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Abstract

We present a performance comparison of risk-adjusted intraday trading strategies
based on dynamic non-linear models using the more traditional Artificial Neu-
ral Network, as well as Adaptive Neuro-Fuzzy Systems (ANFIS) and Dynamic
Evolving Neuro Fuzzy Systems (DENFIS). The model selection process takes into
account the risk-return measures together with flexible position holding periods
and a return band filter, employing a dynamic combination of moving average
signals. Our results show that these models can be successfully applied to support
intraday trading strategies, especially when considering constraints such as trans-
action costs and trading hours, which existing approaches in the literature do not
account for.

Keywords: High-frequency trading, ANFIS, DENFIS, Feed-Forward Network,
Dynamic Moving Average

1. Introduction

The profitability of trading rules is an incessant debate. Recent literature how-
ever claims that profitability of technical trading rules has possibly moved to higher
frequency prices as a result of more efficient markets and faster algorithmic trading
(Schulmeister, 2009). Notwithstanding this, other findings show that aggressive
high-frequency trading (HFT) does not lead to the expected high excessive returns
(Kearns et al., 2010). Whilst many former studies focuses on the application of
models solely to predict market movements (e.g. Son et al. (2012)), traders in
financial markets are typically interested in risk-adjusted performance rather than

∗Corresponding author. Tel.:0044-1206-874684
Email addresses: vvella@essex.ac.uk (Vince Vella), wlng@essex.ac.uk (Wing Lon Ng)

Preprint submitted to Elsevier August 28, 2013



just price predictions themselves (Choey and Weigend, 1997; Xufre Casqueiro and
Rodrigues, 2006).

This paper provides new insights into the risk-adjusted performance of simple
technical trading rules in an intraday stock trading scenario using high frequency
data with the application of artificial intelligence and soft computing techniques.
Our first contribution is to present an analysis of the time-varying risk-adjusted
performance profile of the applied models by focusing on their dynamics over a
the entire out-of-sample testing period and their daily cumulative performance.
In contrast to common approaches in the literature which evaluates models using
risk-return measures at an arbitrary single point in time (e.g. the end of the
sample period), our goal is to provide a deeper understanding of the time-varying
performance profile of the applied models.

Our second major contribution is the simple but yet effective extension of
common technical trading strategies by considering a ‘portfolio’ of moving average
prediction models controlled by neuro-fuzzy systems. This is further extended by
applying dynamic rules for return bands and trade position times. In line with
Tsang (2009) our models try to answer questions of the following form: “Will
the price go up (or down) by r% in the next t minutes?” We investigate the
profitability of models on less aggressive HFT, with holding periods between 10
minutes and 1 hour, using 5 minute prices of a set of stocks listed on the London
Stock Exchange during the period 2007-2008. An important challenge in this study
is the choice of moving average window length. For example, if the price over an
interval is, in general, trending up, there are also several short-term downtrends
in the price data. Some of them are real trend reversal points and others are
just noise. The trend identifying mechanism should not be overly sensitive to
short-term fluctuations, hence applying a too short moving average, as that would
result in falsely reporting a break in trend. On the other hand, choosing a too
long moving average will result in late reaction to price movement. We suggest a
combination of multiple moving average rules as input to the prediction models.

As a third contribution in this paper, we extend our trading systems with de-
cision rules accounting for transaction costs and trading hours, and compare the
time series of risk adjusted performance measures obtained from different model
optimisation functions such as risk-return functions, Root Mean Squared Error
(RMSE) and models not considering transaction costs. When training and evalu-
ating a trading system, most former studies only have very limited view of what
constitutes successful investment decisions, defining on grounds of forecast accu-
racy and win ratios, and often choose to minimise the forecast error of the price
prediction, setting this as the objective function (Alves Portela Santos et al., 2007;
de Faria et al., 2009; Enke and Thawornwong, 2005; Medeiros et al., 2006). How-
ever, a smaller forecast error does not necessarily translate into increased trading
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profits (Brabazon and O’Neill, 2006). Recently, Krollner et al. (2010) find that
over 67% of the investigated studies use the forecast error as an evaluation met-
ric and identify a lack of literature examining if machine learning techniques can
improve an investor’s risk-return trade-off. They also find that over 80% of the
papers report that their model outperformed the benchmark model, but most of
them do not consider real world constraints at all (see also Álvarez Dı́az, 2010).

An interesting finding by Schulmeister (2009) was that by examining 30 minute
prices it was identified that beyond the 1990s the profitability of technical trading
rules has moved to higher frequency. He questioned that due to more efficient
markets this might have moved to even higher frequencies for the more recent
periods.

Another finding in Tsai and Wang (2009) and Krollner et al. (2010) is that
Artificial Neural Networks (ANNs) are identified to be the dominant machine
learning technique in this area. On the downside ANNs are regarded as black
boxes that cannot describe the cause and effect. Moreover hybrid models were
again found to provide better forecasts compared to ANNs used alone or traditional
time series models. Following the emergence of Fuzzy Logic (Zadeh, 1975), Neural
networks and Fuzzy Inference Systems were brought together as general structures
for approximating non-linear functions and dynamic processes. A popular cited
technique in non stationary and chaotic time series prediction is the Adaptive
Neuro-Fuzzy Inference System (ANFIS) by Jang (1993). Successful application of
ANFIS in trading applications by predicting stock price was demonstrated in Lin
et al. (2002); Gradojevic (2007); Kablan and Ng (2011) and many others, with the
latter study the only one identified that is focused on high frequency trading.

Equally important is the fact that to keep a successful trading edge these sys-
tems have to adapt, and hence evolve, to address recurring and changing patterns
in the intraday environment which are driven by the actions of informed and uni-
formed traders. Implementing evolution requires an ability to balance learning and
changing while still respecting the past accumulated knowledge (Marsland, 2009).
With a focus on dynamic learning of rules from data Kasabov and Song (2002)
introduced pioneering work on evolving neuro fuzzy systems with the introduction
of Evolving Neural-Fuzzy Inference System (DENFIS) and its application for time-
series prediction. In contrast to ANFIS which optimises the structure by batch
learning, DENFIS evolve through incremental, hybrid (supervised/unsupervised),
learning, and accommodate new input data, including new features, new classes,
etc., through local element tuning. To our best knowledge DENFIS was not pre-
viously applied in a high frequency setting.

With these advances in AI and soft computing techniques this paper presents
and compares the performance of buy-sell signals generated from a combination of
moving average trading rules with the application of ANNs, ANFIS and DENFIS.
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The remainder of the paper is structured as follows. In Section 2 we first
introduce the moving average signals and explain on how these can be combined
to model stock returns. We then provide details about our experiment approach
describing model components and underlying prediction and trading algorithms.
Section 3 presents the data, our findings and a discussion in the light of existing
literature. Section 4 concludes.

2. Method

A central theme in the technical trading approach is the ability to recognise
patterns in market prices that supposedly repeat themselves and hence can be used
for predictive purposes. A number of authors showed the predictive capabilities of
simple trading rules in conjunction with the application of Artificial Neural Net-
works. For a survey, e.g. see Vanstone and Finnie (2009) and Vanstone and Finnie
(2010), and the references therein. This body of research showed the predictive
ability of simple trading rules on daily returns with the application of ANNs and
contrasted the weaknesses with traditional econometric models which fail to give
satisfactory forecasts for some series because of their linear structure and some
other inherent limitations such as the underlying distribution assumptions.

Based on the findings in the current literature, our experiment approach focuses
on a number of objectives:

1. We explore the debated profitability of moving average rules, particularly
focusing on high frequency data. In our experiments we use a set of stocks
listed on the London Stock Exchange.

2. In contrast to common trading system designs that focuses on a fixed target
returns, we apply of a return band in the region between 0.1% and 0.5%
which acts as a filter for unprofitable small trades.

3. Evaluate the profitability of less aggressive HFT strategies, with holding
trading positions time (PT) in the region between 10 minutes to 1 hour,
in view of stated claims of unattainable high excessive returns from more
aggressive HFT strategies.

4. Consider real world intraday constraints like trading costs, realistic trading
hours and no overnight positions.

5. Compare the risk-adjusted daily cumulative performance attained from the
more traditional Artificial Neural Networks (ANNs) with the more recent
ANFIS and DENFIS models.

Our experiment setup consisted of two core modules (see Figure 1), the Re-
turn Prediction Module, which later feeds trading signals to the Trading System
Module. Sections 2.1 to 2.4 describe our Return Prediction Models. Section 2.5
explains our Trading algorithm. In Section 2.6 we explain how we measure and
evaluate model performance.
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Figure 1: Experiment Setup

2.1. Technical Trading and Moving Averages

Traders typically employ two classes of tools to decide what stocks to buy
and sell; fundamental and technical analysis, both of which aim at analysing and
predicting shifts in supply and demand and hence determining the direction that
prices are likely to move. While fundamental analysis involves the study of com-
pany fundamentals such as revenues and expenses, market position, annual growth
rates, and so on, technical analysis is solely concerned with price and volume data,
particularly price patterns and volume spikes. Consider a truncated history of
past prices {pt, pt−1, pt−N+1} ∈ RN

+ . A function d : It → Ω maps the information
set It at time t to a space of investment decisions Ω = {short, 0, long}, indicating
short, neutral or long positions, respectively.

For our time series we use 5 minute continuously compounded returns since
returns have much better statistical properties than price levels. These intraday
returns are defined as:

rt = log(pt)− log(pt−1), (1)

where log(.) denotes the natural logarithm.
Essentially, a moving average represents a low pass filter which removes higher

frequency “noise” thereby allowing the investor to more clearly identify the lower
frequency trend. A typical moving average is calculated as:

mn
t =

1

n

n−1∑
i=0

pt−i, (2)

where i = 0, 1, 2, ..., n − 1 is the “memory span” of the rule. Consider the signal
at time t defined as

st =


long if pt ≥ (1 + φ)mn

t

0 if (1− φ)mn
t ≤ pt < (1 + φ)mn

t

short if pt < (1− φ)mn
t

(3)
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where φ is the bandwidth of the rule for whiplash reduction.
Another popular variation of the rule is:

sn1,n2
t =

{
(mn1

t −mn2
t ) if |mn1

t −mn2
t | > φ

0 else
(4)

where n1 and n2 are the short and long moving averages, respectively.
We investigate whether intraday high frequency returns can be successfully

predicted by making use of buy and sell signals as inputs and use this information
to build a profitable trading algorithm. In this setting the linear regression model
is

rt = α +

p∑
i=1

βis
n1,n2

t−i + εt, (5)

where the error term εt is an independent variable with mean 0 and variance σ2
t .

Kearns et al. (2010) recently noted that when taking transaction costs into ac-
count, aggressive HFT strategies considering holding periods between 10 millisec-
onds and 10 seconds can have surprisingly modest profitability. For this reason in
our experiment we investigate the effect of applying less aggressive HFT strate-
gies. We slow down our trading by investigating (a) longer holding periods ranging
from 10 minutes to 1 hour, and (b) the application of a return band ranging from
0.1% to 0.5%. This approach is more versatile than compared to the common
approaches in the literature that calibrate their trading systems only based on
an arbitrary target return. Brabazon and O’Neill (2006) showed that similar use
of extended close in intraday trading scenarios can perform better than standard
Stop-Loss, Take-Profit and Buy-and-Hold strategies.

We first identify a model that predicts the next five-minute stock return by
taking a series of moving average signals as input variables. The three moving
average rules utilised are (n1, n2) = [(1,5), (5,10), (10,15)], where n1 and n2 are
in 5 minute time bars. In line with eq. (5), by combining these rules the linear
specification of the return prediction model is

rt = α + βis
1,5
t−i + βis

5,10
t−i + βis

10,15
t−i + εt, (6)

where
sn1,n2
t = mn1

t −mn2
t . (7)

In the following, we describe how the ANFIS, DENFIS and feed-forward net-
work (FFN) models are adapted for our experiments.

2.2. ANFIS Model

Neuro-Fuzzy techniques synergise ANNs with Fuzzy Logic techniques by com-
bining the human-like reasoning style of fuzzy systems with the learning and con-
nectionist structure of neural networks. Algorithms for acquisition or tuning of
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fuzzy models from data typically focus on one or all the following aspects (i) rule
consequent parameter optimisation, (ii) membership function parameter optimi-
sation and (iii) rule induction. The tested systems will be taking input from a
number of moving average rules and predict the stock return.

A popular technique is the Adaptive Neuro-Fuzzy inference system (ANFIS)
suggested by Jang (1993). ANFIS presents a Takagi-Sugeno (TS) model in a
different architecture that albeit the mathematical underpinnings are similar the
structure is formulated to permit ANN learning techniques. Following from the
standard ANFIS model and eq. (5), we apply the ANFIS architecture layers, de-
noting the output of the i-th node in layer l as Ol,i, as follows:

Layer 1 The output of each node O1,i is the membership grade for the moving
average signals {s1,5t−1, s

5,10
t−1 , s10,15t−1 }. Different types and number of input

membership functions, and corresponding premise parameters, are tested in
our model calibration process (see Table 1).

Layer 2 Every node in this layer is fixed. In this layer the t-norm is used to
“AND” the membership grades, for example the product:

O2,i = wi = µAi
(s1,5t−1)µBi

(s5,10t−1 )µCi
(s10,15t−1 ). (8)

Layer 3 This layer contains fixed nodes which calculate the normalised firing
strengths of the rules:

O3,i = w̄i =
wi

w1 + w2 + w3

. (9)

Layer 4 The nodes in this layer are adaptive and perform the consequent of the
rules:

O4,i = w̄ifi = w̄i(αis
1,5
t−1 + βis

5,10
t−1 + γis

10,15
t−1 + δi). (10)

where w̄i is the normalised firing strength from the previous layer and fi is
a linear function of the moving average signals with consequent parameters
{αi, βi, γi, δi}.

Layer 5 This layer consists of a single node that computes the overall output The
nodes in this layer are adaptive and perform the consequent of the rules:

O5,i = rt =
∑
i

w̄ifi =

∑
wifi∑
iwi

. (11)
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Table 1: Parameters tested for ANFIS

Parameter Parameter Value Set

Training Data Size (days) {5, 10}
Input Membership Functions Shape {Gaussian, Generalised Bell}

Number of Input Membership Functions {2, 3}
Training epochs {10, 20, 50}

Jang (1993) proposes premise and consequent parameters learning using a com-
bination of Steepest Descent and Least Squares Estimation (LSE). The total pa-
rameter set is split into two sets, a Set1 of premise (nonlinear) parameters and
a Set2 of consequent (linear) parameters. ANFIS learning uses a two pass algo-
rithm. In a forward pass Set1 is unmodified and Set2 is computed using a LSE
algorithm. This is followed by a backward pass where Set2 is unmodified and Set1
is computed using a gradient descent algorithm such as back-propagation.

Although the application of ANFIS in finance has been widely studied, most
studies only employ daily data whereas applications to intraday HFT are still
scarce. Kablan and Ng (2011) successfully applied ANFIS to predict price move-
ment from intraday tick data sampled at high frequency. Due to the intraday
volatility seasonality, they applied a volatility filter based on a directional changes
threshold to filter out training data from the specific time-bins that do not exceed
the specific activity threshold. Iteratively choosing the right number of epochs
was also identified as an important step to avoid over-fitting. In their experi-
ment, Kablan and Ng (2011) had the actual membership functions pre-defined
and consequently the number of rules were fixed, hence limiting model adaptation
to membership function and consequent parameter tuning. This raises the ques-
tion whether fuzzy logic models could be further improved for trading purposes by
automatically get updated in terms of rule base, membership function parameters
and consequent parameters in view of new data. A number of model calibration
parameters are explored for the in-sample training (Table 1). We test and compare
all 2×2×2×6 = 48 permutations of the parameter combinations in our sensitivity
analysis for ANFIS models.

2.3. DENFIS Model

Kasabov and Song (2002) introduced a new type of TS fuzzy inference systems,
denoted as DENFIS for adaptive on-line and off-line learning, and their application
for dynamic time series prediction. Kasabov and Filev (2006) analyse rule gener-
ation from a data stream perspective. DENFIS is based on the ECOS (Evolving
COnnectionist Systems) framework suggested by Kasabov and Song (2002).
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In our study, this distance is calculated by using the normalised Euclidean
distance of a new sample to the cluster centres:

disti = ||Si − Cci||, (12)

where Si is the current example consisting of a moving average vector [s1,5t−1, s
5,10
t−1 ,

s10,15t−1 ] and Cci is the centre of cluster i. A threshold value Dthr is defined that
limits the cluster size. When each data sample arrives, the steps below are carried
out (see also Kasabov and Song, 2002):

1. At the initial step of ECM, the first input data sample is considered as the
first cluster with the data itself as the first cluster centre and cluster centre
set to zero.

2. As a new data sample arrives, the distance dist between the samples and all
other existing cluster centres are determined.

3. The cluster with minimum distance distmin is selected. If distmin is less than
the radius then the sample is associated to the cluster and no updates are
required.

4. For every existing cluster the respective dist is added to the radius (let this
value be range). The cluster with minimum range is selected. If range is
less than 2 × Dthr then the sample belongs to the cluster, the radius of
this cluster is updated to (range/2) and the cluster centre is updated by
positioning it in the line joining the data sample and the cluster centre so
that now the distance between the new centre and the sample is equal to the
new radius value.

5. If range is greater than 2 × Dthr then a new cluster is created as in step
1. Each new cluster generates a new rule and evolves the structure of the
system. As new data samples arrive new rules can be created and existing
rules can be updated incrementally.

The inference engine in DENFIS is composed of m fuzzy rules indicated as
follows:

IF (s1,5t−1 is Ri,1) AND (s5,10t−1 is Ri,2) AND (s10,15t−1 is Ri,3)

THEN rt is fi(s
1,5
t−1, s

5,10
t−1 , s

10,15
t−1 ),

where i=1,2,...,m and j = 1, 2, 3; (sn1,n2

t−1 is Ri,j) are m× 3 fuzzy propositions as m
antecedents for m fuzzy rules; and Ri,j are fuzzy sets defined by their fuzzy mem-
bership functions µRi,j

: sn1,n2

t−1 → [0, 1]. In the consequent part, linear functions fi,
where i=1,2...,m are employed. In DENFIS, all fuzzy membership functions are
triangular type functions defined by three parameters:

µ(sn1,n2

t−1 , a, b, c) = max

(
min

(
sn1,n2

t−1 − a
b− a

,
c− sn1,n2

t−1

c− b

)
, 0

)
, (13)
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Table 2: Parameters tested for DENFIS

Parameter Parameter Value Set

Training Data Size (days) {10, 20, 30}
ECM Clustering Threshold {0.04, 0.06, 0.08, 0.1, 0.12}

Number of Rules in Dynamic FIS {3, 5 ,6}

where b is the value of the cluster centre on the x dimension, a = b − d × Dthr,
and c = b+ d×Dthr, d ∈ [1.2; 2]. For a given input vector S = [s1,5t−1, s

5,10
t−1 , s10,15t−1 ]

the result of the inference, which is the predicted return rt, is calculated as the
weighted average of each rule’s output:

rt =

∑m
i=1wifi(S)∑m

i=1wi

(14)

where wi = Ri,1(s
1,5
t−1)Ri,2(s

5,10
t−1 )Ri,3(s

10,15
t−1 ). Following a similar online learning

approach presented in Takagi and Sugeno (1985) and Jang (1993), the linear func-
tions in the consequent parts of the rules are updated using a recursive weighted
LSE, applying also a forgetting factor. To our best knowledge, DENFIS has not
been applied to high frequency trading yet. In our in-sample training we again
consider a number of different model calibration parameters (see Table 2). We
test and compare all 3× 5× 3 = 45 permutations of the parameter combinations
in our sensitivity analysis of DENFIS models.

2.4. Neural Network Model

The application of ANNs for the moving average rules models in Hudson et al.
(1996), Gençay (1996) and Fernandez-Rodrıguez et al. (2000) was based on the fact
that their research identified that, under general regularity conditions, a sufficiently
complex single hidden-layer feed-forward network can approximate any member
of a class of functions to any degree of accuracy, where the complexity of a single
hidden-layer feed-forward network (FFN) is measured by the number of units in
the hidden layer. Following eq. (5) the single-layer feed-forward network regression
model with lagged buy and sell signals and with d hidden units can written as

rt = α0 +
d∑

j=1

βjG(αj +

p∑
i=1

γijS
n1,n2

t−1 ) + εt, (15)

where

G(u) =
1

1 + exp(−u)
(16)
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Table 3: Parameters tested for FFN

Parameter Parameter Value Set

Training Data Size (days) {5, 10}
Number of Hidden Units {5, 10, 20}

Max Training epochs {1000}

is the activation function in our application. For our model identification a number
of model parameters are considered during the in-sample training (see Table 3).
We test and compare all 2×3×1 = 6 permutations of the parameter combinations
in our sensitivity analysis of FFN models.

2.5. Trading Algorithm

The second module of our trading system (see Figure 1) consists of a trading
and money management algorithm that takes the 5 minute return predictions from
the first module and performs trades based on specific rules (see also Tan et al.,
2011; Vanstone and Finnie, 2009, 2010). An HFT algorithm has to automate a
number of decisions: (i) what to buy or sell (markets), (ii) how much to buy or
sell (position sizing), (iii) when to buy or sell (entries), (iv) when to go out of a
losing position (stops), (v) when to go out of a winning position (exits), and (vi)
how to buy or sell (tactics). Our focus in this paper is particularly on decisions
(iii) to (v).

The objective of our trading algorithm is to generate buy, sell or do-nothing
signals. For buy or sell signals the predicted return value has to be greater (smaller)
than the upper (lower) limits of a specific return band otherwise the trade signal is
set to do-nothing. This was introduced in order to filter whiplash effects when the
short and long moving averages are close and also limit the number of small trades
which even if profitable would result in a loss due to transaction costs. In contrast
to the common approach in the literature focusing on a single target return, we
consider different return bands between 0.1% and 0.5% for each stock to search
for the optimal return during the in-sample period of 100 trading days. Based on
the selected band size, the position taken at time t is:

positiont =


long : rt > returnband
short : rt < returnband

0 : otherwise.
(17)

In our experiments we train the models on a daily rolling window basis, hence
adapting the model on the most recent market scenarios of 100 in-sample days,
followed by another 100 out-of-sample days, totalling 10,200 5 minute prices for
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Algorithm 1 Pseudo code for position time

if position duration > PT then
if position direction = position directionpred then

position state← keep open
position open time← current time

else
position state← close

end if
else

position duration← current time− position open time
end if

each sample. The best performing model against each measure is finally tested
on the following 100 day period out-of-sample on a moving window approach (see
next section on evaluation). In this setup, we apply a constant transaction cost
of 10 GBP per trade, per direction, and assume that a trader is willing to invest
a fixed 50, 000 GBP per position. Every five minutes the trading algorithm takes
a decision based on the predicted trading direction, the selected return band and
the position holding time. If the signal is to go long (short) the system will buy
(sell) 50K GBP worth of stock at the current market price. A total of five open
positions are allowed at one point in time, limiting total investment to 250, 000
GBP. For this experiment only positions in the same direction are allowed at the
same time. This was done to specifically eliminate the hedging effect of opposing
positions which as a result can overestimate the performance of the algorithm.

For a trade to be profitable, we defined each position to be held long enough
for favourable price movement sufficient to overcome the trading costs. Different
position time (PT ) holding periods between 10 minutes to 1 hour are considered in
the model selection process for each stock during the in-sample period. If after the
holding period the signal is still in the same direction then the position is kept for
another period of the same length. If on the contrary the signal has changed then
the position is closed (see Algorithm 1). Furthermore, all open positions are closed
at end of day, resulting in the system not holding any positions overnight. Since
we are interested in active intraday trading algorithms, models with parameter
combinations that generated less than 100 trades over the 100 day in-sample period
are excluded from the experiment.

2.6. Evaluation

Although many algorithms minimise errors such as the mean squared error
(MSE) or RMSE (Alves Portela Santos et al., 2007; de Faria et al., 2009), models
constructed using these criterion may not perform well when used for trading pur-

12



Table 4: Models applied in the experiments

Experiment AI Algorithms Tested MA Model Optimisation Criteria

1 ANFIS, DENFIS, FFN Dynamic Sharpe Ratio
1 ANFIS, DENFIS, FFN Dynamic Sortino Ratio
2 ANFIS, DENFIS, FFN Dynamic Sharpe Ratio, No Cost
2 ANFIS, DENFIS, FFN Dynamic RMSE
3 - MA(1,5) -
3 - MA(5,10) -
3 - MA(10,15) -

poses since the costs of predictive errors are assumed to be symmetric. Moreover,
existing approaches in the literature do not account for realistic transaction costs
and trading hour, reporting possibly biased results. Based on these findings and
following from the literature above, we construct a number of trading models by
applying different AI algorithms and optimisation functions (see Table 4).

In our first experiment combine the dynamic moving average model with the
different AI methods and choose either the Sharpe ratio or Sortino ratio (both
defined below) as optimisation criteria. In our second experiment, we apply the
same model combinations, but either (a) do not account for transaction costs in
the training period or (b) optimise the system entirely on forecast accuracy, in
order to see whether and how the ignorance of these constraints would have an
impact on the trading performance. Finally, to assess the effectiveness of the
dynamic moving average model, we also compare our models against the trading
performance of fixed moving average models in a third experiment.

To evaluate the trading system and compare the performance across different
models, we apply five different measures (Kablan and Ng, 2011): Shape ratio,
Sortino ratio, cumulative return, profit ratio, and win ratio. The Sharpe ratio
indicates to investors whether the returns of an asset or a portfolio come from a
smart trading strategy or excess risk. The Sharpe ratio is defined as

Sharpe Ratio =
Rp − rf
σp

, (18)

where Rp denotes the expected return, rf the risk-free interest rate and σp the
portfolio volatility. The Sharpe ratio measures the risk premium per each unit of
total risk in an investment asset or a portfolio. Investments with higher Sharpe
ratios are often preferred because the higher the Sharpe ratio translates into better
risk-adjusted performance. Similarly, the Sortino ratio is defined as

Sortino Ratio =
Rp − rf
σneg

, (19)
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where σneg denotes the standard deviation of only negative asset returns. Thus,
the Sortino ratio measures the risk premium per each unit of downside risk in
an investment asset or a portfolio. The cumulative return indicates the overall
probability of the strategy since the first trade, similar to a buy-and-hold scenario.

It should also be noted that the choice of performance function determines how
often the system trades and what percentage of its trades are winning trades. The
profit ratio indicates a system’s ability to generate profits over losses and is defined
as

Profit Ratio =
Total Gain/Number of winning trades

Total Loss/Number of losing trades
(20)

The win ratio is the ratio between the number of winning trades and losing trades
and is defined as

Win Ratio =
Total Number of winning trades

Total Number of losing trades
(21)

It has to be noted that albeit the profit and win ratios give an indication of the
system’s performance, however it does not take into consideration the underlying
risk (a single loss of $100 cannot compensate 99 winning trades of $1). These
ratios are however selected to validate whether the models showing higher risk
reflect higher returns or higher number of wins.

Albeit many researchers claim the results of their algorithmic trading models
by analysing a set of performance measures at a single point in time, covering a
specified number of days in the out-of-sample period, our interest is to validate
our models by looking at cumulated risk-return measures on a day by day basis.
This method provides a clearer analysis of the models’ behaviour and performance
pattern over time. A range of model parameter combinations are tested resulting
in
∏n

i=1 pseti different models per algorithm, where n is the number of algorithm
parameters and pseti is the number of unique discrete values tested for each pa-
rameter i. In order to select a model with good generalisation capabilities each
model was trained and tested over a 100 day period using a rolling window ap-
proach. Each model was trained on dayn−1 − dayn−1−s days of 5 minute returns
and tested on dayn 5 minute returns, where n = {1, 2, . . . , 100} is a day index and
s is the training size in days used for the specific model. This requires that the
first s days from the data set are reserved for training.

Furthermore, we also conduct a sensitivity analysis of the different models
in order to investigate the uncertainty in the predicted output (see also Resta,
2009). By inspecting our 100 day-by-day trading results and analyse these across
the regions in the space of input factors, we can utilise a heat map approach
to identify areas which maximised the Sharpe ratio criterion (for illustration, see
Figures 2-4 in the next section). In particular, we are interested to see how the
models behave across different levels of position time and return band parameters.
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3. Empirical Data and Analysis

The trading systems in this experiment are developed using high-frequency
trade data for a set of stocks listed on the London Stock Exchange (see Table 5)
during the period 01/06/2007 to 30/06/2008 (excluding weekends, holidays and
after hour trading). Data is sampled at 5 minute intervals using the last trade price
every five minute period. Since the London Stock Exchange operates between 8:00
and 16:30 GMT, this produced 102 price data points per day for each stock. The
sample skewness and kurtosis in Table 5 indicate that the return distributions are
far from being normal. The sample statistics also indicate that only one data set
shows an overall positive trend whilst the other five all show an overall negative
trend over the selected period. This emanates from the 2007-2008 economic crisis
situation. In the following, results for experiment 1 are discussed in Section 3.1,
and for experiment 2 and 3 in Section 3.2 (see also overview in Table 4).

3.1. Results for Experiment 1

Based on our first 100 day in-sample period, we perform a sensitivity analysis
of our models to identify the robustness of our models and also to investigate the
effect of position time and return band on our results (see also Resta (2009)).
As indicated by the heat map plots for ANFIS (Figure 2), DENFIS (Figure 3)
and FFN (Figure 4), the plots in general indicated concentrated regions of higher
Sharpe ratio in areas of higher holding position times and return bands.

This indicates the effectiveness of applying these two filters in our trading
models. These plots also provide an indication that our trading frequency of
interest, i.e. taking a less aggressive holding period of between 10 minutes to 1
hour, can show very positive results (unlike the stated difficulty with aggressive
high-frequency trading with position holding periods of between 10 milliseconds
and 10 seconds, see Kearns et al. (2010)). Of particular interest is the fact that
for specific stocks the heat maps identify more than one area of profitable regions,

Table 5: Descriptive Statistics of 5 Minute Returns

Company Symbol Mean×10−5 Std. Dev. Skewness Kurtosis

Alliance & Leicester AL. -0.4982 0.0051 -1.4962 356.4600
Schroders SDRC -0.1363 0.0034 -1.3003 122.5400
British Land BLND -0.2614 0.0031 0.2752 30.1670
British Airways BAY -0.2870 0.0035 -0.1561 59.2020
Diageo DGE -0.0604 0.0021 -0.3675 162.0200
Antofagasta ANTO 0.0556 0.0041 1.2677 97.5120
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Figure 2: Heat map identifying sensitivity of ANFIS Model and highest Sharpe ratio for different
position time and return band regions (in-sample)
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Figure 3: Heat map identifying sensitivity of DENFIS Model and highest Sharpe for different
position time and return band regions (in-sample)
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Figure 4: Heat map identifying sensitivity of FFN Model and highest Sharpe ratio for different
position time and return band regions (in-sample)
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Figure 5: Trading Performance by optimising Sharpe ratio. The plots show for each stock the
cumulated Sharpe ratio (y-axis) on the n-th day (x-axis) in the out-of-sample.
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Table 6: Model performance using Sharpe ratio optimisation over the 100 day out-of-sample
period (bold fond indicates best result among the three AI methods for the specific stock)

Model Measure AL. ANTO BAY BLND DGE SDRC

ANFIS Sharpe Ratio 0.1579 -0.0485 0.3099 -0.0090 0.0213 0.1748
Sortino Ratio 0.2966 -0.0567 0.6471 -0.0103 0.0348 0.3074
Cum. Return 0.1114 -0.0588 0.2919 -0.0115 0.0142 0.2589
Win Ratio 0.5972 0.5275 0.5714 0.5072 0.5053 0.5391
Profit Ratio 1.5770 0.8698 3.1816 0.9727 1.0691 1.7313

DENFIS Sharpe Ratio 0.1067 -0.0610 0.1690 0.0126 0.2692 -0.0207
Sortino Ratio 0.1756 -0.0563 0.2895 0.0135 0.3734 -0.0274
Cum. Return 0.3222 -0.1154 0.2922 0.0113 0.3708 -0.0565
Win Ratio 0.5607 0.5573 0.5389 0.5143 0.6480 0.5561
Profit Ratio 1.3985 0.8164 1.6663 1.0377 2.0977 0.9465

FFN Sharpe Ratio -0.0553 -0.0666 0.3278 0.3206 -0.0599 0.2307
Sortino Ratio -0.0549 -0.0636 0.9469 0.6616 -0.0947 0.3676
Cum. Return -0.0691 -0.1931 0.4831 0.1883 -0.0352 0.4144
Win Ratio 0.5082 0.5437 0.5913 0.6607 0.4750 0.6131
Profit Ratio 0.8459 0.8074 2.8829 2.6709 0.8494 1.8460

hence providing a clearer indication to traders on the possible profitable trading
strategies.

In the first simulation of the first experiment our model parameter identification
was based on applying the Sharpe ratio as our objective function. From the out-
of-sample results in Table 6, we see that ANTO was the only stock which has not
generated a positive Sharpe ratio across all models. Both ANFIS and DENFIS
generated a positive Sharpe ratio in four out of six stocks. In the case of FFN, the
model generated positive Sharpe ratio in three out of six stocks, albeit in these
three instances it generated the highest Sharpe across the three models.

Although this single point in time performance measurement is the most com-
mon approach adopted in literature, this might not be the best way how to in-
vestigate the success of a model and our primary interest was to investigate the
performance profile of each model over the full 100 day period. Let measuret,t+n

represent the aggregated measure from day t to day t + n of the out-of-sample
period. Figure 5 shows Sharpe Ratio1,20 up to Sharpe Ratio1,100. All stocks had
at least one model which generated positive results up to Sharpe Ratio1,40. After
the 40th day only one stock does not generate any positive Sharpe ratios (ANTO).
Although a number of studies, all based on daily data (Krollner et al., 2010), show
that the profitability of technical analysis has strongly declined or even ceased
to exist after early 2000s in the stock market (Schulmeister, 2009), our results
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Table 7: Sharpe ratio statistics over the 100 day out-of-sample period following Model Sharpe
ratio optimisation

ANFIS DENFIS FFN
Mean Variance Mean Variance Mean Variance

AL. 0.1208 0.0089 0.1153 0.0012 -0.1661 0.0323
ANTO -0.0284 0.0002 -0.0732 0.0001 -0.0415 0.0020
BAY 0.4120 0.0016 0.3027 0.0066 0.4566 0.0061
BLND 0.0218 0.0003 0.1254 0.0113 0.3508 0.0010
DGE 0.0335 0.0020 0.2508 0.0004 -0.0555 0.0058
SDRC 0.1920 0.0048 -0.0894 0.0041 0.2859 0.0026

Mean 0.1253 0.0030 0.1053 0.0040 0.1384 0.0083

find that the combination of moving average signals with artificial intelligence
techniques can indeed be applied to generate profitable trading strategies in an
intraday trading setting.

In three (BAY, BLND, SDRC) out of six stocks FFN models showed substan-
tially higher performance measures than ANFIS and DENFIS models, with a fifth
one (ANTO) showing highest obtained positive Sharpe ratio up to the 40th day.
This validates the popularity of Neural Networks in non linear time series applica-
tions as identified in Tsai and Wang (2009) and Krollner et al. (2010). This also
showed that unlike Kablan and Ng (2011), ANNs still provide a valid benchmark
when applying more recent Neuro-Fuzzy models on high frequency price series.
ANFIS showed a positive Sharpe ratio on the four (AL., SDRC, BAY, DGE) out
of six stocks with a minor loss on one stock (BLND) and lowest loss amongst other
models on the 6th stock (ANTO). DENFIS showed clear outperformance on the
other models on only one stock (DGE). As also indicated by Table 7 although
FFNs show higher mean Sharpe when looking across all stock portfolio, FFNs
show more abrupt variations than ANFIS and DENFIS, indicating higher sensi-
tivity to changes in the underlying data features. This can either result in quick
increases in Sharpe ratio (AL.) but also drops (ANTO). Hence when considering
this aspect, ANFIS resulted in a better model. Table 8 indicates that ANFIS and
FFN experience similar performance movements on all stocks except one (ANTO),
in which case FFN showed a positive result up to the 40th day.

In the second sets of simulations in experiment 1, we base our model parameter
identification process on maximisation of the Sortino ratio. In this case, all six
stocks have at least one model which generated positive results over the full 100 day
out-of-sample period (Table 9). This again confirms the possibility of achieving
profitable trading strategies by applying moving average signals with artificial
intelligence techniques on high frequency data. ANFIS generates profitable trading
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Table 8: Model Sharpe ratio performance correlation over the 100 day out-of-sample period (bold
figures indicate significance at 95% level)

ANFIS-DENFIS ANFIS-FFN DENFIS-FFN

AL. 0.4206 0.3489 -0.3331
ANTO -0.7748 -0.3575 0.2973
BAY 0.7171 0.7966 0.8614
BLND 0.0463 0.2752 0.3227
DGE 0.8194 0.9360 0.8840
SDRC -0.4341 0.7858 -0.7703

Table 9: Model performance using Sortino ratio optimisation over the 100 day out-of-sample
period (bold fond indicates best result among the three AI methods for the specific stock)

Model Measure AL. ANTO BAY BLND DGE SDRC

ANFIS Sharpe Ratio 0.1282 0.1583 0.3273 -0.3656 0.2164 0.0531
Sortino Ratio 0.2242 0.2136 0.7331 -0.4597 0.3702 0.0741
Cum. Return 0.1742 0.1845 0.3568 -0.1161 0.3659 0.0891
Win Ratio 0.5854 0.5119 0.5983 0.3175 0.5854 0.5985
Profit Ratio 1.4423 1.5241 2.7228 0.3596 1.9995 1.1546

DENFIS Sharpe Ratio 0.1067 -0.0610 0.1690 0.0126 0.2235 -0.0207
Sortino Ratio 0.1756 -0.0563 0.2895 0.0135 0.5239 -0.0274
Cum. Return 0.3222 -0.1154 0.2922 0.0113 0.2098 -0.0565
Win Ratio 0.5607 0.5573 0.5389 0.5143 0.5372 0.5561
Profit Ratio 1.3985 0.8164 1.6663 1.0377 1.8935 0.9465

FFN Sharpe Ratio -0.0553 0.1408 0.3278 0.3785 -0.0599 -0.0203
Sortino Ratio -0.0549 0.1954 0.9469 0.7069 -0.0947 -0.0291
Cum. Return -0.0691 0.1567 0.4831 0.0665 -0.0352 -0.0273
Win Ratio 0.5082 0.5422 0.5913 0.6842 0.4750 0.4886
Profit Ratio 0.8459 1.4763 2.8829 2.9289 0.8494 0.9471

results on five out of six stocks with the exception on one stock (BLND). In
three (AL., ANTO and SDRC) out of six stocks, ANFIS clearly shows a better
performance than the other models. FFN performance is positive on three (ANTO,
BAY and BLND) out of three stocks, with two best performances across all models
on BAY and BLND. DENFIS has positive results in 4 out of 6 stocks with highest
results obtained for DGE. When looking at the models performance profile based
on Sortino ratio over the 100 days in general (Figure 6), one immediately notices
that with the exception of FFN on the AL. stock, the plots exhibit less abrupt
variations than those obtained in the Sharpe ratio equivalents.
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Figure 6: Trading Performance by optimising Sortino ratio. The plots show for each stock the
cumulated Sortino ratio (y-axis) on the n-th day (x-axis) in the out-of-sample
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Table 10: Sortino ratio statistics over the 100 day out-of-sample period following Model Sortino
ratio optimisation

ANFIS DENFIS FFN
Mean Variance Mean Variance Mean Variance

AL. 0.1686 0.0063 0.2039 0.0048 -0.1775 0.0442
ANTO 0.2210 0.0002 -0.0699 0.0001 0.2244 0.0040
BAY 0.6327 0.0033 0.7309 0.0821 1.4341 0.0737
BLND -0.4014 0.0049 0.1002 0.0060 0.7870 0.0062
DGE 0.3955 0.0013 0.5143 0.0025 -0.0869 0.0120
SDRC 0.0991 0.0061 -0.1136 0.0064 -0.1891 0.0246

Mean 0.1859 0.0037 0.2276 0.0170 0.3320 0.0275

Table 11: Model Sortino ratio performance correlation over the 100day out of sample period
(bold figures indicate significance at 95% level)

ANFIS-DENFIS ANFIS-FFN DENFIS-FFN

AL. 0.2101 0.5315 -0.4892
ANTO -0.0972 0.3273 0.4010
BAY 0.2369 -0.0470 0.9197
BLND 0.6732 0.7756 0.9139
DGE -0.3226 0.7714 -0.4446
SDRC -0.3424 -0.5499 0.9030

From a trading performance perspective this emphasises the importance and
effect of the selected risk-return objective function for the applied models. Ta-
ble 10 summarises the outcome of these plots, a similar conclusion is reached that
albeit FFN shows higher mean Sortino ratio when considering the overall portfo-
lio, this however comes at the expense of exhibiting the highest variance over the
100 day out-of-sample period. To the contrary ANFIS shows lowest mean Sortino
ratio when considering the whole portfolio but exhibits least variance. This val-
idates the importance of investigating the time varying time-series profile of the
cumulative risk-return measures attained when evaluating the underlying models
for investment decisions. Table 11 indicates that ANFIS and DENFIS both show
similar performance movements with FFN on all stocks except two. In conjunction
with the results for the Sharpe ratio discussed earlier, our findings indicate that
the selection of specific risk-return measures does not have the same effect on the
behaviour of the underlying AI technique and does not guarantee the same time
varying performance across all models.

The Sharpe ratio models are compared with the Sortino ratio models by look-
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ing at their attained profit ratios (see Figure A.7). In general, the plots show a
tendency to group into two performance strata across the 100 day period, a close
group competing on the higher side whilst another group giving similar perfor-
mance on the lower side. With the exception of the last part of the DGE time
series, a better performance for the rest of the stocks is attained by ANFIS or
FFN models. For SDRC, BAY, DGE and ANTO the plots show that Sortino
and Sharpe ratio maximisation has a similar effect on ANFIS and FFN models
which result in obtaining a profit ratio time series in a higher or lower band for
a specific stock. This distinction is less evident in DENFIS. In contrast to Schul-
meister (2009) who demonstrated that aggressive HFT exhibit a surprisingly low
profitability, our results show that the cumulative return (Figure A.8) and win
ratio (Figure A.9) from a number of models is considerably high. However, in line
with Brabazon and O’Neill (2006), a point worth noting is that although the win
ratio is a common measure used in literature to measure performance, a higher
win ratio does not necessarily result in a profitable model, hence albeit indicative,
it cannot be used as a performance measure on its own. This is shown for example
in DENFIS-ANTO and DENFIS-SDRC results, where the model is successful in
attaining high win ratios but still suffers from larger losses (as indicated by the
profit ratio).

3.2. Results for Experiment 2 and 3

In our final part of this paper we present the results attained from benchmark
models that are typically found in literature or used in practice (see overview in
Table 4). In the first set of simulations in experiment 2, we applied a RMSE
minimisation approach for our model selection process. The results in Table 12
show that in the case of ANFIS only two (AL. and ANTO) out of six stocks
generate positive results; in the case of DENFIS no stock generates a positive
result; and in the case of FFN only three stocks (AL., BLND and SDRC) generate
positive results. When comparing these results against the results attained by the
risk-return based models discussed earlier (in experiment 1), we find that for both
ANFIS and DENFIS models the RMSE optimisation provides better results only
on ANTO. In Figure A.10 we are displaying this for ANFIS over the full out-of-
sample period. In the case of FFN, RMSE optimisation clearly outperforms Sharpe
optimisation only in AL. These results are in line with Brabazon and O’Neill (2006)
and provide clear indication that trading models based on risk-return selection
criterion outperform those based on RMSE optimisation.

The recent survey by Krollner et al. (2010) identified that most studies do not
consider real world constraints like trading costs (see also Álvarez Dı́az, 2010). In
our second sets of simulations in experiment 2, we base our model selection cri-
teria on Sharpe ratio but exclude transaction costs in the training period. In our
100 day out-of-sample evaluation, we then apply transaction costs to the selected
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Table 12: Model performance using RMSE optimisation over the 100 day out-of-sample period

Model Measure AL. ANTO BAY BLND DGE SDRC

ANFIS Sharpe Ratio 0.0454 0.0117 -0.0045 -0.0119 -0.0574 -0.0693
Sortino Ratio 0.0652 0.0127 -0.0055 -0.0139 -0.0191 -0.0798
Cum. Return 2.7156 0.5540 -0.2153 -0.4289 -1.2838 -2.5264
Win Ratio 0.5681 0.5544 0.5018 0.5437 0.5272 0.4511
Profit Ratio 1.1804 1.0411 0.9840 0.9621 0.8329 0.8004

DENFIS Sharpe Ratio -0.0135 -0.0515 -0.0232 -0.0676 -0.0755 -0.0523
Sortino Ratio -0.0123 -0.0503 -0.0258 -0.0752 -0.0978 -0.0620
Cum. Return -0.7546 -2.5468 -0.9960 -2.3346 -1.6061 -1.9094
Win Ratio 0.5802 0.5305 0.9233 0.5266 0.4836 0.4705
Profit Ratio 0.9535 0.8287 0.5206 0.8008 0.7929 0.8457

FFN Sharpe Ratio 0.0178 -0.0109 -0.0065 0.0304 -0.0418 0.0011
Sortino Ratio 0.0172 -0.0103 -0.0076 0.0388 -0.0432 0.0013
Cum. Return 0.9866 -0.4845 -0.2934 1.0218 -0.9356 0.0384
Win Ratio 0.6094 0.6081 0.5606 0.5891 0.5654 0.5087
Profit Ratio 1.0654 0.9623 0.9774 1.1060 0.8694 1.0035

Table 13: Model performance using Sharpe Ratio optimisation with no transaction costs over
the 100 day out-of-sample period

Model Measure AL. ANTO BAY BLND DGE SDRC

ANFIS Sharpe Ratio -0.0762 -0.0273 -0.0647 -0.0220 -0.0464 -0.0263
Sortino Ratio -0.0784 -0.0325 -0.0872 -0.0271 -0.0481 -0.0348
Cum. Return -3.2531 -0.7929 -1.8076 -0.4576 -0.9125 -0.6583
Win Ratio 0.5143 0.5214 0.4494 0.5223 0.5375 0.4876
Profit Ratio 0.7711 0.9205 0.8207 0.9383 0.8595 0.9255

DENFIS Sharpe Ratio -0.0523 -0.0395 -0.0878 -0.0425 0.0018 -0.0263
Sortino Ratio -0.0576 -0.0473 -0.0987 -0.0473 0.0024 -0.0342
Cum. Return -1.7020 -1.1937 -2.4993 -1.4101 0.0232 -0.8667
Win Ratio 0.5300 0.5178 0.5379 0.5138 0.5144 0.4513
Profit Ratio 0.8518 0.8898 0.7679 0.8673 1.0046 0.9193

FFN Sharpe Ratio -0.0426 -0.0169 -0.0563 -0.0524 -0.0602 -0.0798
Sortino Ratio -0.0434 -0.0223 -0.0825 -0.0626 -0.0639 -0.1062
Cum. Return -1.6672 -0.4645 -1.5777 -1.4322 -1.1810 -1.6743
Win Ratio 0.5366 0.4858 0.4630 0.4949 0.5482 0.4905
Profit Ratio 0.8674 0.9522 0.8446 0.8460 0.8199 0.7976
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Table 14: Model performance using Fixed Moving Average (MA) rules over the 100 day out-of-
sample period

Model Measure AL. ANTO BAY BLND DGE SDRC

MA(1,5) Sharpe Ratio -0.0792 0.0031 -0.0585 0.0747 -0.1216 -0.0734
Sortino Ratio -0.1343 0.0055 -0.0960 -0.1376 -0.2431 -0.1218
Cum. Return -1.8815 0.0670 -1.1292 -1.2577 -1.1946 -1.0433
Win Ratio 0.3169 0.3845 0.3577 0.3448 0.3262 0.3552
Profit Ratio 0.7673 1.0108 0.8180 0.7721 0.6608 0.8026

MA(5,10) Sharpe Ratio -0.0496 -0.0173 -0.0732 -0.1515 -0.1515 -0.0668
Sortino Ratio -0.0765 -0.0316 -0.1291 -0.1665 -0.2511 -0.1099
Cum. Return -1.3043 -0.4084 -1.6104 -1.3750 -1.3750 -1.1452
Win Ratio 0.3378 0.3521 0.3058 0.3081 0.3081 0.3256
Profit Ratio 0.8393 0.9408 0.7724 0.6360 0.6360 0.8002

MA(10,15) Sharpe Ratio -0.1562 -0.1351 -0.1393 -0.2099 -0.3059 -0.1422
Sortino Ratio -0.2380 -0.2401 -0.3148 -0.3988 -0.5330 -0.2521
Cum. Return -4.6426 -3.3269 -2.9649 -3.7596 -3.1388 -2.5714
Win Ratio 0.2426 0.2495 0.2290 0.2428 0.2167 0.2543
Profit Ratio 0.5592 0.6229 0.6152 0.4897 0.3952 0.6248

models as in our original Sharpe model in order to simulate realistic trading en-
vironments. As indicated in Table 13, negative results are observed for all stocks
in all models (see also Figure A.11), except for DENFIS-DGE model which shows
a minor positive result. These results show that not considering such costs when
training the trading system can lead to biased results in real-world applications.

In our final benchmark experiment 3, we investigate the application of standard
moving average trading signals (e.g. Schulmeister, 2009) over the 100 day out-of-
sample period. The applied moving average short and long lags represent those
used in our dynamic moving average experiments (1 and 2). From the results in
Table 14 we find that only MA(1,5) had positive results for ANTO and BLND
(see also Figure A.12). This provides evidence of the effectiveness of our dynamic
moving average approach.

4. Conclusion

In this paper we investigate the trading performance of dynamic moving average
rules in conjunction with AI techniques using 5 minute high-frequency intraday
prices. In our experiments we consider variable trading position holding periods
between 10 minute and 1 hour together with flexible return bands between 0.1%
and 0.5%. This span of less aggressive high-frequency trading (HFT) window was
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chosen to gain more insight on the profitability of intraday trading with respect to
the tension created between two literature findings: (i) the view that profitability
of trading rules has possibly moved to higher frequency prices (Schulmeister, 2009),
and on the other hand, (ii) the view that aggressive HFT with position holding
periods between 10 milliseconds and 10 seconds does not reap the expected excess
returns (Kearns et al., 2010).

We consider the traditional ANN as well as the more recent ANFIS and DEN-
FIS models. Our results, based on applying a trading algorithm to a set of stocks
listed on the London Stock Exchange, show that the application of these models
can be used to support profitable trading strategies. The sensitivity analysis of our
models with respect to holding position time and return band provide clear indi-
cation that financial markets are not fully efficient at less aggressive HFT windows
and there exist temporary “pockets of predictability” which could be exploited for
realising excess returns.

In our out-of-sample evaluation, we show that overall FFN models perform
well when compared with the more recent Neuro Fuzzy techniques. However, FFN
models also show higher sensitivity to the underlying data features. Looking at the
100 day aggregated trading performance, we find that ANFIS provides the most
robust performance measure exhibiting least variance, both in the case of Sharpe
and Sortino ratios optimisation. In our experiments, DENFIS did not outperform
FFN and ANFIS (see also Tan et al., 2011). Results also show that ANNs still
provide a valid benchmark when applying more recent Neuro-Fuzzy models on
high frequency price series.

Our results indicate that the selection of specific risk-return measures does not
have the same effect on the behaviour of the underlying AI technique and does
not guarantee the same time varying performance across all models. Hence the
selection of the risk-return optimisation measure has to be based on the investor
risk profile, the underlying technique being applied and the dynamic nature of the
underlying price distribution.

This validates the importance of investigating the time varying daily time-
series profile of the cumulative risk-return measures attained when evaluating the
underlying models for investment decisions rather than just looking at performance
measures following an arbitrary out of sample period. Simple risk-free metrics used
frequently in literature such as percentage of successful trades only convey little
information on the actual profitability of the algorithm.

We also compare our models with a set of benchmark models commonly found
in literature or used in practice (Krollner et al., 2010). Our results show that
trading models based on risk-return selection criterion outperform those based on
RMSE optimisation. In the second comparison we base our model selection criteria
on Sharpe ratio but exclude transaction costs, a feature that most studies do not
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consider, possibly reporting overestimated profitability. In our final comparison,
we investigate the application of fixed moving average trading signals. Again the
results here did not outperform our dynamic moving average approach.

Another area of interesting research is the application of heat maps to identify
regions of profitable areas and how these regions change with time. These findings
also encourage further research into stacked models which involve the combination
of different AI models in an investment decision portfolio with varying risk-return
features.
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Figure A.7: Profit ratio performance of ANFIS-Sharpe (ANF-Sh), ANFIS-Sortino (ANF-So),
DENFIS-Sharpe (DEN-Sh), DENFIS-Sortino (DEN-So), FFN-Sharpe (FFN-Sh) and FFN-
Sortino (FFN-So) models. The plots show for each stock the cumulated profit ratio (y-axis)
on the n-th day (x-axis) in the out-of-sample.
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Figure A.8: Cumulative Return performance of ANFIS-Sharpe (ANF-Sh), ANFIS-Sortino (ANF-
So), DENFIS-Sharpe (DEN-Sh), DENFIS-Sortino (DEN-So), FFN-Sharpe (FFN-Sh) and FFN-
Sortino (FFN-So) models. The plots show for each stock the cumulated return (y-axis) on the
n-th day (x-axis) in the out-of-sample.
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Figure A.9: Win ratio performance of ANFIS-Sharpe (ANF-Sh), ANFIS-Sortino (ANF-So),
DENFIS-Sharpe (DEN-Sh), DENFIS-Sortino (DEN-So), FFN-Sharpe (FFN-Sh) and FFN-
Sortino (FFN-So) models (out-of-sample). The plots show for each stock the cumulated win
ratio (y-axis) on the n-th day (x-axis) in the out-of-sample.
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Figure A.10: The plots compare the results obtained from ANFIS Sharpe optimisation (ex-
periment 1) with those from RMSE optimisation (experiment 2), and show for each stock the
corresponding cumulated Sharpe ratio (y-axis) on the n-th day (x-axis) in the out-of-sample.

35



20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Stock: AL.

Days

S
h

a
rp

e
 R

a
tio

20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Stock: SDRC

Days

S
h

a
rp

e
 R

a
tio

20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Stock: BLND

Days

S
h

a
rp

e
 R

a
tio

20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Stock: BAY

Days

S
h

a
rp

e
 R

a
tio

20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
Stock: DGE

Days

S
h

a
rp

e
 R

a
tio

20 30 40 50 60 70 80 90 100
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
Stock: ANTO

Days

S
h

a
rp

e
 R

a
tio

 

 

Sharpe Optim No Cost Optim

Figure A.11: The plots compare the results obtained from ANFIS Sharpe optimisation (ex-
periment 1) with those from No-Transaction-Costs optimisation (experiment 2), and show for
each stock the corresponding cumulated Sharpe ratio (y-axis) on the n-th day (x-axis) in the
out-of-sample.
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Figure A.12: The plots compare the results obtained from ANFIS Sharpe optimisation (ex-
periment 1) with those from MA optimisation (experiment 3), and show for each stock the
corresponding cumulated Sharpe ratio (y-axis) on the n-th day (x-axis) in the out-of-sample.
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