies D(S)-tail dependence for all ∅ 6= S ⊆ I.

4. MODELLING GENERAL DEPENDENCE

In this section we analyse dependence in copula models. We analyse two ex-
amples, the perfect dependence cases and the elliptically contoured copulas. With
this analysis, it is possible to know the general dependence and tail dependence
structure implied by the use of these models. For the perfect dependence case we
obtain the associated copulas of the perfect positive dependence model. We then
prove that these copulas correspond to the use of strictly monotone transforma-
tions on a random variable, so we call this copulas the monotonic copulas. For
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the elliptical copulas we first study the elliptically contoured distributions and
prove a proposition that chacaterises their corresponding associated copulas. We
then present the associated tail dependence functions of the Student’s t copula
model. This model accounts for all 2d types of tail dependencies. The analysis of
general dependence presented in this section complements the analysis of positive
tail dependence for these models.

4.1. Perfect dependence cases

We now analyse the most basic examples of copula models. They corre-
spond to all the variables being either independent or perfectly dependent. We
first present the independent copula. We then present the associated copulas
of the perfect positive dependence model and prove that they correspond to
the use of strictly monotone transformations on a random variable. It follows
that these are the copulas of the perfect dependence models. For the indepen-
dence case, let U = (U1, ..., Ud) be a random vector with {Ui}di=1 independent
uniformly distributed random variables. The distribution function of U is the

copula C(u1, ..., ud) =
d∏
i=1

ui, which is known as the independence copula. It fol-

lows that the associated copula are also equal to the independence copula. This
is the copula of any random vector X = (X1, ..., Xd) with {Xi}di=1 independent
random variables. For the case of perfect positive dependence, let U be the d-
dimensional vector U = (W, ...,W ) with W a uniform random variable. The
distribution function of U is the copula

(4.1) C(u1, ..., ud) = min{ui}di=1.

This copula is the comonotonic copula. We now analyse the general associated
copula CD for this example. Let D be a type of dependence and I = {1, ..., d}.
Define IL = {i ∈ I|Di = L} and IU = {i ∈ I|Di = L}. From Definition 3.3,
the associated D-copula CD is the distribution function of the vector VD. Let
us assume that neither IL nor IU are empty (the other two cases have just been
analysed), then the associated D-copula is

CD(u1, ..., ud) = P ((W ≤ min{ui}i∈IL) ∩ (W ≥ max{1− ui}i∈IU )).

It follows that, for min{ui}i∈IL > max{1 − ui}i∈IU , this probability is equal to
zero; in the other case we have

CD(u1, ..., ud) = min{ui}i∈IL + min{ui}i∈IU − 1.

Therefore, a general expression is

(4.2) CD(u1, ..., ud) = max{0,min{ui}i∈IL + min{ui}i∈IU − 1}.

Note that CD = CD{ . Hence, the d-dimensional vector U = (W, ...,W ) is comple-
ment symmetric, according to Definition 3.5. There are 2d−1 different associated
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copulas of this vector. In the bivariate case the associated (L,U)-copula CLU is
equal to the Fréchet lower bound copula, also known as the countermonotonic
copula.

The copulas obtained in (4.2) are a generalisation of the countermonotonic
copula of the bivariate case. The countermonotonic copula is the lower Fréchet
bound for copula and corresponds to perfect negative dependence. More gener-
ally, these copulas appear when modelling perfect non-positive dependence, see
[20, Example 5.22]. In the following proposition we prove that, in d dimen-
sions, the copulas of (4.1) and (4.2) correspond to the use of strictly monotone
transformations on a random variable. Because of this, we call these copulas the
monotonic copulas.

Proposition 4.1. Let Z be a random variable, and let {Ti}di=1 be strictly
monotone functions, then the distributional copula of the vector
X = (T1(Z), ...Td(Z)) is one of the monotonic copulas of equations (4.1) or (4.2)
with D = (D1, ..., Dd),

Di =

{
L if Ti is strictly increasing
U if Ti is strictly decreasing

.

Conversely, consider a random vector X = (X1, ..., Xd) whose distributional
copula is a monotonic copula of equation (4.1) or (4.2) for certain D. Then there
exist monotone functions {Ti}di=1 and a random variable Z such that

(4.3) (X1, ..., Xd)
d
= (T1(Z), ..., Td(Z)),

the {Ti}di=1 satisfy that Ti is strictly increasing if Di = L and strictly decreasing
if Di = U for i ∈ {1, ..., d}. In both cases the vector X is complement symmetric.

Proof: Let F be the distribution function of Z. Considering the uniform
random variable F (Z) it is clear that the copula of the d-dimensional vector
(Z, ..., Z) is the Fréchet upper bound copula min{ui}di=1of equation (4.1). The
result is then implied by proposition (3.4).

The converse statement is a generalisation of [5, Theorem 3.1]. We have
that the distributional copula of X is a monotonic copula for certain D. Note that
the associated D-copula of X is the Fréchet upper bound copula. Let {αi}di=1 be
any invertible monotone functions that satisfy αi is strictly increasing if Di = L
and strictly decreasing if Di = U for i ∈ {1, ..., d}. Proposition (3.4) implies
that the copula of A = (α1(X1), ..., αd(Xd)) is the Fréchet upper bound copula.
According to Fréchet [9] and Embrechts et al. [6], there exists a random variable
Z and strictly increasing {βi}di=1 such that

(α1(X1), ..., αd(Xd))
d
= (β1(Z), ..., βd(Z)).

By defining Ti = α−1i ◦ βi for i ∈ {1, ..., d} we get the result.
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In both cases the associated copulas of X are the monotonic copulas im-
plying that the vector is complement symmetric.

This proposition means that the copula of perfect dependence models,
where all variables have perfect positive or negative dependence, is a monotonic
copula. Regarding tail dependence, suppose the vector X has distributional cop-
ula C∗ equal to a monotonic copula CD of equations (4.1) or (4.2) for certain D.
Considering Definition 3.3 of the associated copulas, this implies that C∗D is the
comonotonic copula. Hence C∗D and C∗

D{ satisfy equation (4.1). It follows that

the D and D{ tail dependence functions of the vector X are

b∗D(w1, ..., wd) = b∗
D{(w1, ..., wd) = min{w1, ..., wd}.

The other associated copulas satisfy equation (4.2) for some D0. It follows that
the corresponding tail dependence functions of X are equal to zero

4.2. Elliptically contoured distributions

We now anlayse the dependence structure of elliptically contoured distri-
butions. We first present the definition of this model. Then we present its corre-
sponding associated copulas. Finally we present the associated tail dependence
functions of the Student’s t copula model.

Elliptically contoured distributions, or elliptical distributions, were intro-
duced by Kelker [17] and have been analysed by several authors (see for example
[8, 11]). They have the following form.

Definition 4.1. The random vector X = (X1, ..., Xd) has a multivariate
elliptical distribution, denoted as X ∼ Eld(µ,Σ, ψ), if for x = (x1, ..., xd)

′ its
characteristic function has the form

ϕ(x;µ,Σ) = exp(ix′µ)ψd(
1

2
x′Σx),

with µ a vector, Σ = (σij)1≤i,j≤d a symmetric positive-definite matrix and ψd(t)
a function called the characteristic generator.

They encompass a large number of distributions, see [29, Appendix]. Sev-
eral properties have been developed in the case when the joint density exists, see
[11, 2]. If it exists, the joint density f(x;µ,Σ) has the following form:

(4.4) f(x;µ,Σ) = cd|Σ|−
1
2 gd

(
1

2
(x− µ)′Σ−1(x− µ)

)
,

with gd(·) a function called the density generator and cd a normalising constant
dependent of gd (see [19]).
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Elliptical distributions have been used in several areas including financial
data analysis. Unlike the Gaussian distribution, the Student’s t distribution has
been known to account for fat tails and tail dependence.

4.2.1. The associated elliptically contoured copula

The copula of an elliptically contoured distribution is referred to as ellip-
tically contoured copula or elliptical copula. This copula has been subject to
numerous analysis, see for instance [7, 1, 5, 3]. One of the characteristics of ellip-
tically contoured distributions is that their marginals Fi(x) are also elliptically
contoured with the same characteristic or density generator. If the d-dimensional
copula density c exists the joint density f , the marginal densities fi, the marginals
Fi and the corresponding copula density satisfy the following relationship (see [7]):

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))×
d∏
i=1

fn(xn).

Note that the process of standardising the marginal distributions of X uses
strictly increasing transformations. As stated in proposition (3.3), copulas are
invariant under such transformations. This implies that the copulas associated
to X ∼ Eld(µ,Σ, ψ) are the same as the copulas associated to X∗ ∼ Eld(0, R, ψ).
Here R = (ρij =

σij√
σiIσjJ

)1≤i,j≤d is the corresponding “correlation” matrix implied

by the positive-definite matrix Σ = (σij)1≤i,j≤d (see [5, Theorem 5.2] or [7, 3]).
Because of this, for our study of elliptical copulas we assume X ∼ Eld(R,ψ) with
R = (ρij)1≤i,j≤d, which covers the more general case X ∼ Eld(µ,Σ, ψ).

Equation (3.4) implies that the associated copulas of X are determined by
the joint distribution and the inverse of the marginal distributions. In general,
there is no closed-form expression for the elliptical copula but it can be expressed
in terms of multidimensional integrals of the joint density f(x;R). This case
covers a wide variety of distributions, see e.g. [29, Appendix]. In the following
proposition we prove an identity for the associated copulas for this general case.

Proposition 4.2. Let X = (X1, ..., Xd) be a random vector with mul-
tivariate elliptical distribution of Definition 4.1, with correlation matrix R =
(ρij)1≤i,j≤d, that is X ∼ Eld(R,ψ) and let D be a type of dependence. Then
the associated D-copula of X is the same as the distributional copula of X+ ∼
Eld(℘R℘,ψ), with ℘ a diagonal matrix (all values in it are zero except for the
values in its diagonal) ℘ ∈ Md×d, whose diagonal is p = (p1, ..., pd) with

pi =

{
1 if Di = L
−1 if Di = U

,

for i ∈ {1, ..., d}.
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Proof: The vector ℘X is equal to (T1(X1), ..., Td(Xd)) with Ti(x) = pix,
i ∈ {1, ..., d}. Using Proposition (3.4), the distributional copula of ℘X is the
associated D-copula of X. From the stochastic representation of X (see [8]), it
follows that ℘X ∼ Eld(℘R℘′, ψ) (see [5, Theorem 5.2]).

The symmetric nature of the elliptically contoured distributions and cop-
ula is well known. It follows from proposition (4.2) that elliptical copulas are
complement symmetric.

Corollary 4.1. Let X = (X1, ..., Xd) be a random vector with mul-
tivariate elliptical distribution of Definition 4.1, X ∼ Eld(R,ψ). Then X is
complement symmetric according to Definition 3.5.

Proof: Let D be a type of dependence and D{ the complement depen-
dence of Definition 3.5. Denote ℘D and ℘D{ the corresponding diagonal matrices
of proposition (4.2).

It is clear that ℘D{ = −℘D, which implies

℘D{ ·R · ℘D{ = ℘D ·R · ℘D.

Hence, both CD and CD{ are equal to the distributional copula of
X+ ∼ Eld(℘DR℘D, ψ).

Proposition (4.2) makes it possible to use the results regarding elliptical
copulas in associated copulas. This also includes the analysis of tail dependence.
In the bivariate case Klüppelberg et al. [18] and Schmidt [25] studied positive tail
dependence in elliptical copulas under regular variation conditions. The Gaussian
copula does not account for positive tail dependence, proposition (4.2) implies
that it does not account for tail dependence for all D. In contrast the Student’s
t copula does account for tail dependence (see [15, 23, 3]). We now analyse this
copula into more detail.

4.2.2. The multivariate student’s t associated tail dependence function

The Student’s t copula is well known for accounting for stylised facts such
as fat tail and the presence of tail dependence (see [15, 23, 3]). The Student’s t
copula with ν degrees of freedom and correlation matrix R is expressed in terms
of integrals of its corresponding density tν,R.

C(u) =

t−1
ν (u1)∫
−∞

...

t−1
ν (ud)∫
−∞

Γ
(
ν+d
2

)
Γ
(
ν
2

)√
(πν)d|R|

(
1 +

x′R−1x

ν

)− ν+d
2

dx,
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with u = (u1, ..., ud) and x = (x1, ..., xd)
′.

Unlike the multivariate Gaussian distribution, the case of R = I does not
correspond to the independence case, see [12]. It must also be noted that the
perfect dependence cases are not covered by this copula. That is, the cases
when R = (ρij)1≤i,j≤d satisfies ρij = 1 if i, j ∈ S1 or i, j ∈ S2, and ρij = −1
if i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1, with S1 and S2 disjoint sets that satisfy
S1 ∪ S2 = {1, ..., d}. In this case R = (ρij)1≤i,j≤d can be expressed as

R = ℘

 1 · · · 1
...

. . .
...

1 · · · 1

℘

with ℘ ∈ Md×d a diagonal matrix, whose values in the diagonal are 1 if i ∈ S1
and −1 if i ∈ S2, i ∈ {1, ..., d}. Inductively on d, it is straightforward to prove
that the determinant of a matrix of ones is zero. It follows that |R| = 0, and
the copula is not defined in this case. The Student’s t copula is known for
accounting for several types of tail dependence. McNeil et al. [20] proved that,
in the bivariate case, regardless of the value of the correlation coefficient ρ, the
lower and upper tail dependence coefficients are positive. Nikoloulopoulos et al.
[23] analysed in detail the extreme value properties of this copula and obtained
an expression for the lower and upper tail dependence functions among other
results. More recently, in the bivariate case, Joe [15], obtained an expression for
the D = (L,U) and the D = (U,L) tail dependence coefficients proving that
this copula accounts for negative tail dependence. In this subsection we present
the expression for the associated D-tail dependence function of the multivariate
Student’s t copula. Given that this function is positive for |R| 6= 0 and for all
D, the Student’s t copula accounts for all types of tail dependence. This result
follows from [23, Theorem 2.3] and proposition (4.2).

Proposition 4.3. Let X = (X1, ..., Xd) have multivariate t distribution
with ν degrees of freedom, and correlation matrix R = (ρij)1≤i,j≤d, that is X ∼
Td,ν,R. Let D = (D1, ..., Dd) be a type of dependence. Then the associated D-tail
dependence function bD is given by

bD(w) =
d∑
j=1

wjTd−1,ν+1,R′j

(√
ν + 1

1− ρ2ij

[
−
(
wi
wj

)− 1
ν

+ pipjρij

]
, i ∈ Ij

)
,

with

R∗j =



1 · · · ρ∗1,j−1;j ρ∗1,j+1;j · · · ρ∗1,d;j
...

. . .
...

...
...

...
ρ∗j−1,1;j · · · 1 ρ∗j−1,j+1;j · · · ρ∗j−1,d;j
ρ∗j+1,1;j · · · ρ∗j+1,j−1;j 1 · · · ρ∗j+1,j−1;j

...
...

...
...

. . .
...

ρ∗d,1;j · · · ρ∗d,j−1;j ρ∗d,j+1;j · · · 1


;
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ρ∗i,k;j = pipk
ρik−ρijρkj√
1−ρ2ij

√
1−ρ2kj

, the modified partial correlations; Ij = I − {j} and

pj =

{
1 if Dj = L
−1 if Dj = U

,

for j ∈ {1, ..., d}.

Proof: The definition presented in this work for the tail dependence
functions has the same form for different dependencies. The only difference is the
underlying associated copula. Proposition (4.2) then implies that the associated
D-tail dependence function of the random vector X ∼ Td,ν,R is the lower tail
dependence function of the vector X+ ∼ Td,ν,℘R℘. ℘ is the diagonal matrix,
whose diagonal is p = (p1, ..., pd) with

pi =

{
1 if Di = L
−1 if Di = U

for i ∈ {1, ..., d}.

The modified correlation matrix is ℘R℘ = R∗ = (ρ∗ij)1≤i,j≤d, it follows that

(ρ∗ij)1≤i,j≤d = (pipjρij)1≤i,j≤d.

Hence (ρ∗ij)
2 = p2i p

2
jρij = 1·1·ρ2ij = ρ2ij Under this change, the partial correlations

are modified as follows

ρ∗i,k;j = pipk
ρik − ρijρkj√

1− ρ2ij
√

1− ρ2kj
.

The result is then implied by [23, Theorem 2.3].

This proposition implies that the Student’s t copula accounts for all 2d de-
pendencies simultaneously. This includes simultaneous positive and non-positive
tail dependence. The level of tail dependence in each orthant is determined by
the correlation matrix R. It is interesting to note that positive correlation can
occur conteporaneously with non-positive tail dependence. This comes from the
fact that correlation and the tail dependence refer to different features of the
dependence structure between variables. For example, in the bivariate case, high
negative correlation implies high LU and UL tail dependence but does not rule
out lower and upper tail dependence. In that case, the variables might generally
exhibit negative depenence, but when it comes to extreme values they can also
be positively dependent. Although simultaneous positive and non-positive tail
dependence and symmetry can be present in empirical data, these assumptions
must be verified before considering this model.
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5. CONCLUSIONS AND FUTURE WORK

In this paper we introduce concepts to analyse, in the multivariate case,
the whole dependence structure among random variables. We consider the 2d dif-
ferent orthants of dimension d. For this, we present the D-probability functions,
associated copulas, associated tail dependence functions and associated TDCs.
These concepts are meant to measure non-positive dependence and tail depen-
dence, complementing the use of the distributional and survival copulas C and
Ĉ and the lower and upper tail dependence functions and TDCs. These concepts
can be used to analyse non-positive dependence and tail dependence of copula
modelsby considering all the orthants. This work is divided into two main parts,
in the first one we define and study the concepts to analyse general dependence
and in the second one we study the whole dependence structure of two copula
families.

We begin the first part by defining the D-probability functions to analyse
probabilities in the different orthants. We then present a version of Sklar’s the-
orem that links D-probability functions with the associated copulas. Together
with the distributional and the survival copulas, the other associated copulas
characterise the dependence structure among random variables. With them it
is possible to analyse all types of dependence to cover the whole dependence
structure among random variables. We study the associated copulas of a random
vector and present an expression for the relationship among all of these copulas.
After this, we prove properties of associated copulas regarding symmetry and
exchangeability. We then prove that they are invariant under strictly increas-
ing transformations and characterise the copula of a vector after using monotone
transformations. For the last part of this analysis, we introduce the associated
tail dependence functions and associated tail dependence coefficients of a random
vector. With them we can analyse its tail dependence in the different orthants.

For the second part we use the concepts and results obtained in the first
part of the paper to analyse two examples of copula models. The first example
corresponds to the perfect dependence models. The corresponding copulas are
a generalisation of the Fréchet copula bounds of the bivariate case, they cor-
respond to the use of strictly monotone transformations on a random variable.
Accordingly, we name these copulas the monotonic copulas. The second example
corresponds to the elliptical contoured distributions. For this example, we also
obtain an expression for the corresponding associated copulas. As expected the
Gaussian copula does not account for any type of tail dependence, regardless
of the correlation matrix. We present an expression for the associated tail de-
pendence function of the Student’s t copula. This result proves that this copula
model accounts for tail dependence in all orthants. The Student’s t copula has
proven to be a better copula model than the Gaussian copula when modelling
empirical data such as financial. It is well known that this data has heavy tails
and extreme dependencies and the assumption of only positive tail dependence
has proven to be unrealistic. It is not surprising, but yet interesting that the
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Student’s t copula accounts for extreme dependencies of all types simultaneously.
Non-positive tail dependence can be desirable in the context of hedging strate-
gies. This tail dependence can minimise the risks and variability of a portfolio in
times of economic crisis when extreme values are likely to appear.

The results obtained in this work aim to help in the understanding of the
dependence structure of a multivariate random vector. With them it is also pos-
sible to analyse the dependence structure implied by different copula models.
Without analysing general dependence, the analysis in these models is there-
fore incomplete. There are several areas where future research regarding general
dependence is worth being pursued. For instance, it must be noted that the
use of D-probability functions is not restricted to copula theory. The analysis
of probabilities in the multivariate case has sometimes been centred in distri-
bution functions, but, just like survival functions, D-probability functions can
serve different purposes in dependence analysis. Another possibility is the use of
nonparametric estimators to measure non-positive tail dependence, as the use of
these estimators has been restricted to the lower and upper cases. Further to this,
with the formulas presented for the associated copulas, it is possible to extend
the analysis to other copula models with closed-form expressions. This includes
copulas such as the Archimedean and other models based on Laplace transforms.
Other interesting examples of copula models are the vine copulas, the use of these
copulas has proven to provide a flexible approach to tail dependence and account
for asymmetric positive tail dependence (see for instance [24, 16]).
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