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Abstract

This paper proposes an empirical likelihood framework for estimating sim-
ulation models. Similarly to the simulated moment method, the proposed
method matches simulated and empirical time series moments via empirical
likelihood. However, in comparison to the simulated moment method, for
consistent estimation it does not require some form of continuity of simula-
tion model moments to be continuous with respect to the underlying param-
eter. These continuity requirements of the simulation model with respect
to its parameters is rather a critical assumption in particular for simulation
models with non-analytical complex dynamics. For such models it may be
hard or even impossible to demonstrate the continuity of their moments.
Moreover, the feasibility of the proposed estimation method is demonstrated
in a simple simulation exercise with a geometric Brownian motion, where we
are able to obtain smaller mean squared errors than the simulated moment
method.

Keywords: Empirical Likelihood, Simulation Based Estimation, Unbiased
Estimation Equation

1. Introduction

In many areas of science, models which focus on the properties and behav-
ior of individual components and their interactions — so-called individual-
based models, or agent-based models — have become increasingly important
(Bonabeau, 2002; Farmer and Foley, 2009; Shalizi, 2006). These models are
often sufficiently complex that deriving closed-form solutions for quantitative
aspects of their macroscopic behavior is often impractical if not impossible. In
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this paper we are particularly interested in simulation models that have non-
analytical outputs, and therefore have no information on the moments and
the likelihood function or a reduced form. Such models are often analyzed us-
ing Monte-Carlo simulation and empirical methods. However, one criticism
of these models is the lack of principled methods for estimating their free
parameters against empirically-observed data. To address this problem, this
paper introduces a new simulation-based estimation approach by matching
simulated and empirical time series moments via empirical likelihood (EL).

In many empirical studies, EL is often considered a good choice when the
error distribution of the proposed model is asymmetric or censored. More
recent work focuses on missing data (e.g. Zhao et al., 2013; Xue, 2013). As
a contribution to the existing literature, we propose a simple but effective
extension to the EL framework to account for simulation based models.

In fact, former studies in econometrics have proposed several simulation-
based estimation techniques, such as the simulated maximum likelihood (Lee,
1992, 1995), the simulated moment method (Lee and Ingram, 1991; Duffie
and Singleton, 1993), the indirect inference method (Gourieroux and Mon-
fort, 1991), or the efficient moment method (Gallant and Tauchen, 1996). For
a more recent review, see also Yu (2012) and the references therein. How-
ever, these estimation procedures face certain difficulties when applied to
more complex models. The simulated maximum likelihood method requires
that we have some information of the likelihood function, and the efficient
moment method as well as the indirect inference method suffer the drawback
of using an auxiliary model, the latter inducing a source of arbitrariness of
capturing the statistical features of the empirical data.

To avoid these shortcomings, we follow a different approach based on
the EL framework introduced by Owen (1990). It employs nonparametric
likelihood-based tests that can be applied to various functionals of interest
such as the mean or the quantiles of a distribution, or regression parameters
in multi-sample problems. It is the non-parametric analogue of the para-
metric likelihood method and provides efficient estimators and confidence
intervals for hypothesis testing. In contrast to the efficient moment method
and the indirect inference method, the our proposed EL approach does not
need an adequate auxiliary model for approximating the likelihood func-
tion. Similarly to the simulated moment method (SMM), the proposed EL
method matches simulated and empirical time series moments via empirical
likelihood. The idea is to maximize the likelihood of observing the empirical
moments as a function of different parameter settings. In fact, the proposed
simulation-based estimation procedure maximizes the likelihood ratio of the
empirical features across simulation outcomes. Since EL ratios can be used
for hypothesis tests and confidence regions, the proposed estimation approach
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can be interpreted as a series of hypothesis tests with a fixed empirically mo-
tivated hypothesis and varying simulated data sets, generated from different
configurations, similar to a Monte Carlo setting. For the proposed method
we show that: (i) it provides a consistent estimator; (ii) in comparison to the
SMM for consistent estimation it does not require that the moments of the
simulation model to be continuous with respect to the underlying parameter;
(iii) in a simple simulation exercise with a geometric Brownian motion, it is
able to obtain smaller mean squared errors than the SMM.

The paper is outlined as follows. In Section 2 we first describe the EL
approach. In Section 3 we show that a simple extension to EL provides a
consistent estimator for simulation models. In Section 4 we analyze the effi-
ciency of the proposed simulation-based estimation procedure by estimating
a geometric Brownian motion process, and show empirically that it converges
to the true parameter value. Section 5 concludes.

2. Empirical Likelihood

Owen (1990) defines the empirical likelihood function as follows.

Definition 1. Assume Y1, .., Yn ∈ Rd are i.i.d. from a common cumulative
distribution function F . The non-parametric empirical likelihood of any F
is

L (F ) =
n∏
i=1

[F (yi)− F (yi−)] , (1)

where F (y−) = P (Y < y) and F (y) = P (Y ≤ y) , thus P (Y = y) =
F (y)− F (y−).

L (F ) is the probability of obtaining exactly the sample observations of
Y1, . . . Yn from F , which resembles exactly the concept of a likelihood func-
tion. Let

R (F ) =
L (F )

L (Fn)
. (2)

denote the empirical likelihood ratio, where

Fn (y) =
1

n

n∑
i=1

1{Yi<y} (3)

represents the empirical cumulative distribution function (ECDF). To avoid
L (F ) = 0 for a continuous F , F must have a positive probability wi on each
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observed sample Yi, i = 1, . . . , n, in order to have a positive non-parametric
likelihood. Hence, from Eq. (2), we obtain:

R (F ) =
n∏
i=1

wi
1
n

. (4)

The enumerator represents the likelihood of a distribution F with weights
wi for the observed data and the denominator is the maximum likelihood
estimator given the observations for Y1, . . . , Yn.

To obtain the confidence interval for the mean µ = EF [Y ], Owen (1990)
defines the profile empirical likelihood ratio function by

R (µ) = sup

{
n∏
i=1

nwi

∣∣∣∣ n∑
i=1

wiyi = µ,

n∑
i=1

wi = 1, wi ≥ 0

}
. (5)

Hence according to Eq. (4), for the given observations R (µ) is the ratio of (i)
the maximum likelihood estimator of all distributions that place non-negative
weights on the given observations and (ii) the maximum likelihood estima-
tor of all such distributions that also have the mean µ. The log empirical
likelihood function is

W (µ) = logR (µ) . (6)

and the empirical likelihood ratio statistics is

− 2W (µ) , (7)

which can be used to construct asymptotic confidence intervals (CI) for µ0 =
EF0 [Y ], the true parameter with respect to the true distribution F0 of the
observations Y1, .., Yn.
Owen (1990) has demonstrated that under some regularity conditions

− 2W (µ0)→ χ2 (8)

as n→∞, and the 100(1− α)% CI is

{µ : −2W (µ) ≤ χ2 (1− α)}, (9)

where χ2 (1− α) is the (1− α)th quantile of the χ2− distribution.
From an algorithmic point of view, the profile empirical likelihood ratio

function in Eq. (5) involves solving a constrained maximization, which how-
ever has only a solution provided that µ is an interior point of the convex
hull of {yi, i = 1, ..., n}. In order to resolve this convex hull problem, Emerson
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and Owen (2009) have introduced the balance adjusted empirical likelihood
(BAEL). Its profile empirical likelihood ratio function is defined as

R (µ) = sup

{
n+2∏
i=1

(n+ 2)wi

∣∣∣∣ n+2∑
i=1

wiyi = µ,

n∑
i=1

wi = 1, wi ≥ 0

}
(10)

that adds two artificial sample points yn+1 and yn+2 to the data set and then
computes the empirical likelihood ratio statistic on the augmented sample,
where yn+1 and yn+2 are two new sample points around the mean

yn =
1

n

n∑
i=1

yi

in direction u

u =
yn − 0

‖yn − 0‖
,

where ‖.‖ is a Euclidean norm. Let Ŝ denote the sample covariance matrix

Ŝ =
1

n− 1

n∑
i=1

(yi − yn) (yi − yn)′

then

cu =
(
u
′
Ŝ−1u

)− 1
2

is the inverse Mahalanobis distance of a unit vector from yn in the direction
of u. For a fix s ∈ R, yn+1 and yn+2 are defined by

yn+1 = −scuu, (11)

yn+2 = 2yn + scuu. (12)

This results in placing new sample points closer to µ when the covariance in
the direction u smaller, and farther when the covariance in that direction is
larger.

3. EL and Estimation of Simulation Models

In this section we discuss the use of the EL approach for estimating
simulation models by matching simulated and empirical time series moments
via empirical likelihood. For this, let us consider a (strictly) stationary and
ergodic empirical process denoted by {xt}. Moreover, let {yt (β)} denote the
simulation process with parameter β, which we also assume to be (strictly)
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stationary in order to ensure that its statistical properties remain stable over
the evolution of the output. The moment of interest is given in the form1

µ (β) = E [f (y1 (β))] , (13)

where f is a measurable real valued function and for estimation our aim is
to find the model parameter βE such that the true simulated and empirical
moments coincide, i.e.:

µ (βE) = E [f (x1)] , (14)

where E [f (x1)] is the true empirical moment. Using the stationarity, Eq. (13)
can be written as

µ (β) = E

[
1

K

K∑
t=1

f (yt (β))

]
, (15)

with K is a fix integer. As {yt (β)}t=1,...,K can be considered as K-variate

random variable Y = [y1 (β) , ..., yK (β)]
′
, Eq. (15) can be written as

µ (β) = E
[
f̃ (Y (β))

]
(16)

such that with Eq. (16) and Eq. (14) we get the moment condition

E [g̈ (Y (βE) , µ0)] = 0, (17)

where µ0 = E [f (x1)] and

g̈ (Y (β) , µ0) = f̃ (Y (β))− µ0.

However, in the estimation context µ0 is unknown and only given by an
estimate µT derived from some sample time series {xt}t=1,...,T :

µT =
T∑
t=1

f (xt) .

This motivates the question whether an EL type estimator can be used for
estimating βE. Therefore let us consider

g̈ (Y (β) , µT ) = f̃ (Y (β))− µT

1For a (strictly) stationary process {zt} all moments E [h (zt)] are the same for all t,
i.e. E [h (zt)] = M for all t for some constant M . But for covenience in this paper we will
refer to E [h (z1)] .
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and some iid simulation outcomes Y 1 (β) , ..., Y T (β). The corresponding EL
profile empirical likelihood ratio of the empirical moment µT is given by

R̈ (β, µT ) = sup

{
T∏
i=1

Twi

∣∣∣∣ T∑
i=1

wig̈ (Y i (β) , µT ) = 0,
T∑
i=1

wi = 1, wi ≥ 0

}
(18)

and
− 2Ẅ (β, µT ) = −2 log R̈ (β, µT ) . (19)

An explicit expression for −2Ẅ (β, µT ) can be derived using Lagrange mul-
tipliers (Qin and Lawless, 1994, p. 304) and is given by

Ẅ (β, µT ) = −
T∑
i=1

log (1 + λg̈ (Y i (β) , µT )) , (20)

where λ must satisfy

1

T

T∑
i=1

g̈ (Y i (β) , µT )

1 + λg̈ (Y i (β) , µT )
= 0 (21)

and the proposed EL type estimator of βE is given by

β̂E = argmin
β∈B

[
−2Ẅ (β, µT )

]
. (22)

Hence the estimate β̂E maximizes the (log) empirical likelihood ratio that
the simulated moment matches its empirical counterpart µT . In principle the
estimation approach is a series of hypothesis tests with a fixed hypothesis and
varying data sets, generated from different configurations, similar to a Monte
Carlo setting. This differs from the standard empirical likelihood estimator
for analytical moment conditions, that maximizes the empirical likelihood of
the parameter of interest for a given sample (Qin and Lawless, 1994; Newey
and Smith, 2004).2

Note, here we assume T iid simulation outcomes Y 1 (β) , ..., Y T (β) for
β ∈ B, (additional to the T empirical observations {xt}t=1,...,T ). By defini-
tion βE is the parameter for which the true simulation model moment and
the true empirical moment coincide. The estimate β̂E in contrast is com-
puted from some simulated and empirical observations. Thus for consistency

2For a more detailed discussion of this issue see Appendix Appendix A.1.
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β̂E must converge towards βE while the number of simulated and empirical
observations tend to infinity. With the given setting, this is equivalent to

β̂E
p→ βE

as T → ∞, since by assumption we have for every β ∈ B in total TK sim-
ulation observations (i.e. each Y i (β) with i = 1, ..., T has K observations).
Hence, TK →∞ as T →∞.

The consistency of β̂E when estimating simulation models is demonstrated
in this section for the simplest case where f̃ is one dimensional and β ∈ B ⊆
R. The proof itself requires us to demonstrate that −2Ẅ (βE, µT ) is bounded
in probability and −2Ẅ (β, µT ) diverges for β 6= βE in probability as T →∞.
These two properties are presented in the following subsections.

3.1. Asymptotics of −2Ẅ (β, µT )

In this section we derive for the consistency necessary asymptotic behavior
of −2Ẅ (β, µT ). It essentially depends on the properties of the simulated
and empirical process and in particular requires that the sample moment
µT of the empirical process {xt} converges sufficiently quick towards the true
process moment. Therefore we consider the class of strongly mixing processes
as in Ibragimov and Linnik (1971) that yield a Central Limit Theorem for
stationary processes.

Definition 2. Let Fmk = σ (xk, ..., xm) . A sequence {xt} is said to be strongly
mixing if α (t)→ 0 as t→∞, where

α (t) = sup
A∈F0

−∞A,B∈F∞t
|P (A ∩B)− P (A)P (B)| .

The following restates Theorem 18.5.3 in Ibragimov and Linnik (1971).

Theorem 1. Suppose {xt} is a (strictly) stationary, centered (i.e. E [xt] = 0
for all t) process satisfying the strong mixing condition with mixing coefficient

α (t) . Moreover, let E
[
|x1|2+δ

]
< ∞ for some δ > 0. If

∑∞
t=2 α (t)δ/(2+δ) <

∞, then

σ2 = E
[
x2

1

]
+ 2

∞∑
k=2

E [x1xk] <∞.

If in addition σ2 > 0, then ∑T
t=1 xt
T 1/2σ

d→ N (0, 1)

as T →∞.

8



Proof. See Ibragimov and Linnik (1971).

Lemma 1. Let {xt} be (strictly) stationary and strongly mixing with mixing

coefficient αx (t) and furthermore
∑∞

t=2 αx (t)δ/(2+δ) < ∞ for some δ > 0.
Suppose h is a measurable, real-valued function and define the zt = h (xt)
with mixing coefficient αz (t) . Then

αz (t)→ 0

as t→∞ and
∞∑
t=2

αz (t)δ/(2+δ) <∞.

Proof. Note, by definition for any mixing coefficient we have α (t) ≥ 0. Now,
as above let Fmk = σ (xk, ..., xm) . For a measurable function h and zt = h (xt)
define Gmk = σ (zk, ..., zm) and it follows Gmk ⊆ Fmk and thus

αz (t) ≤ αx (t) (23)

for all t. 3 As αx (t) → 0 as t → ∞ we have also αz (t) → 0 as t → ∞.
Consider h (x) = xδ/(2+δ) for some δ > 0, then h

′
(x) = δ

2+δ
x−2/(2+δ) > 0 for

x ≥ 0. Then with Eq. (23)

∞∑
t=2

αz (t)δ/(2+δ) <
∞∑
t=2

αx (t)δ/(2+δ) <∞.

Lemma 2. Let {xt} be (strictly) stationary and strongly mixing with mixing

coefficient αx (t) and furthermore
∑∞

t=2 αx (t)δ/(2+δ) < ∞ for some δ > 0.
Let f be a measurable, real-valued function such that µ0 = E [f (x1)] < ∞.
Moreover, let zt = f (xt) − µ0 with E

[
|z1|2+δ

]
< ∞ for some δ > 0 and

σ2
z = E [z2

1 ] + 2
∑∞

k=2 E [z1zk] > 0. Then for µT = 1
T

∑T
t=1 f (xt) we have

µT − µ0 = Op

(
T−

1
2

)
.

Proof. As zt is a measurable transformation of xt, it follows that {zt} is
stationary with E [zt] = 0 for all t. From Lemma 1 it follows {zt} is strongly

3See Jones (2004), p. 305.
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mixing with
∑∞

t=2 αz (t)δ/(2+δ) <∞ such that all requirements of Theorem 1
are satisfied, thus ∑T

t=1 zt
T 1/2

d→ N
(

0, σ
2

z

)
(24)

where σ2
z = E [z2

1 ] + 2
∑∞

k=2E [z1zk] <∞. With Eq. (24) we have∑T
t=1 (f (xt)− E [f (x1)])

T 1/2
= Op (1) + op (1)

√
T

(
1

T

T∑
t=1

f (xt)− E [f (x1)]

)
= Op (1)

1

T

T∑
t=1

f (xt)− E [f (x1)] = Op

(
T−

1
2

)
µT − µ0 = Op

(
T−

1
2

)
, (25)

hence µT = 1
T

∑T
t=1 f (xt) is a consistent estimate of µ0 = E [f (x1)] .

Lemma 3. Let Yi ≥ 0 iid and suppose that E (Y 2
1 ) <∞ then

max
i=1,..,n

Yi = o
(
n

1
2

)
and

1

n

n∑
i=1

Y 3
i = o

(
n

1
2

)
with probability 1 as n→∞.

Proof. See Owen (1990), p. 98.

The following provides some quantities and results that are needed to
derive the asymptotic behavior of −2Ẅ (β, µT ). We define

g̈∗ (β, µT ) = max
i=1,...,T

|g̈ (Y i (β) , µT )|

= max
i=1,...,T

∣∣∣f̃ (Y i (β))− µT
∣∣∣ ,

¯̈gT (β, µT ) =
1

T

T∑
i=1

g̈ (Y i (β) , µT )

=
1

T

T∑
i=1

f̃ (Y i (β))− µT ,
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and

¨̃S (β, µT ) =
1

T

T∑
i=1

g̈ (Y i (β) , µT )2 .

Then the following magnitudes hold.

Lemma 4. Let zt be the process defined in Lemma 2 and yt (β) the stationary
simulation process with parameter β ∈ B. Let there be a βE ∈ B such that

E [f (y1 (βE))] = E [f (x1)]

with σ2
f̃(Y (βE))

= V ar
[
f̃ (Y (βE))

]
<∞. Then

g̈∗ (βE, µT ) = op

(
T

1
2

)
and

¯̈gT (βE, µT ) = Op

(
T−

1
2

)
.

Moreover,
¨̃S (βE, µT ) = Op (1)

and
1

T

T∑
i=1

|g̈ (Y i (βE) , µT )|3 = op

(
T

1
2

)
.

Proof. See Appendix Appendix A.2.

The following theorem demonstrates that −2Ẅ (βE, µT ) is bounded in
probability as T →∞.

Theorem 2. Let zt be the process defined in Lemma 2 and yt (β) a (strictly)
stationary simulation process with parameter β ∈ B. Let there be a βE ∈ B
such that

E [f (y1 (βE))] = E [f (x1)]

is satisfied with σ2
f̃(Y (βE))

= V ar
[
f̃ (Y (βE))

]
<∞. Then

−2Ẅ (βE, µT ) = Op (1) .

Proof. See Appendix Theorem Appendix A.3.

The following Theorem proofs that for β 6= βE the term −2Ẅ (β, µT )
diverges as T →∞.
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Theorem 3. Let zt be the process defined in Lemma 2 and yt (β) a stationary
simulation process with parameter β ∈ B. Let there be a βE ∈ B such that

E [f (y1 (βE))] = E [f (x1)]

is satisfied. Suppose a β 6= βE with E [f (y1 (β))] <∞ and |E [f (y1 (β))]− E [f (x1)]| >
0. Moreover, let σ2

f̃(Y (β))
= V ar

[
f̃ (Y (β))

]
<∞. Then

−2T−
1
3 Ẅ (β, µT )

p→∞

as T →∞.

Proof. See Appendix Appendix A.4.

3.2. Consistency of β̂E
In this section we demonstrate the consistency of β̂E in Eq. (22) for

simulation-based estimation problems as in Eq. (14).

Assumption 1.

• Let {xt} be (strictly) stationary and strongly mixing with mixing co-

efficient αx (t) and
∑∞

t=2 αx (t)δ/(2+δ) < ∞ for some δ > 0. Let f be
a measurable, real-valued one dimensional function such that µ0 =

E [f (x1)] <∞. Moreover, let zt = f (xt)−µ0 with E
[
|z1|2+δ

]
<∞ for

some δ > 0 and σ2
z = E [z2

1 ] + 2
∑∞

k=2 E [z1zk] > 0.

• The simulation process {yt (β)} is (strictly) stationary and independent
from {xt} for β ∈ B ⊆ R. There is a unique parameter βE ∈ B such
that E [f (y1 (βE))] = E [f (x1)]. For all other β ∈ B with β 6= βE, let
|E [f (y1 (β))]− E [f (x1)]| > 0.

• For finite and fix K ∈ N, Y (β) = [y1 (β) , ..., yK (β)]
′
∈ RK and f̃ is

defined in Lemma 5 with l = 1, let V ar
[
f̃ (Y (β))

]
<∞ for all β ∈ B.

Remark 1. Note, a strictly stationary process {xt} that is strong mixing is
also ergodic (e.g. see (Lindgren, 2006) on p. 158).

Remark 2. As f is measurable it follows that f̃ is measurable (e.g. see
Appendix Appendix A.7).

Theorem 4. If Assumption 1 is satisfied, then

β̂E
p→ βE

as T →∞.
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Proof. With Assumption 1 all requirements of Theorem 2 are satisfied, thus

−2Ẅ (βE, µT ) = Op (1) .

By definition for every ε > 0 there exists a constant D such that

P
(∣∣∣−2Ẅ (βE, µT )

∣∣∣ ≤ D
)
> 1− ε

for all T ∈ N. Note, as4

− 2Ẅ (βE, µT ) : Ω→ R+, (26)

hence for every ε > 0, there exists a constant D such that

P
(
−2Ẅ (βE, µT ) ≤ D

)
> 1− ε (27)

for all T ∈ N. Now with Assumption 1 satisfying the requirements of Theorem
3, we have for all β ∈ B with β 6= βE :

−2T−
1
3 Ẅ (β, µT )

p→∞

as T →∞ or
− 2Ẅ (β, µT )

p→∞ (28)

as T →∞, since T−
1
3 ≤ 1 for all T ∈ N. Then for the constant D in Eq. (27),

Eq. (28) implies that

P
(
−2Ẅ (β, µT ) > D

)
→ 1 (29)

as T → ∞ for all β ∈ B with β 6= βE. Hence, there exists a finite number
Tβ ∈ N such that

P
(
−2Ẅ (β, µT ) > D

)
≥ 1− 2ε (30)

for all T ≥ Tβ, where β ∈ B and β 6= βE. Let B∗ := B\ {βE} and C :=
{Tβ|β ∈ B∗} , then from above it follows that all elements of C are finite
natural numbers, hence its largest element T ∗ = max

β∈B∗
{Tβ} is also a finite

natural number such that Eq. (30) holds for all β ∈ B∗ if T ≥ T ∗. With
Eq. (27) the following inequalities hold with probability at least 1− 2ε:

− 2Ẅ (β, µT ) > D ≥ −2Ẅ (βE, µT ) (31)

4See Appendix Appendix A.8.
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for all β ∈ B∗as T ≥ T ∗. As β̂E = argmin
β∈B

[
−2Ẅ (β, µT )

]
it follows with

Eq. (31)

P
(
β̂E = βE

)
≥ 1− 2ε

and hence
P
(
β̂E 6= βE

)
≤ 2ε (32)

or equivalently

P
(
β̂E ∈ B∗

)
≤ 2ε

for all T ≥ T ∗. Now consider the set

Bδ := {β| |β − βE| > δ, β ∈ B} .

As by assumption βE is unique and it follows Bδ ⊆ B∗ for all δ > 0. The
latter gives

P
(∣∣∣β̂E − βE∣∣∣ > δ

)
= P

(
β̂E ∈ Bδ

)
≤ P

(
β̂E ∈ B∗

)
≤ 2ε

for every δ > 0 and T ≥ T ∗. Finally, as ε and δ can be chosen arbitrarily
close to 0, the asserted convergence in probability is established.

Remark 3. The presented proof of the consistency of β̂E for simulation-based
estimation problems as in as in Eq. (14) only addresses the one dimensional
case as it employs the univariate CLT for iid variables and strong mixing
sequences in Theorem 2. These CLTs guarantee that the simulated and em-
pirical sample moment, i.e. 1

T

∑T
i=1 f̃ (Y i (β)) and 1

T

∑T
t f (xt)), converge

with a rate of T−
1
2 to their true moment. Therefore using the multivari-

ate CLT for iid variables and strong mixing sequences should demonstrate
consistency of β̂E when estimating simulation models with multivariate sim-
ulated and empirical sample moment. Note, multivariate CLT can be derived
from the univariate CLT using the Cramer-Wold Lemma (see Van der Vaart
(1998), p. 16).

4. Simulation and Estimation Experiment

In this section we illustrate the application of our simulation-based esti-
mation approach in Section 3 for general problems of the form

µ (βE) = E [f (x1)] ,

14



where µ (βE) is the true moment of the simulation model and E [f (x1)] is the
corresponding true moment of the empirical observation that is only given
by an estimate µT derived from some sample time series {xt}t=1,...,T :

µT =
1

T

T∑
t=1

f (xt) .

Thus we compute parameter estimates derived from simulated (log GBM in-
crement) sample paths and pseudo empirical moments, which are generated
from some pre-specified GBM setting and analyze its performance in com-
parison to the AEL (Chen et al., 2008) and the SMM approach (Lee and
Ingram, 1991; Duffie and Singleton, 1993).

Consider the stochastic differential equation

dSt = αStdt+ δStdWt

and its Itô solution

St = S0 exp

((
α− δ2

2

)
t+ δWt

)
,

yielding

log (St) = log (S0) +

(
α− δ2

2

)
t+ δWt.

For a fix ∆t and j ∈ N define the log return process {rj}j∈N by

rj = log (Sj∆t)− log
(
S(j−1)∆t

)
=

(
α− δ2

2

)
∆t+ δ

(
Wj∆t −W(j−1)∆t

)
. (33)

Since Wt has i.i.d. normal innovations, we have Wj∆t−W(j−1)∆t ∼ N (0,∆t)
and the log return process {rj}j∈N in Eq. (33) follows

rj ∼ N

((
α− δ2

2

)
∆t, δ2∆t

)
. (34)

Using this property of the GBM, the log GBM return time series samples
can be simulated by r1 (β)

...
rn (β)

 =

 r1,1 (β) . . . r1,K (β)
...

...
rn,1 (β) . . . rn,1 (β)


=

(
α− δ2

2

)
∆t+

√
δ2∆t

 r∗1,1 . . . r∗1,K
...

...
r∗n,1 . . . r∗n,1

 , (35)
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where r∗i,j are independent N (0, 1) for all i = 1, ..., n and j = 1, ..., K. As
pseudo empirical moments we use

µT =
1

T

T∑
t=1

(
xt
x2
t

)
,

that is the first two moments generated from some sample GBM log return
time series {xt}t=1,...,T with setting

βE = (αE, δE) = (2, 1)

and ∆t = 1/10, where the true moments are

E

[(
x1

x2
1

)]
=

(
0.15

0.10225

)
.

Consider

gi =

(
1
K

∑K
j=1 ri,j (β)

1
K

∑K
j=1 (ri,j (β))2

)
.

Given some T simulated log GBM return time series samples of length K
and motivated by Section 3 a BAEL estimate of βE is given with a fixed
s ∈ R by

β̂BAELE = argmin
β∈B

[
−2W̃β (µT )

]
(36)

= argmin
β∈B

[
−2 log R̃β (µT )

]
, (37)

where

R̃β (µT ) = sup

{
T+2∏
i=1

nwi

∣∣∣∣∣
T+2∑
i=1

wigi = µT ,

T+2∑
i=1

wi = 1, wi ≥ 0

}
. (38)

Note, in Section 3 we have only demonstrated the consistency of a simulation
estimator based on standard EL. Here however, in order to avoid the convex
hull problem of the empirical likelihood ratio function, we experimentally
consider the BAEL version (see Section 2). The AEL type equivalent of
β̂BAELE is given by

β̂AELE = argmin
β∈B

[
−2W ∗

β (µT )
]
,

where W ∗
β (µT ) = log

(
R∗β (µT )

)
with

R∗β (θe) = sup

{
T+1∏
i=1

nwi

∣∣∣∣∣
T+1∑
i=1

wigi = µT ,
T+1∑
i=1

wi = 1, wi ≥ 0

}
(39)
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including one artificial sample point

gT+1 (β) = − log (n)

2

1

T

T∑
i=1

gi.

Finally, the SMM type estimator is given by

β̂SMM
E = argmin

β∈B
Q̂T (β) , (40)

where
Q̂T (β) = G∗T (β)

′
ŴG∗T (β) ,

and

G∗T (β) =

((
1
TK

∑TK
t=1 rt (β)

1
TK

∑TK
t=1 rt (β)2

)
−
(

1
T

∑T
t=1 xt

1
T

∑T
t=1 x

2
t

))
with

1

TK

TK∑
t=1

rt (β) =
1

TK

T∑
i=1

K∑
j=1

ri,j (β) . (41)

As in Franke (2009), the we set Ŵ = Ω̂−1 for the weight matrix, where

Ω̂ = Γ0 +
P∑
j=1

(
1− j

p+ 1

)(
Γj + Γ

′

j

)
(42)

and5

Γj =
1

T

T∑
t=j+1

((
xt
x2
t

)
− µT

)((
xt−j
x2
t−j

)
− µT

)′
.

With this choice of the weight matrix, the SMM estimate has the small-
est asymptotic covariance (e.g. see Lee and Ingram (1991) or Duffie and
Singleton (1993)).

For the experiment we consider T = [10, 25, 50, 100, 250] and compute
103 estimates of β̂BAELE , β̂AELE and β̂SMM

E . Each estimator is derived from a
pseudo empirical moment µT (derived from a GBM time series with βE =
(2, 1)) and some T simulated log return GBM series samples of length K = 5
and ∆t = 1/10.

Table 1 presents some statistics of the pseudo empirical moment samples,
that are used for estimation. Note, within each estimation we fix the seed

5Similarly to Franke (2009), the bandwidth p we set as the smallest integer greater
than or equal to T 1/4.

17



First moment samples Second moment samples
T Mean Variance Mean Variance
10 1.5222E-1 9.5472E-3 1.2447E-1 3.0204E-3
25 1.5096E-1 3.7129E-3 1.2397E-1 1.1295E-3
50 1.5066E-1 1.8461E-3 1.2289E-1 5.4831E-4
100 1.4991E-1 9.7118E-4 1.2225E-1 2.8179E-4
250 1.4976E-1 3.8969E-4 1.2242E-1 1.0915E-4

Table 1: This table displays the mean and the variance of the moment samples a 1000
different of GBM log return time series {xt}t=1,...,T with length T , generated with βE =
(αE , δE) = (2, 1) and ∆t = 1/10, where the true moments are given by E [x1] = 0.15 and
E
[
x21
]

= 0.1225.

of the sequence of random numbers such that the difference between two
time series {rj (β1)} and {rj (β2)} can be attributed to the differences in the
parameters β1 and β2. For each estimation methodology (BAEL, AEL and
SMM) we use the same set of seeds for the sequences of random numbers,
such that for a given seed all methodologies would operate on the same
samples r∗i,j for all i = 1, ..., T and j = 1, ..., K (see Eq. (35)). Therefore,

the difference of the resulting β̂BAELE , β̂AELE and β̂SMM
E are a product of the

method (SMM, BAEL and AEL) and the optimization algorithm in use to
find the minimum. In order to ease replication of our method we employ
for this experiment some common ready-implemented optimization routines
in Matlab6: Nelder-Mead, interior-point, sequential-quadratic-programming
and active-set algorithm.

Figure 1 displays the MSE of α and δ of 103 BAEL, AEL and SMM
estimation results, where the true configuration is given with αE = 2 and
δE = 1. For the BAEL estimation approach a range of s values are considered
with s = [1, 50, 100] . Each estimator is computed from a pseudo empirical
moment µT (derived from a GBM time series with βE = (2, 1)) and some T
simulated log return GBM series samples of length K = 5 and ∆t = 1/10.
Across estimation methodologies (SMM, BAEL and AEL) the experiment
uses the same set of fixed seeds such that for a given seed all methodologies
would operate on the same samples r∗i,j for all i = 1, ..., T and j = 1, ..., K.

Therefore the difference of the resulting β̂BAELE , β̂AELE and β̂SMM
E is due to the

difference of the surface generated by the considered methodologies. In par-
ticular the optimization algorithm is run on the quadrant [0.01, 3]× [0.01, 4]

6http://www.mathworks.nl/help/optim/ug/fmincon.html#brh041i
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Figure 1: MSE of α and δ of 103 BAEL, AEL and SMM estimation results using different
algorithms.
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Figure 2: Estimation, average function count.

This figure presents the average function number of evaluation of W̃β (θe) ,

W ∗
β (θe) and Q̂T (β) with respect to β during the 1000 estimation experiments

of Figure 1.

with random initial starting point.
Figure 1 displays the resulting MSE (mean square error) of 1000 repeti-

tions of the estimation experiment across the considered optimization rou-
tines and Figure 2 displays the corresponding average function evaluation of
the optimization routines. These figure demonstrate that for the active-set
algorithm, the BAEL method with s = 1 performs best in terms of MSE
and efficiency. However, different values of s seem to have an effect on the
MSE of δ as well as the efficiency (low average function count). While the
largest effect of s on the MSE of δ holds for T ≤ 50, the effect of s on the
average function count is convex in T. The AEL and SMM methodologies
have slightly worse MSEs than the BAEL method with s = 1. In terms of
efficiency, the SMM method is less efficient than EL approaches. In the case
of the interior-point algorithm, the SMM methodology works best in terms
of accuracy and efficiency. While for α the MSE of all methods are almost
the same, for δ there is some difference in the MSE for T ≤ 50 between
the SMM and the EL approaches, the latter being slightly higher. In terms
of efficiency, the EL approaches are worse than the SMM, while BAEL is
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mostly better than the AEL method. For the Nelder-Mead algorithm all
MSE are roughly the same except for BAEL with s = 1 at T = 250, where
Figure 2 suggest that in some occasion the algorithm has been trapped in
a local minimum. In general, the EL approaches have been more efficient
than the SMM method. In the sequential-quadratic-programming case, the
EL approaches are performing better in terms of MSE, however they are less
efficient than the SMM.

Overall, for the majority of cases there exists an BAEL version that has
a better MSE than SMM.7

5. Conclusion

In this paper we introduced empirical likelihood for estimating simula-
tion models with complex dynamics that have non-analytical outputs, and
therefore have no information on the moments and the likelihood function
or a reduced form. Similarly to the SMM (Lee and Ingram, 1991; Duffie
and Singleton, 1993), the proposed method matches simulated and empirical
time series moments via empirical likelihood. For one dimensional estimation
equations of the mean, we showed that the proposed method converges to the
true parameter value. Moreover, as the consistency of this EL simulation-
based estimator should be straightfowardly extendable to the mulitvariate
case (see Remark 3), the main differences of our estimation approach to the
SMM are: (i) it does not allow for overidentifying restrictions, such that
the number of moment conditions can be greater than the dimension of the
parameter; (ii) it has a stronger requirement on the empirical process {xt}
being stationary and strongly mixing; (iii) in terms of the simulation process
however, the EL methodology does not require some form of continuity8 of
the model moments with respect to its parameters or the ergodicity of the
simulation process. Note, the ergodicity assumption of the simulation process
in the SMM approach is not very critical. Ergodicity allows to estimate the
true simulation moments with both sample and time averages. Therefore,
even the if the simulation process is not ergodic, one should be able to replace
the time average estimates in the SMM with sample average estimates, while
retaining at least consistency of the methodology. However, the continuity
requirements of the simulation model with respect to its parameters is rather
a critical assumption for simulation models with non-analytical complex dy-

7Note, however there is no clear indication on the best choice of s. and there is no clear
pattern of the efficiency effect of s.

8For the consistency requirements as the SMM estimator and in particular the conti-
nuity requirement see Appendix Appendix A.9
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namics. For such models it maybe hard or even impossible to demonstrate
the continuity of their moments. Empirically, the feasibility of the proposed
estimation method was demonstrated in a simple simulation exercise with
a geometric Brownian motion, where we were able to obtain smaller mean
squared errors than the SMM.

Overall our work shows the promise of empirical likelihood as a general-
purpose tool for estimating complex simulation models, such as agent-based
models, which are increasingly being used in economics and finance, as well
as other social sciences and the physical sciences. Towards this goal we have
shown EL has several necessary properties which make it suitable as the basis
for such an estimation method. In future work we will extend these results by
analyzing the asymptotic distribution of the estimation error (e.g. β̂E −βE),
and provide an extension for over-identifying restrictions including its test.
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Appendix A. Appendix

Appendix A.1. Discrimination of the Estimation Problem in Eq. (17) in
Contrast to Standard EL Moment Condition Problem

For moment conditions of the form

0 = E [g (y, β0)]

=

∫
g (y, β0) dPy, (A.1)

Newey and Smith (2004) and Newey and Smith (2004) have demonstrated
that under some regularity conditions, a consistent empirical likelihood esti-
mator is given by

β̂ = argmin
β∈B

[W (β)]

= argmin
β∈B

[
sup
λ

n∑
i=1

log
(

1 + λ
′
g (yi, β)

)]
,

where y1, ..., yn are some iid samples and β is some q-dimensional parameter
β = C (dPy) , that is expressed as a functional C of the unknown distribution
dPy of y. The estimation problem in this paper however is of the form

E [g̈ (Y (β, µ0))] = 0

E
[
f̃ (Y (β))

]
= µ0∫

f̃ (Y ) dPY (β) = µ0,

where β is not just some q-dimensional parameter that is a functional of the
unknown distribution dPY of Y but in fact the parameter β that we consider
in this paper does also effect the distribution, which is denoted by dPY (β).
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Appendix A.2. Proof of Lemma 4

Proof. First note that from Lemma 2, it follows that |µT | = Op (1). 9 From

σ2
f̃(Y (βE))

= E
[
f̃ (Y (βE))2

]
−E

[
f̃ (Y (βE))

]2

<∞, it followsE

[∣∣∣f̃ (Y (βE))
∣∣∣2] <

∞. Now, since f is measurable with Lemma 5 we have that f̃ is measurable.

Hence for iid Y i (βE) with i = 1, ..., T it follows
∣∣∣f̃ (Y i (βE))

∣∣∣ are iid. Thus

all conditions of Lemma 3 are satisfied such that

max
i=1,...,T

∣∣∣f̃ (Y i (βE))
∣∣∣ = op

(
T

1
2

)
,

and we have

g̈∗ (βE, µT ) = max
i=1,...,T

∣∣∣f̃ (Y i (βE))− µT
∣∣∣

≤ max
i=1,...,T

∣∣∣f̃ (Y i (βE))
∣∣∣+ |µT |

= op

(
T

1
2

)
+Op (1)

= op

(
T

1
2

)
. (A.2)

For ¯̈gT (βE, µT ) we can write

¯̈gT (βE, µT ) =
1

T

T∑
i=1

g̈ (Y i (βE) , µT )

=
1

T

T∑
i=1

f̃ (Y i (βE))− µT

=
1

T

T∑
i=1

f̃ (Y i (βE))− µ0 + µ0 − µT .

As the assumptions of the CLT are satisfied10, we get11 1
T

∑T
i=1 f̃ (Y i (βE))−

µ0 = Op

(
T−

1
2

)
. Lemma 2 gives µ0 − µT = Op

(
T−

1
2

)
(see Eq. (25)) and

9As µT
p→ µ0 we have |µT − µ0| = op (1). Using the inverse triangle inequality, it

follows |µT | − |µ0| ≤ |µT − µ0| = op (1) , hence |µT | ≤ O (1) + op (1) = Op (1).
10The assumptions of the CLT are satisfied by f̃ (Y i (βE)) iid, E

[
f̃ (Y (βE))

]
= µ0 and

σ2
f̃(Y (βE))

<∞.
11From the CLT it follows

√
T
(

1
T

∑T
i=1 f̃ (Y i (βE))− µ0

)
d→ N

(
0, σ2

f̃(Y (βE))

)
, that is

√
T
(

1
T

∑T
i=1 f̃ (Y i (βE))− µ0

)
= N

(
0, σ2

f̃(Y (βE))

)
+ op (1) = Op (1) + op (1) = Op (1) .

Hence, 1
T

∑T
i=1 f̃ (Y i (βE))− µ0 = Op

(
T− 1

2

)
.
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therefore

¯̈gT (βE, µT ) = Op

(
T−

1
2

)
+Op

(
T−

1
2

)
= Op

(
T−

1
2

)
.

For ¨̃S (βE, µT ) we have

¨̃S (βE, µT ) =
1

T

T∑
i=1

g̈ (Y i (βE) , µT )2

=
1

T

T∑
i=1

(
f̃ (Y i (βE))− µT

)2

=
1

T

T∑
i=1

(
f̃ (Y i (βE))

)2

− 2µT

(
1

T

T∑
i=1

f̃ (Y i (βE))

)
+ µ2

T .

Using the Continuous Mapping Theorem (CMT) and the Slutsky theorem
repeatedly, it follows12

¨̃S (βE, µT )
p→ E

[
f̃ (Y (βE))2

]
− 2E [f (x1)]E

[
f̃ (Y (βE))

]
+ (E [f (x1)])2(A.3)

= E
[
f̃ (Y (βE))2

]
− E

[
f̃ (Y (βE))

]2

= V ar
[
f̃ (Y (βE))

]
, (A.4)

where the second last line follows from the definition of βE. By assumption

V ar
[
f̃ (Y (βE))

]
<∞, thus ¨̃S (βE, µT ) = Op (1). For 1

T

∑T
i=1 |g̈ (Y i (βE) , µT )|3

we can write

1

T

T∑
i=1

|g̈ (Y i (βE) , µT )|3 ≤ max
i=1,...,T

|g̈ (Y i (βE) , µT )|

(
1

T

T∑
i=1

g̈ (Y i (βE) , µT )2

)
= g̈∗ (βE, µT ) ¨̃S (βE, µT )

= op

(
T

1
2

)
Op (1)

= op

(
T

1
2

)
,

where we have used Eq. (A.2) and ¨̃S (βE, µT ) = Op (1) .

12For details see Section Appendix A.5 in Appendix Appendix A.
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Appendix A.3. Proof of Theorem 2

Proof. For the proof, first we derive that |λ| = Op

(
T−

1
2

)
. Knowing that, we

show λ = ¨̃S (βE, µT )−1 ¯̈gT (βE, µT ) + op

(
T−

1
2

)
. Plugging this expression for

λ into the profile empirical log likelihood ratio statistic −2Ẅ (βE, µT ) and
verifying that its elements are bounded in probability completes the proof.
For the proof let us write shortly g̈i (βE, µT ) = g̈ (Y i (βE) , µT ) .

The following shows that |λ| = Op

(
T−

1
2

)
. By using 1

1+x
= 1 − x

1+x
and

λ̂ = λ/ρ, ρ = |λ| in Eq. (21), it follows

0 =
λ̂

T

T∑
i=1

g̈i (βE, µT )

1 + λg̈i (βE, µT )

=
λ̂

T

T∑
i=1

g̈i (βE, µT )− λ̂

T

T∑
i=1

λg̈i (βE, µT )2

1 + λg̈i (βE, µT )

= λ̂¯̈gT (βE, µT )− ρλ̂2

T

T∑
i=1

g̈i (βE, µT )2

1 + ρλ̂g̈i (βE, µT )

≤ λ̂¯̈gT (βE, µT )− ρ

1 + ρg̈∗ (βE, µT )
λ̂2 ¨̃S (βE, µT ) . (A.5)

As ¨̃S (βE, µT )
p→ σ2

f̃(Y (βE))
(see Eq. (A.4)),

λ̂2 ¨̃S (βE, µT ) ≥ (1− ε)σ2
Y (βE)

in probability for some 1 > ε > 0. Using Eq. (A.5) gives

ρ

1 + ρg̈∗ (βE, µT )
≤ λ̂¯̈gT (βE, µT )

(1− ε)σ2
Y (βE)

. (A.6)

With the order of ¯̈gT (βE, µT ) and g̈∗ (βE, µT ) of Lemma 4, it follows that
λ̂¯̈gT (βE ,µT )

(1−ε)σ2
Y (βE)

= Op

(
T−

1
2

)
and with Eq. (A.6) we get

ρ = |λ| = Op

(
T−

1
2

)
. (A.7)

Next we show λ = ¨̃S (βE, µT )−1 ¯̈gT (βE, µT )+op

(
T−

1
2

)
. Let κi = λg̈i (βE, µT ).

Having established an order bound for |λ| and with g̈∗ (βE, µT ) = op

(
T

1
2

)
,

it is
max
i=1,...,T

|κi| = Op

(
T−

1
2

)
op

(
T

1
2

)
= op (1) . (A.8)
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Using 1
1+x

= 1− x+ x2

1+x
in Eq. (21) we get

0 =
1

T

T∑
i=1

g̈i (βE, µT )

1 + λg̈i (βE, µT )

= ¯̈gT (βE, µT )− ¨̃S (βE, µT )λ+
1

T

T∑
i=1

λ2g̈i (βE, µT )3

1 + λg̈i (βE, µT )
. (A.9)

The last term is bounded above by norm

1

T

T∑
i=1

λ2g̈i (βE, µT )3

1 + λg̈i (βE, µT )
≤ |λ|2 1

T

T∑
i=1

|g̈i (βE, µT )|3 |1 + λg̈i (βE, µT )|−1 .(A.10)

With the given order of |λ|, 1
T

∑T
i=1 |g̈ (Y i (βE) , µT )|3 in Lemma 4 and Eq. (A.8),

the order of Eq. (A.10) becomes(
Op

(
T−

1
2

))2

op

(
T

1
2

)
Op (1) = op

(
T−

1
2

)
. (A.11)

Using the latter in Eq. (A.9) gives

λ = ¨̃S (βE, µT )−1 ¯̈gT (βE, µT ) + op

(
T−

1
2

)
. (A.12)

Now we show that the empirical log likelihood ratio statistic −2Ẅ (βE, µT )
is bounded in probability. By Eq. (A.8) we use the expansion

log (1 + κi) = κi −
1

2
κ2
i + ηi, (A.13)

where for some finite B > 0,

P
(
|ηi| ≤ B |κi|3 , 1 ≤ i ≤ T

)
→ 1 (A.14)

as T →∞. Substituting Eq. (A.13) in Eq. (20) we get

− 2Ẅ (βE, µT ) = 2
T∑
i=1

log (1 + κi) (A.15)

= 2
T∑
i=1

κi −
T∑
i=1

κ2
i + 2

T∑
i=1

ηi. (A.16)

Lemma 4 and Eq. (A.14) give an order bound for the last term

2

∣∣∣∣∣
T∑
i=1

ηi

∣∣∣∣∣ ≤ 2B |λ|3
T∑
i=1

|g̈i (βE, µT )|3

= 2BOp

(
T−

1
2

)3

op

(
T

3
2

)
= op (1) . (A.17)
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Let us rewrite Eq. (A.12) by

λ = ¨̃S (βE, µT )−1 ¯̈gT (βE, µT ) + β (A.18)

with |β| = op

(
T−

1
2

)
. Using Eq. (A.18), Eq. (A.17) and re-substituting

κi = λg̈i (βE, µT ) in Eq. (A.16) gives

− 2Ẅ (βE, µT ) = 2
T∑
i=1

λg̈i (βE, µT )−
T∑
i=1

(λg̈i (βE, µT ))2 + op (1)

= 2T
[(

¨̃S (βE, µT )−1 ¯̈gT (βE, µT )2
)

+ β ¯̈gT (βE, µT )
]

−T ¨̃S (βE, µT )−1 ¯̈gT (βE, µT )2 − 2Tβ ¯̈gT (βE, µT )

−Tβ2 ¨̃S (βE, µT ) + op (1)

= T ¨̃S (βE, µT )−1 ¯̈gT (βE, µT )2 − Tβ2 ¨̃S (βE, µT ) + op (1)

= T ¨̃S (βE, µT )−1 ¯̈gT (βE, µT )2 + op (1) . (A.19)

The last equality holds because

Tβ2 ¨̃S (βE, µT ) = O (T )
(
op

(
T−

1
2

))2

Op (1) = op (1) .

The expression in Eq. (A.19) can be written as

T ¨̃S (βE, µT )−1 ¯̈gT (βE, µT )2

= T ¨̃S (βE, µT )−1

(
1

T

T∑
i=1

f̃ (Y i (βE))− µ0

)2

(A.20)

+2T ¨̃S (βE, µT )−1 (µ0 − µT )

(
1

T

T∑
i=1

f̃ (Y i (βE))− µ0

)
(A.21)

+T ¨̃S (βE, µT )−1 (µ0 − µT )2 . (A.22)

With Eq. (25) the order of Eq. (A.22) is

T ¨̃S (βE, µT )−1 (µ0 − µT )2 = O (T )Op (1)Op

(
T−

1
2

)2

= Op (1) .

Note, that with the Slutsky theorem and the CLT we get

σY (βE)√
¨̃S (βE, µT )

√
T
(

1
T

∑T
i=1 f̃ (Y i (βE))− µ0

)
σY (βE)

d→ 1N (0, 1) (A.23)
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since ¨̃S (βE, µT )
p→ σ2

f̃(Y (βE))
as T →∞ and it follows for Eq. (A.20)

σ2
Y (βE)

¨̃S (βE, µT )

T
(

1
T

∑T
i=1 f̃ (Y i (βE))− µ0

)2

σ2
Y (βE)

d

→ 1 χ2
1,

as T →∞, hence its order is

T
(

1
T

∑T
i=1 f̃ (Y i (βE))− µ0

)2

¨̃S (βE, µT )
= Op (1) + op (1)

= Op (1) .

The order of Eq. (A.21) is with Eq. (25) and the CLT

T2 ¨̃S (βE, µT )−1 (µ0 − µT )

(
1

T

T∑
i=1

f̃ (Y i (βE))− µ0

)
= O (T )Op (1)Op

(
T−

1
2

)
Op

(
T−

1
2

)
= Op (1) .

Thus overall we get

−2Ẅ (βE, µT ) = Op (1) +Op (1) +Op (1) + op (1)

= Op (1)

Appendix A.4. Proof of Theorem 3

Proof. As f is measurable with Lemma 5 we have f̃ is measurable, hence

for iid Y i (β) with i = 1, ..., T it follows
∣∣∣f̃ (Y i (β))

∣∣∣ are iid. By assumption

it follows E
[
f̃ (Y (β))2

]
< ∞, thus all conditions of Lemma 3 in Appendix

Appendix A are satisfied such that

max
i=1,...,T

∣∣∣f̃ (Y i (β))
∣∣∣ = op

(
T

1
2

)
.

With Lemma 2 we have |µT | = Op (1) . Therefore

g̈∗ (β, µT ) = max
i=1,...,T

|gi (β, µT )|

= max
i=1,...,T

∣∣∣f̃ (Y i (β))− µT
∣∣∣

≤ max
i=1,...,T

∣∣∣f̃ (Y i (β))
∣∣∣+ |µT |

= op

(
T

1
2

)
+Op (1)

= op

(
T

1
2

)
.
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For ¯̈gT (β, µT ), it follows with the Slutsky Theorem

¯̈gT (β, µT )
p→ E

[
f̃ (Y (β))

]
− µ0 (A.24)

as T →∞, hence ¯̈gT (β, µT ) = Op (1) .Note, by assumption we have
∣∣∣E [f̃ (Y (β))

]
− µ0

∣∣∣ >
0. Now, using the CMT for Eq. (A.24) with f (x) = x2, it follows

¯̈gT (β, µT )2 p→ A (A.25)

as T → ∞ with A > 0, since A =
(
E
[
f̃ (Y (β))

]
− µ0

)2

. Moreover, using

the Slutsky Theorem repeatedly13 we get

1

T

T∑
i=1

gi (β, µT )2 p→ E
[
f̃ (Y (β))2

]
− µ0E

[
f̃ (Y (β))

]
+ µ2

0 (A.26)

as T →∞, hence 1
T

∑T
i=1 gi (β, µT )2 = Op (1) . Now let λ̇ = T−

2
3 ¯̈gT (β, µT )M,

where M > 0 is a constant. The order of
∣∣∣λ̇∣∣∣ is14 T−

2
3Op (1) and therefore

max
i=1,...,T

∣∣∣λ̇g̈i (β, µT )
∣∣∣ =

∣∣∣λ̇∣∣∣ g̈∗ (β, µT ) (A.27)

= T−
2
3Op (1) op

(
T

1
2

)
(A.28)

= op (1) . (A.29)

With Eq. (A.29) it is 1 + λ̇gi (β, µT ) > 0 with probability going to 1. Hence
using the Taylor expansion

log (1 + x) = x− x2

2 (1 + ξ)
(A.30)

for some ξ between 0 and x and the duality of the maximization problem, it
is

Ẅ (β, µT ) = −sup
λ

{
T∑
i=1

log (1 + λgi (β, µT ))

}

≤ −
T∑
i=1

log
(

1 + λ̇gi (β, µT )
)

= −

 T∑
i=1

λ̇gi (β, µT )− 1

2

T∑
i=1

(
λ̇gi (β, µT )

)2

(1 + ξi)

 . (A.31)

13Compare to Section Appendix A.5 in Appendix Appendix A.
14For details see Section Appendix A.6 in Appendix Appendix A.
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Note, from Eq. (A.29) all ξi are within op (1) neighborhood of 0 uniformly.
Therefore the second term Eq. (A.31) is no larger than

T∑
i=1

(
λ̇gi (β, µT )

)2

= T λ̇2 1

T

T∑
i=1

gi (β, µT )2

= O (T )Op

(
T−

4
3

)
Op (1) = op (1) ,

where we have used Eq. (A.26). The first term in Eq. (A.31) is with Eq. (A.25)

T∑
i=1

λ̇gi (β, µT ) = λ̇T ¯̈gT (β, µT )

= T−
2
3MT ¯̈gT (β, µT )2

= T
1
3M (A+ op (1)) .

Therefore Eq. (A.31) gives

Ẅ (β, µT ) ≤ −T
1
3MA+ op (1) . (A.32)

SinceM can be arbitrarily large, we have for β 6= βE that−2T−1/3Ẅ (β, µT )→
∞ in probability.

Appendix A.5. Annotation of Eq. (A.4)

¨̃S (βE, µT ) =
1

T

T∑
i=1

(
f̃ (Y i (βE))

)2

− 2µT

(
1

T

T∑
i=1

f̃ (Y i (βE))

)
+ µ2

T .

(A.33)

From Lemma 2 we know µT
p→ µ0 as T → ∞. As f (x) = x2 is a contin-

uous function with the CMT it follows µ2
T

p→ µ2
0 as T → ∞. Note, µ0 and

E
[
f̃ (Y (βE))

]
are constants. With the LLN we have 1

T

∑T
i=1 f̃ (Y i (βE))

p→

E
[
f̃ (Y (βE))

]
as T →∞. Therefore with the Slutsky Theorem15 we get

µT

(
1

T

T∑
i=1

f̃ (Y i (βE))

)
p→ µ0E

[
f̃ (Y (βE))

]

15See for example Van der Vaart (1998) on p. 11.
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as T →∞. Using the Slutsky Theorem again

2µT

(
1

T

T∑
i=1

f̃ (Y i (βE))

)
+ µ2

T

p→ µ0E
[
f̃ (Y (βE))

]
+ µ2

0

as T → ∞, where µ0E
[
f̃ (Y (βE))

]
+ µ2

0 is a constant again. Applying the

Slutsky Theorem a last time results in

1
T

∑T
i=1

(
f̃ (Y i (βE))

)2

− 2µT

(
1
T

∑T
i=1 f̃ (Y i (βE))

)
+ µ2

T

p→
E
[
f̃ (Y (βE))2

]
+ µ0E

[
f̃ (Y (βE))

]
+ µ2

0

as T → ∞, where the first term on the right side is due to the LLN, as
1
T

∑T
i=1 f̃ (Y i (βE))2 p→ E

[
f̃ (Y (βE))2

]
for T →∞.

Appendix A.6. Annotation of Eq. (A.27)

From Eq. (A.24) we have

¯̈gT (β, µT )
p→ B

as T →∞, where B =
∣∣∣E [f̃ (Y (β))

]
− µ0

∣∣∣ > 0, a constant, and therefore

|¯̈gT (β, µT )−B| = op (1) .

With the latter we get

|¯̈gT (β, µT )| ≤ |B|+ op (1) = Op (1) .

For λ̇ = T−
2
3 ¯̈gT (β, µT )M with M > 0 a constant, it follows then∣∣∣λ̇∣∣∣ = T−

2
3M |¯̈gT (β, µT )|

= T−
2
3O (1)Op (1)

= T−
2
3Op (1) .

Appendix A.7. Measurability of f̃

Theorem 5. Let (Ω,F) be a measure space and k = (k1, ..., kl) : Ω → Rl.
Then k is F − Bl measurable if and only if ks : Ω → R for s = 1, ..., l are
F − B measurable.
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Proof. See Meintrup and Schäffler (2005) on p. 18.

Lemma 5. Let Y be a real-valued K-variate random vector and suppose
f1, ..., fl are measurable functions mapping from R into R. Then f̃ is a BK−Bl
measurable function where

f̃ =

 f̃1
...

f̃l

 =


1
K

∑K
t=1 f1 (yt)

...
1
K

∑K
t=1 fl (yt)

 .

Proof. First note that for s = 1, ..., l we can write

f̃s =
1

K

K∑
t=1

fs (yt)

=
1

K

K∑
t=1

fs ◦ pt (Y )

=
1

K

K∑
t=1

fs,t (Y ) ,

where pt : RK → R denotes the projection on the t-th component. Knowing16

that pt is a BK − B measurable function and fs is a B − B measurable, it
follows that fs,t is also BK − B measurable function since fs,t = fs ◦ pt. By
definition f̃s : RK → R is a sum of BK − B measurable functions, hence
f̃s is itself a BK − B measurable function for all s = 1, ..., l. Finally, with

Theorem 5 it follows that f̃ =
(
f̃1, ..., f̃l

)′
: RK → Rl is a BK−Bl measurable

function.

Appendix A.8. Annotation of Eq. (26)

Let us consider

V = sup

{
T∑
i=1

log (Twi) |
T∑
i=1

wi = 1, wi ≥ 0

}
. (A.34)

The Lagrange of V is

L =
T∑
i=1

log (wi) + τ

(
1−

T∑
i=1

wi

)
+ T log (T ) .

16The fact that pt is a BK − B measurable function is demonstrated in Meintrup and
Schäffler (2005) on p. 18. On the same page it is also proven the composition and the
sum of measurable functions is measurable again.
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With the first order condition for L

∂L
∂wi

=
1

wi
− τ = 0 (A.35)

we get
T∑
i=1

wi
∂L
∂wi

= T − τ = 0

that is τ = T. Using the latter in Eq. (A.35) the optimal weights w∗i , i =
1, ..., T are given by

w∗i =
1

T
. (A.36)

Hence V =
∑T

i=1 log (Tw∗i ) = 0. Now by definition

Ẅ (β, µT ) = sup

{
T∑
i=1

log (Twi) |
T∑
i=1

wif̃ (Y i (β)) = µT ,
T∑
i=1

wi = 1, wi ≥ 0

}
,

that is Ẅ (β, µT ) is a constrained version of V (see Eq. (A.34)) and therefore

Ẅ (β, µT ) ≤ V = 0

or
−2Ẅ (β, µT ) ≥ 0.

Appendix A.9. SMM Consistency Requirements

Lee and Ingram (1991) introduces the simulated moment method for sta-
tionary and ergodic time series and Duffie and Singleton (1993) deals with
geometrically ergodic processes, that are not initially drawn from their sta-
tionary and ergodic distribution but will converge to it. For stationary and
ergodic time series Lee and Ingram (1991) present the following requirements
for the consistency of the SMM estimator.

Assumption 2.

• {xt} ∈ Rm and {yt (β)} ∈ Rm are (strictly) stationary and ergodic but
independent of each other for all β ∈ B ⊆ Rp.

• B is compact and h : Rm × B → Rl, for every β ∈ B the simulated
moment E [|h (y1 (β))|] <∞.

• Let l ≥ p and there exists a unique β0 such that {yt (β0)} is drawn from
the distribution as {xt} .
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• The function h1 (β) = h (y1 (β)) is continuous in the mean for all β ∈ B
i.e.

lim
δ→0

E

[
sup

β̀∈K(β,δ)

∥∥∥h1

(
β̀
)
− h1 (β)

∥∥∥] = 0.

• The weight matrix Ŵ satisfies Ŵ
p→ W, where W is a positive semi-

definite matrix.

For geometrically ergodic processes Duffie and Singleton (1993) give the fol-
lowing requirements for the consistency of the SMM estimator.

Assumption 3.

• For each β ∈ B ⊆ Rp,

{∥∥∥fβt ∥∥∥
2+δ

: t = 1, 2, ...

}
is bounded for some

δ > 0. The family
{
fβt

}
is Lipschitz, uniformly in probability and

β → E
[
fβ∞
]

is continuous, where fβt = f
(
yβt

)
is a measurable function

mapping into Rl with l ≥ p.

• For all β ∈ B, the process
{
yβt

}
is geometrically ergodic.

• Σ0 is nonsingular and Ŵ → W0 = Σ−1
0 almost surely, where (for any t)

Σ0 =
∞∑

j=−∞

E
[
(f ∗t − E [(f ∗t )])

(
f ∗t−j − E

[(
f ∗t−j

)])′]

• (Uniqueness of minimizer) C (β0) < C (β) with β ∈ B, β 6= β0 where

C (β) = G∞ (β)
′
W0G∞ (β)

with G∞ (β) =
(
E [f ∗∞]− E

[
fβ∞
)]

The following lemma demonstrates that both Lee and Ingram (1991) and
Duffie and Singleton (1993) require the moments of the simulation process
to be continuous with respect to the underlying parameter β.

Lemma 6. Let h1 (β) be first moment continuous at β, then E [h1 (β)] is
continuous in β.
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Proof. A function k is continuous in at some point β if

lim
δ→0,β̀∈K(β,δ)

∥∥∥k (β̀)− k (β)
∥∥∥ = 0,

where K (β, δ) an the open ball around β with radius δ. Now consider

lim
δ→0,β̀∈K(β,δ)

∥∥∥E [h1

(
β̀
)]
− E [h1 (β)]

∥∥∥ = lim
δ→0,β̀∈K(β,δ)

∥∥∥E [h1

(
β̀
)
− h1 (β)

]∥∥∥
≤ lim

δ→0,β̀∈K(β,δ)
E
[∥∥∥h1

(
β̀
)
− h1 (β)

∥∥∥]
≤ lim

δ→0
E

[
sup

β̀∈K(β,δ)

∥∥∥h1

(
β̀
)
− h1 (β)

∥∥∥]
= 0.

The last line holds due to first moment continuity. Setting k (β) = E [h1 (β)]
it follows with the definition that E [h1 (β)] is continuous in β.
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